行间生草对葡萄与葡萄酒影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄园生草是一种优良的土壤管理措施,对保护环境和农业可持续发展具有重要的意义,葡萄园生草对土壤肥力和葡萄与葡萄酒品质的影响是普遍关注和研究的重点。土壤生物学性质能敏感反映土壤环境的变化,以及对土壤结构和养分循环的重要性而成为土壤肥力评价的重点指标。葡萄酒的特有成分多酚、花色素苷、香气等是影响葡萄酒质量和构成葡萄酒个性的基本成分,成为消费者购买葡萄酒所考虑的关键因素。本论文以欧亚种(V.vinifera L.)酿酒葡萄品种赤霞珠(Cabemet Sauvignon)为试材,在葡萄园行间种植白三叶草、紫花苜蓿、高羊茅,以清耕为对照,对葡萄园土壤微生物区系、土壤酶活性及土壤养分进行了测定,并用通径分析研究了土壤养分与土壤生物因子的关系;通过TDR时域反射仪定位监测葡萄园水分的变化;采用HPLC和SPME-GC/MS分析了葡萄与葡萄酒的单体酚、花色素苷和香气成分,阐明了行间生草对葡萄园土壤及葡萄与葡萄酒质量的影响,为葡萄园生草进一步研究和推广奠定了理论基础。主要研究结论如下:
     (1)葡萄园土壤微生物数量、土壤酶活性及土壤养分均随土壤层次的加深而降低,土壤微生物数量主要分布在0~20 cm,土壤酶活性和养分以0~20 cm及20~40 cm土层含量较高。细菌数量占土壤微生物总量的90%以上,其次是放线菌和固氮菌。土壤微生物数量、酶活性及养分随季节变化呈现一定的规律,其中细菌、放线菌、固氮菌、纤维素分解菌数量、脲酶、淀粉酶、蔗糖酶、碱性磷酸酶和过氧化氢酶活性均以7月和9月份较高,4月和12月份较低,峰值大多出现在7月。真菌在7月和9月数量较低,4月和12月较高;行间生草和清耕(对照)土壤纤维素酶活性峰值分别出现在9月和7月份。土壤碱解N、速效K、全N、全P、有机质含量总体为12月份较高,其次是4月份,9月份较低。
     (2)与清耕(对照)相比,除高羊茅处理使土壤放线菌数量、脲酶和蔗糖酶活性降低外,行间生草总体使全年平均土壤细菌、真菌、固氮菌、纤维素分解菌数量、碱性磷酸酶、淀粉酶、纤维素酶、过氧化氢酶活性增加;行间生草使土壤有机质含量显著高于清耕(对照),白三叶草和紫花苜蓿处理总体使土壤碱解N、全N、速效K含量显著升高,高羊茅使其明显降低;三种生草处理均使速效P、全P含量降低,其中白三叶草和紫花苜蓿降低的幅度较大,而高羊茅降低的幅度较小。总体上,葡萄园行间种植豆科白三叶草和紫花苜蓿提高土壤微生物数量、酶活性和养分含量的效应较明显,但禾本科牧草有利于有效磷的活化和淀粉酶活性的提高。
     (3)土壤微生物数量、土壤酶活性与土壤养分三者之间存在一定的相关关系。除过氧化氢酶外,土壤有机质、全N、碱解N、全P、速效K与各生物因子之间均呈极显著或显著正相关;土壤微生物数量与酶活性之间也存在极显著正相关。综合分析相关分析及土壤养分与各生物因子的通径分析结果,初步认为碱性磷酸酶、淀粉酶、脲酶、放线菌、细菌是影响葡萄园土壤肥力的主要酶类和菌类,可以作为葡萄园土壤肥力因子的评价指标,其中细菌对土壤肥力主要起间接效应。
     (4)通过对行间生草葡萄园土壤水分定位观测,结果表明,在不同降水年型,葡萄园生草在一定程度上都对葡萄园土壤水分造成竞争,尤其在冬季贮水量不足、春季干旱的季节水分竞争更为严重,但在降水分布较均衡的年份,行间生草对土壤水分具有一定的调蓄作用,葡萄园生草提高了土壤水分利用率。葡萄园生草可改善土壤结构,使土壤容重降低,总孔隙度提高,高羊茅和白三叶草区0~60 cm土壤容重比清耕(对照)区降低8.5%,紫花苜蓿区降低9.8%;三种生草处理总孔隙度较对照分别提高11.6%、11.5%、13.9%。
     (5)用HPLC法共测定了赤霞珠葡萄果实与葡萄酒中10种单体酚和9种花色素苷的含量,葡萄果实与葡萄酒中均以儿茶素及二甲花翠素-3-O-葡萄糖苷的含量最高,分别为主要的类黄酮类多酚和花色素苷;羟基苯甲酸类酚酸占多酚总含量的比例高于羟基肉桂酸类。与清耕(对照)相比,行间生草可提高葡萄果实与葡萄酒中主要单体酚的含量及其总量,高羊茅处理的效果最明显,其次是白三叶草和紫花苜蓿处理。行间生草使葡萄果皮与葡萄酒中花色素苷总量升高,由高到低依次为紫花苜蓿>高羊茅>白三叶草>清耕。
     (6)采用SPME/GC-MS方法,共定量检测出赤霞珠干红葡萄酒47种香气成分,其中酯类和高级醇是赤霞珠葡萄酒的主要香气物质,含量较高的香气化合物为异戊醇、异丁醇、苯乙醇、己醇及乙酸乙酯、辛酸乙酯、乙酸异戊酯、葵酸乙酯等,其它香气成分虽然含量较低,但不同香气成分之间的协同作用构成了赤霞珠葡萄酒香气的复杂性。与清耕(对照)相比,行间生草使赤霞珠主要香气成分及酯类、高级醇、萜烯类、脂肪酸及其它微量香气成分的总含量升高,其中紫花苜蓿处理的葡萄酒香气成分总含量最高,其次是高羊茅处理。因此,行间生草可改善赤霞珠葡萄酒的香气,从而提高葡萄酒的质量。
     (7)葡萄园行间生草使葡萄果实和葡萄汁的总氮含量降低,除白三叶草处理葡萄果实氨基酸总含量略低于清耕(对照)外,其它两种生草处理高于清耕,各处理中均以脯氨酸含量最高,占果实氨基酸总量的45.94%~56.85%,其次是赖氨酸和精氨酸。说明葡萄园行间生草虽然使葡萄果实总氮含量降低,但总体使酵母可直接利用的氨基酸总含量升高,有利于酒精发酵的顺利进行及葡萄酒质量的提高。行间生草使葡萄酒中的总氮、游离氨基酸总含量升高,各处理均以脯氨酸的含量最高,占氨基酸总量的90.11%~92.45%,其次是丝氨酸和天冬氨酸。同时,葡萄酒品尝结果也表明,生草使葡萄酒结构感增强,颜色加深,香气突出。综合品评认为生草有利于葡萄酒质量的提高。
Cover crop in the vineyard as an excellent soil management method,it is of greatsignificance to protection of environment and sustainable development of agriculture.Itbecomes a focal point to study about influence of vineyard cover crop on soil fertility andquality of grape and wine.Soil microbiological characteristic can reflect the soil qualitychanges sensitively,also is it very important to soil structure and plant nutrition cycling.Hence,it becomes an important index to be used as one of soil fertility assessment.Polyphenols,anthocyanin and volatile compounds,along with their interactions,areresponsible for color and aroma,respectively,and affecting wine quality and style.Today agrowing number of consumers are showing interest in wines that are more aroma andcomplex and wines with numerous attributes are considered to be of higher quality.
     Wine grape cultivar Cabernet Sauvignon as experimental materials,permanent covercrop in vineyard inter-row with white clover(Trifolium repens),alfalfa(Medicago sativa)andtall fescue(Festuca arundincea Schreb.)in Yangling,Shaanxi,with comparison of cleantillage.The effect of cover crop in vineyard on soil microorganism,soil enzyme activity andsoil nutrient were investigated,the relationgships between soil nutrient contents and soilmicrobiological factors of four treatments were studied through correlation analysis and pathanalysis.Localized measure of soil moisture content with TRIME-TDR during vine growthseason,and monomeric phenol,anthocyanin and volatile compounds were determined andanalysed by HPLC and SPME-GC/MS.The effect of cover crop in vineyard on vine and winewere illustrated.The outcome of this study will provide the foundation for a continuing studyand extend.The results were as bellows:
     (1)soil microorganism quantity,soil enzyme activity and soil nutrient content decreasedwith deeper of soil layer and they were all higher in topsoil.Bacteria was 90% of totalmicroorganism amount,followed by actinomyces and azotobacter,soil microorganismquantity,soil enzyme activity and soil nutrient content take on some regularity with seasonalchange,thereinto,the number of bacteria,actinomyces,azotobacter andcellulose-decomposing microorganisms,the activity of urease,sucraseamylase,phosphataseand catalase were apparently larger in July and September than that in April and December, especialy largest in July.The number of fungi was higher in April and December and lower inJuly and September,but the peak value of soil cellulase activitywas in September and Julyunder the treatments of vineyard cover crop and clean tillage(CK),respectively.The contentof soil hydrolyzable N,available K,total N,total P and organic matter increased in the order:December,Apil and September.
     (2)With comparison to clean tillage,as a whole,the number of soil bacteria,fungi,azotobacter,cellulose-decomposing microorganisms and the activity of phosphatase,amylase,cellulase and catalase were increased under cover crop treatments,with the exception of tallfescue treatment decreased soil actinomyces quantity and activity of urease and sucrase.Thesoil organic matter were increased remarkably and available P,total P reduced by cover croptreatments,white clover and alfalfa treatments increased the contents of soil hydrolyzable N,total N,available K evidently,while tall fescue treatment decreased them.Therefore,whenviewed as a whole,compared with those of clean tillage,improvement of the soilmicroorganism quantity,soil enzyme activity and soil nutrients in white clover and alfalfatreatments more effectively than that in tall fescue.But it was propitious to enhance activitionof the available P and amylase activity with tall fescue treatment.
     (3)There are correlativity between soil microorganism quantity,soil enzyme activity andsoil nutrient.The contents of soil organic matter,total N,hydrolyzable N,total P and availableK showed significant or very significant position correlations with soil biological factors,except that soil catalase was negatively correlated with all kinds of soil nutrient contents.Thesoil microorganism quantity also were very significant position correlations with soil enzymeactivity.Correlation analysis and path analysis indicated that in the vineyard intercroppingsystem,soil phosphatase,urease,amylase,actinomyces,bacteria was the most importantfactor affecting the soil fertility,these soil microorganism and soil enzyme were goodassessment indicators of soil fertility,in which,soil bacteria had indirect effect on soilfertility.
     (4)The localized observation of soil moisture content was carried out in vineyard,theresult showed that cover cropping brought out competition for soil water in the differentrainfall year,the soil moisture content of cover crop treatments was reduced obviously,especially,the water competition was more severe in the year that short soil water storage inwinter and atmospheric drought in spring.Whereas,cover cropping could regulate soil waterand improve utilization ratio of soil water.At the same time,after planting grasses in vineyard,soil physical characteristics were improved,such as soil bulk density decreased by 8.5%~9.8% and soil porosity increased by 11.5%~13.9% in the depth of 0~60 cm comparisedwith bare soil treatment.
     (5)There are ten monomeric phenols and nine anthocyanins were detected in grape berryand wine of Cabernet Sauvignon with HPLC.Catechin and Mv-3-O-Glu was the mostabundant compound of polyphenol compound and anthocyanin in gape and wine,respectively.The percentage of hydroxybenzoic acids in the total polyphenol content was more higher thanthat of hydroxycinnamic acids.Cover crop system had high monomeric phenol content andtotal phenolic compounds content,the tall fescue treatment had the most obvious effect,secondly,white clover and alfalfa treatments were higher compared to the soil tillage.Inaddtion,Cover crop system increased the total anthocyanin content in order of the fourtreatments:alfalfa,tall fescue,white clover and soil tillage.
     (6)Aroma compounds of wine were analysed by solid-phase microextraction gaschromatography-mass spectrometry(SPME-GC/MS).47 volatile compounds of wine wereidentified and semi-quantified,especially abundant in esters and higher alcohols,the majorones being Isoamyl alcohol,Isobutyl alcohol,phenylethyl alcohol,hexanol,ethyl acetate,ethyl octanoate,isoamyl acetate and ethyl decanoate.The permanent cover crops increasedtotal content of wine aroma compounds compared to the bare soil.Alfalfa sward was highestfollowed by the tall fescue treatment.Wines made from grapes with different cover cropswere better in aroma compounds,so it can improve the wine quality.
     (7)Compared to soil tillage,the three cover crop treatments showed a lower total N ofgrape berry and juice,while a higher total N of wine,total content of free amino acid in grapeberry and wine,except total content of amino acid in grape berry was lower in white clovertreatment.Proline was the most abundant amino acid in grape and wine wtih the fourtreatments,it account for 45.94%~56.85 % and 90.11%~92.45% of the total amino acidin grape and wine respectively,in the following,it were lysine,arginine and serine,asparagicacid.Although the total N of grape berry was decreased under cover crop treatments,therewere no differences in duration of alcohol fermentation between treatments because ofincreasing of aminio acid.The color density and tastes of wine were improved significantlyunder green covering.Compared with those of clean tillage,significant difference in grapeand wine configuration,color and aroma occurred.It can be concluded that green coverimproved the quality of grape berry and wine evidently.
引文
[1]李华编著.葡萄集约化栽培手册[M].西安:西安地图出版社,2002.
    [2]孔庆山主编.中国葡萄志[M].北京:中国农业科学技术出版社,2004.
    [3]贺普超主编.葡萄学[M].北京:中国农业出版社,1999.
    [4]中华人民共和国农业部编.中国农业统计资料[M].北京:中国农业出版社,2007.
    [5]张振文主编.葡萄品种学[M].西安:西安地图出版社,2000.
    [6]李华,房玉林.论葡萄产业可持续发展模式的目标优质、稳产、长寿、美观[J].科技导报,2005,23(9):20~22.
    [7]李光晨,李绍华编著.果园土壤管理与节水栽培[M].北京:中国农业大学出版社,1998.
    [8]房玉林,李华,阮仕立.果园耕作制度的研究进展[A].第二届国际葡萄与葡萄酒学术研讨会论文集[C].西安:陕西人民出版社,2001,60~66.
    [9]孙鹏,王丽华,李光宗,等.麦草覆盖对果园土壤理化性质影响的研究[J].水土保持研究,2001,8(3):37~39,109.
    [10]李国怀,章文才.我国果园土壤管理制度的发展及评述[J].四川果树,1997(3):32~34.
    [11]姚胜蕊,薛炳烨.果园地面管理研究进展[J].山东农业大学学报,1999,30(2):186~192.
    [12]赵之峰,陈爱昌,师法萍,等.改革果园清耕制推广果园生草、覆盖技术[J].经济林研究,2000,18(2):31.
    [13]黄昌勇主编.土壤学[M].北京:中国农业出版社,2001.
    [14]张玉兰,陈利军,张丽莉.土壤质量的酶学指标研究[J].土壤通报,2005,36(4):598~604.
    [15]唐玉姝,魏朝富,颜廷梅,等.土壤质量生物学指标研究进展[J].土壤,2007,39(2):157~163.
    [16]谭周进,周卫军,张杨珠,等.不同施肥制度对稻田土壤微生物的影响研究[J].植物营养与肥料学报,2007,13(3):430~435.
    [17]黄志宏,梁瑞友,田大伦,等.南岭小坑果园土壤微生物数量状况初步研究[J].中南林业科技大学学报,2007,27(4):18~24.
    [18]徐雄,张健.生草和生物覆盖对果园土壤肥力的影响[J].四川农业大学学报,2004,22(1):88~91.
    [19]薛泉宏主编.微生物学[M].西安:世界图书出版公司,2000.
    [20]薛立,陈红跃,邝立刚.湿地松混交林地土壤养分、微生物和酶活性的研究[J].应用生态学报,2003,14(1):157~159.
    [21]胡日利,吴晓芙.土壤微生物生物量作为土壤质量生物指标的研究[J].中南林学院学报,2002,22(3):51~53.
    [22]黎宁,李华兴,朱风娇,等.菜园土壤微生物生态特征与土壤理化性质的关系[J].应用生态学报,2006,17(2):285~290.
    [23]孙波,赵其国,张桃林,等.土壤质量与持续环境.Ⅲ:土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    [24]张奇春,王光火,方斌.不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响[J].应用生态学报,2004,15(10):1907~1910.
    [25]徐雄,张健,张猛,等.果-草人工生态系统中土壤微生物、土壤酶与土壤养分的关系[J].水土保持学报,2005,19(6):178~181.
    [26]张成娥,杜社妮,白岗栓,等.黄土源区果园套种对土壤微生物及酶活性的影响[J].土壤与环 境,2001,10(2):121~123.
    [27]李会科,张广军,赵政阳,等.黄土高原旱地苹果园生草对土壤养分的影响[J].园艺学报,2007,34(2):477~480.
    [28]杨青华,韩锦峰.棉田不同覆盖方式对土壤微生物和酶活性的影响[J].土壤学报,2005,42(2):348~351.
    [29]和文祥,来航线,武永军,等.培肥对土壤酶活性影响的研究[J].浙江大学学报,2001,27(3):265~268.
    [30]马冬云,郭天财,宋晓,等.尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响[J].生态学报,2007,27(12):5222~5228.
    [31]罗英,孙辉,唐学芳,等.珠穆朗玛峰北坡土壤过氧化氢酶与蔗糖酶活性研究[J].土壤学报,2007,44(6):1143~1147.
    [32]章家恩,刘文高,陈景青,等.刈割对牧草地下部根区土壤养分及土壤酶活性的影响[J].生态环境,2005,14(3):387~391.
    [33]李发林,黄炎和,刘长全,等.土壤管理模式对幼龄果园根际土壤养分和酶活性的影响[J].福建农业学报,2002,17(2):112~115.
    [34]李振吾,籍增顺.山西旱地农业高效持续发展模式研究[J].干旱地区农业研究,2001,19(1):108~114.
    [35]徐明岗,文石林,高菊生.红壤丘陵区不同种草模式的水土保持效果与生态环境效应[J].水土保持学报,2001,15(1):77~80.
    [36]田明英,徐淑桂,刘倩.果园生草技术研究[J].中国果菜,2001(1):20.
    [37]黄毅武,应朝阳,郑仲登,等.生态牧草筛选及其在生态果园应用的研究[J].中国生态农业学报,2001,9(3):48~51.
    [38]陈清西,廖镜思,郑国华,等.果园生草对幼龄龙眼园土壤肥力和树体生长的影响[J].福建农业大学学报,1996,25(4):429~432.
    [39]杨朝选,Andrzej Sadowski,Ewa Jadczuk.增施氮肥和地面管理对酸樱桃园土壤营养状况的影响[J].果树科学,2000,17(1):27~30.
    [40]水建国,柳俊,廖根清,等.不同自然植被管理措施对红壤丘陵果园水土流失的影响[J].农业工程学报,2003,19(5):43~46.
    [41]兰彦平,曹慧,解自典,等.无芒雀麦对石灰岩旱地果园的保水效应研究[J].落叶果树,2000(6):15~16.
    [42]李国怀,伊华林.生草栽培对柑橘园土壤水分与有效养分及果实产量、品质的影响[J].中国生态农业学报,2005,13(2):161~163.
    [43]赵政阳,李会科.黄土高原旱地苹果园生草对土壤水分的影响[J].园艺学报,2006,33(3):481~484.
    [44]冯存良,陈建平,张林森.生草栽培对富士苹果园生态环境的影响[J].西北农业学报,2007,16(4):134~137.
    [45]宋吉红,王百田,林富荣.黄土高原旱地果园土壤蓄水保墒技术定量研究[J].水土保持学报,2000,14(4):95~98.
    [46]范光南,傅金辉,刘长全,等.果园生草、套种绿肥对红壤幼龄果园土壤物理性状的影响[J].福建农业学报,2002,13(增刊):85~89.
    [47]李会科,张广军,赵政阳,等.生草对黄土高原旱地苹果园土壤性状的影响[J].草业学报,2007, 16(2):32~39.
    [48]惠竹梅,李华,张振文,等.葡萄园行间生草对植株生长的影响[A].中国园艺学会第六届青年学术讨论会[C],园艺学进展.西安:陕西科学技术出版社,2004,204~208.
    [49]姚青,朱红惠,陈杰忠.果园柱花草刈割处理对其与柑橘养分竞争的影响[J].园艺学报,2004,31(1):11~15.
    [50]陈恩,李春燕,黄毅武.龙眼园套种圆叶决明复合系统的根系研究[J].福建果树,2002(4):1~2.
    [51]兰彦平,牛俊玲.石灰岩山区果园生草对果树根系生态系统的研究[J].山西农业大学学报,2000,20(3):259~261.
    [52]黄丛林,张大鹏.葡萄叶片光合速率日间降低内外因调控的研究[J].园艺学报,1996,23(2):128~132.
    [53]张大鹏,陈星黎.葡萄不同栽培方式的叶幕微气候、光合作用和水分生理效应[J].园艺学报,1994,21(2):105~110.
    [54]刘殊,廖镜思,陈清西,等.果园生草对龙眼园微生态气候和光合作用的影响[J].福建农业大学学报,1996,25(1):24~28.
    [55]惠竹梅,李华,张振文,等.行间生草对葡萄园微气候和葡萄酒品质的影响[J].西北农林科技大学学报,2004,32(10):33~37.
    [56]李华.葡萄酒品尝学[M].北京:科学出版社,2006.
    [57]李华,王华,袁春龙,等编著.葡萄酒化学[M].北京:科学出版社,2005.
    [58]李华,王华,袁春龙,等编著.葡萄酒工艺学[M].北京:科学出版社,2007.
    [59]邓军哲,屈慧鸽.葡萄花色素的研究概况[J].葡萄栽培与酿酒,1996,(2):25~27.
    [60]唐传核,彭志英.天然花色苷类色素的生理功能及应用前景[J].食品添加剂,2000(1):26~28.
    [61]王美丽.葡萄成熟过程与葡萄酒陈酿过程多酚物质变化的研究[D].西北农林科技大学硕士研究生论文,2006.
    [62]李华,胡博然,杨新元.蛇龙珠红葡萄酒香气成分的GC/MS分析[J].分析测试学报,2004,23(1):85~87.
    [63]李记明,宋长冰,贺普超.葡萄与葡萄酒芳香物质研究进展[J].西北农业大学学报,1998,26(5):105~109.
    [64]王贞强.瑞引酿酒葡萄Granoir果实与葡萄酒品质研究[D].西北农林科技大学硕士研究生论文,2005.
    [65]李华.葡萄酒小容器酿造规范[A].葡萄与葡萄酒研究进展[C].西安:陕西人民出版社,2002,97~99.
    [66]王华,王飞,张春晖,等.葡萄与葡萄酒实验技术操作规范[M].西安:西安地图出版社,1999.
    [67]周慧杰,石磊利.日光温室种植年限对土壤微生物和酶活性的影响[J].黑龙江生态 工程职业学院学报,2007,20(6):39~41.
    [68]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    [69]刘淑霞,王鸿斌,赵兰坡,等.儿种纤维素分解菌在有机质转化中的作用[J].农业环境科学学报,2008,27(3):991~996.
    [70]杨瑞吉,杨祁峰,牛俊义.表征土壤肥力主要指标的研究进展[J].甘肃农业大学学报,2004,39(1):86~91.
    [71]马建军,李青丰,张树礼.沙棘与不同类型植被配置下土壤微生物、养分特征及相关性研究[J]. 干旱区资源与环境,2007,21(6):163~167.
    [72]熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用与环境生物学报,2004,10(4):416~420.
    [73]关松荫,张德生,张志明.土壤酶及其研究方法[M].北京:科学出版社,1986.
    [74]樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究.Ⅱ.土壤酶活性与土壤肥力[J].植物营养与肥料学报,2003,9(2):146~150.
    [75]高雪峰,张功,卢萍.短花针茅草原土壤的酶活性及其生态因子的季节动态变化研究[J].内蒙古师范大学学报(自然科学汉文版),2006,35(2):226~228,237.
    [76]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化[J].生态学报,2008,28(6):2536~2545.
    [77]南京大学主编.土壤农化分析[M].北京:农业出版社,1994.
    [78]罗明霞.果园生草对果树生态环境的影响[J].烟台果树,2007(4):23~25.
    [79]黄炎和,杨学震,蒋芳市.侵蚀坡地果园不同生草方式对土壤和果树生长的影响[J].水土保持学报,2007,21(2):111~114.
    [80]徐强,程智慧,梦焕文,等.玉米-线辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系[J].应用生态学报,2007,18(12):2747~2754.
    [81]安韶山,黄懿梅,李壁成,等.用典范相关分析研究宁南宽谷丘陵区不同土地利用方式土壤酶活性与肥力因子的关系[J].植物营养与肥料学报,2005,11(5):704~709.
    [82]刘霞,张光灿,李雪蕾,等.小流域生态修复过程中不同森林植被土壤入渗与贮水特征[J].水土保持学报,2004,18(6):2~3.
    [83]刘金豹,杜中军,翟衡.葡萄浆果中的主要多酚化合物及影响因素[J].中外葡萄与葡萄酒.2003,(2):22~26.
    [84]李华,陶永胜,康文怀,等.葡萄酒香气成分的气相色谱分析研究进展[J].食品与生物技术学报,2006,25(1):99~104.
    [85]陶永胜.昌黎原产地域葡萄酒特征香气研究[D].西北农林科技大学博士研究生论文,2007.
    [86]宋治军,纪重光.现代仪器分析与测试方法[M].西安:西北大学出版社,1994.
    [87]张春晖,李华.葡萄酒微生物学[M].西安:陕西人民出版社,2003.
    [88]FAO.Production Yearbook,2006.
    [89]Bhogal A.,Shepherd M.,Hatch D.J.,et al.Valuation of two N cycle models for the prediction of N mineralization from grassland soils in the UK[J].Soil Use and Management,2001,17:163 ~ 172.
    [90]Jalota S.K.,Khera R.,Chahal S.S.Straw management and tillage on soil water storage under field conditions[J].Soil Use and Management,2001,17:282~287.
    [91]Azooz R.H.,Arshad M.A.Soil water drying and recharge rates as affected by tillage under continuous barley and barley-canola cropping systems in northwestern Canada[J].Canadian Journal of Soil Science,2001,81:45~52.
    [92]Darbellay C.H.,Fournier F.Soil management techniques in fruit orchard[J].Revue suisse de viticulture,arboriculture,horticulture,1996,28,2:93~97.
    [93]Mayor J.,Ancay A.Chemical weed control in orchard[J].Revue suisse de viticulture,arboriculture,horticulture,1997,29(1):61~66.
    [94]Mayor J.,Spring J.L.Chemical weed control in[Swiss]vineyards[J].Revue suisse de viticulture,arboriculture,horticulture(Switzerland),1996,28(1):75~79.
    [95] Dick R.P., Breakwill D., Turco R. Soil enzyme activities and biodiversity measurements as integrating biological indicators[A].In: Doran et al. eds. Handbook of methods for assessment of soil Qulity[C]. Madison: SSSA Special Pub. 49. Soil Science Society of America Journal. Special. Publication, 1996. 247-272.
    [96] Martems D.A., Johnson J. B., Frankenberger J.W.T. Production and persistence of soil enzymes with repeated additions of organic residues[J]. soil science, 1992, 153: 53-61.
    [97] Badiane N.N.Y, Chotte J.L., Patea E., et al. Use of soil enzyme activities to monitor soil quality in natural and imp roved fallws in semi - arid trop ic regions[J]. Applied Soil Ecology, 2001, 18: 229- 238.
    [98] Colvan S.R., Syers J.K., O'Donnell A.G. Effect of long-term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland[J]. Biology and Fertility of Soil, 2001, 34 (4): 258-263.
    [99] Kennedy Z.J., Rangarajan M. Biomass production root colonization and phosphatase activity by six VA-mycorrhizal fungi in papaya[J]. Indian Phytopathology, 2001, 54 (1): 72-77.
    [100] Bandick A.K., Dick R.P. Field management effects on soil enzyme activities[J]. Soil Biology & Biochemistry, 1999, 1: 1471 - 1479.
    [101] Rees R.M., Bingham I.J., Baddeley J.A., et al. The role of plants and land management in sequestering carbon in temperate arable and grassland ecosystems[J]. Geoderma, 2005, 128: 130- 154.
    [102] Ingels C.A., Cow K.M., Whisson D.A., et al. Effect of cover on grapevines, yield, juice composition, soil microbial ecology, and gopher activity[J]. American Journal of Enology and viticulture, 2005, 561:19-29.
    [103] Whitelaw-Weckert M.A., Rahman L., Hutton R.J., et al. Permanent swards increase soil microbial counts in two Australian vineyards[J].Applied soil ecology, 2007, 36: 224-232.
    [104] Wardle D.A., Yeates G.W., Nicholson K.S., et al. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period[J]. Soil Biology & Biochemistry, 1999, 31: 1707-1720.
    [105] Ghani A., Dexter M., Perrott K. Hot water extractable carbon in soils: a sensitive measurement for determining impacts of fertilization, grazing and cultivation[J]. Soil Biology & Biochemistry, 2003, 35: 1231 - 1243.
    [106] Haynes R.J. Size and activity of soil microbial biomass under grass and arable management[J]. Biology and Fertility of Soils, 1999, 30: 210-216.
    [107] Acosta-Martinez V., Tabatabai M.A. Enzyme activities in a limed agricultural soil[J]. Biology and Fertility of Soils, 2000, 31:85-91
    [108] Gianfreda L., Rao M.A., Violante A. Adsorption, activity and kinetic properties of urease on montmorilonite, aluminium hydroxide and AL (OH ) X - montm - rilonite comp lexes [J]. Soil Biology & Biochemistry, 1992, 24(1): 51-58.
    [109] Senwo Z.N., Tabatabai M.A. Aspartase Activity of Soils[J]. Soil Science Society of America Journal, 1996,60: 1416-1422.
    [110] Miller M., Dick R.P. Thermal stability and activities of soil enzymes as influenced by crop rotations[J]. Soil Biology & Biochemistry, 1995, 27: 1161 -1166.
    [111] Niemi R.M., Vepsalainen M., Wallenius K., et al. Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover(Trifolium pratense) and timothy (Phleum pratense) in the field[J]. Applied Soil Ecology, 2005, 30: 113-125.
    [112] Vepsalainen M., Erkomaal K., Kukkonen S., et al. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure[J]. Plant and Soil, 2004, 264: 273-286
    [113] Benitez E., Nogales R., Campos M., et al. Biochemical variability of olive-orchard soils under different management systems[J]. Applied Soil Ecology, 2006,32: 221-231.
    [114] Mikulas J. Controlled natural green cover in vineyard on sandy soil[J].Obstbau-Weinbau, 1996, 33: 7-8, 205-206.
    [115] Baumgartner K., Smith R.F., Bettiga L. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard[J]. Mycorrhiza, 2005, 15: 111 - 119.
    [116] Ranells N.N.,Wagger M.G., Nitrogen release from grass and legume cover crop monocultures and bicultures[J]. Agronomy Journal. 1996, 88: 777-782.
    [117] Rupp D., Poni S., Peterlunger E., et al. Green cover management to optimize the nitrogen supply of grapevine[J]. Acta-Horticulturae.1997, 427:57-62.
    [118] Amy P.K., Alison M.B. Vineyard δ~(15) N, nitrogen and water status in perennial clover and bunch grass cover crop systems of California's central valley[J]. Agriculture, Ecosystems and Environment, 2005, 109: 262-272.
    [119] Drinkwater L., Wagoner P., Sarrantonio M., Legume-based cropping systems have reduced carbon and nitrogen losses[J]. Nature, 1998, 396: 262-265.
    [120] Melvile N., Morgan R.P.C. The influence of grass density on effectiveness of contour grass strips control of soil erosion on low angle slops[J]. Soil Use and Management, 2001, 17: 278-281.
    [121] Jalota S.K., Khera R., Chahal S.S. Straw management and tillage effects on soil water storage under field conditions[J]. Soil Use and Management, 2001,17: 282-287.
    [122] Folorunso O.A., Rolston D.E., Prichard T., et al. Soil surface strength and infiltration rate as affected by winter cover crops[J]. Soil Technology, 1992, 5:189-197.
    [123] Geoffrion R. L'enherbement permanent controle' des sols viticoles.Vingt ans de recherches sur le terrain en Anjou[J]. Phytoma, 2000, 530: 28-31.
    [124] Shipitalo M.J., Edwards W.M. Runoff and erosion control with conservation tillage and reduced-input practices on cropped watersheds[J]. Soil & Tillage Research, 1998, 46: 1 -12.
    [125] Hermawan B., Bomke A.A. Effects of winter cover crops and successive spring tillage on soil aggregation[J]. Soil & Tillage Research, 1997, 44: 109-120.
    [126] Bharati L., Lee K.-H., Isenhart T.M., et al. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA[J]. Agroforestry Systems, 2002, 56: 249-257.
    [127] Piementese S, Pazzi G, Argenti G., et al. Some data on annual self-reseeding legumes as cover crops in intensive vineyard systems[J]. Rivista-di-Agronomia,1995, 29(3): 273-280.
    [128] Afonso J.M., Monteiro A., Lopes C.M., et al. Enrelvamento do solo em vinha na regi(?)o dos Vinhos Verdes. Tr(?)s anos de estudo nacasta 'Alvarinho' Ciencia T(?)c[J]. Vitiv. 2003, 18 : 47-63.
    [129] Ana M., Carlos M.L. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal[J]. Agriculture, Ecosystems and Environment, 2007, 121: 336-342.
    [130] Jackson L.E., Wyland L.J., Klein J.A., et al. Winter cover crops can decrease soil nitrate, leaching potential[J]. California Agriculture, 1993,47: 12-15.
    [131] Jackson L.E., Ramirez I., Yokota R., et al. Scientists, growers assess trade-offs in use of tillage, cover crops and compost[J]. California Agriculture, 2003, 57: 48-54.
    [132] Williams L.E., Matthews M.A. Grapevine[A]. In: Stewart B.J., Nielsen D. R. (Eds.), Irrigation of Agricultural Crops. Agronomy Monographs[C], No. 30 ASA-CSSA-SSSA. Madison, Wisconsin, USA, 1990, 1019-1055.
    [133] Agulhon R. Advantage of new methods maintaining grapevine soils for viticulture, oenology, the environment and health[J]. Progres-Agricole-et-Viticole, 1996, 113(12): 275-278.
    [134] Caspari H.W., Neal S., Naylor A., et al. Use of cover crops and deficit irrigation to reduce vegetative vigor of 'Sauvignon Blanc 'grapevines in a humid climate[A]. Proceeding of the fourth international symposium on cool climate viticulture and enology[C].Rochester, New York, USA, 1997, 11: 63- 66.
    [135] Wahl K., Heigel K. P., Schwab A., et al. The effects of pruning, thinning, and soil management on the vine and the quality of wine[A]. Proceeding of the fourth international symposium on cool climate viticulture and enology[C]. Rochester, New York, USA, 1997, 5: 54-57.
    [136] Descotes A., Moncomble D., Perraud A., et al. Comparison of several local soil management techniques implemented in Champagne vineyards[J]. Seizieme conference du COLUMA. 1996, 3. 1161- 1169.
    [137] Carsoulle J. Permanent grassing of vineyards, influence on the wine production[J]. Progres Agricole et viticole , 1997, 114( 4): 87-92.
    [138] Cotea V., pituc P., Zaldea G. Influence of soil cultivation on the development and distribution of the root system of the BXR Kober 5 BB stock grafted with Muscadelle and Aligote[J]. Cercetari- Agrinomice-in-Moldova, 1996, 29:1-2, 225-230.
    [139] Spring G.P. Ratio of microbial biomass to soil organic matter carbon as a sensitive indicator of changes in soil organic matter[J]. Australian Journal of Soil Research, 1992, 30: 195-207.
    [140] Dry R.R., Loveys B.R. Factor influencing grapevine vigor and the potential for control with partial root zone drying[J]. Australian Journal of Grape and Wine Research, 1993, 4(3): 140-148.
    [141] Lisa Laura. Parena S., Lisa L. Trail of cover grass in hiuside vineyard with different types of swards in northern Monferrato[J].Vigevini, Italie, 1996, 12:3-10.
    [142] Riou C, Morlat R. First results on the effects of controlled permanent cover on the vine and wine, in combination with soil diversity of Saumur vineyards[J]. Seizieme conference du COLUMA. 1996, 3: 1137-1144.
    [143] Tan S., Crabtree G.D. Competition Between Perennial Ryegrass Sod and 'Chardonnay'Wine Grapes for mineral Nutrients[J]. Hortscience, 1990, 25(5): 533-535.
    [144] Sicher L., Dorigoni A., Stringari G., et al. Soil management effects on nutritional status and grapevine performance[J]. Acta Horticulturae, 1995, 383: 73-82.
    [145] Maigre D. Agronomic and physiological behaviour of grapevines subjected to different soil management practices. Observations on the variety Chasselas in 1993[J]. Horticulture, 1996, 28(5): 303-312.
    [146] Morlat R., Jacquet A. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward[J]. American Journal of Enology and Viticulture, 2003, 54, 1-7.
    [147] Bo M.A, Becher M. Evaluation of soil management systems for viticulture[J]. Pesquisa-Agropecuaria-Brasileira(Brazil): 1994, 29(2): 263-266.
    [148] Monte R.F., Mathey C.A., Quiroga M.E, et al. Comparative efficiency among cultivation system and natural vegetation in irrigated viticulture[J]. Horticultura Argentina, 1994, 13: 34-35, 97-98.
    [149] Descotes A., Moncomble D., Valentin G, et al. Integrated production and soil preservation in champagne vineyard[J]. Seizime conference du COLUMA, 1996,3: 1203 -1210.
    [150] Panigai L.Viticulture soil management and its effects on the environment[J]. Phytoma, 1995, 478: 50-52.
    [151] Costello M.J., Daane K.M. Influence of ground cover on spider populations in a table grape vineyard[J]. Ecological Entomology, 1998, 23(1): 33-40..
    [152] Stoitchev S., Kresteva K.Z. Features of photo-climate and grapevine yield in different conditions of surface soil managemen[J]. Seizieme conference du COLUMA, 1996, 3: 1187- 1193.
    [153] Folorunso O.A., Rolston D.E., Prichard T., et al. Cover crops lower soil surface strength, may improve soil permeability[J]. California Agriculture, 1992, 46: 26-27.
    [154] Douglas O.A. Phenolics and Ripening in Grape Berries[J]. American Journal of Enology and Viticulture, 2006, 57(3): 249-256.
    [155] Iztok J.K., Jurkica K. Use of modern nuclear magnetic resonance spectroscopy in wine analysis: determination of minor compounds [J]. Analytica Chimica Acta, 2002,458: 77-84
    [156] Heier A., Blaas W., Dro(?) A., et al. Anthocyanin Analysis by HPLC/MS[J]. American Journal of Enology and Viticulture, 2002, 53(1): 78-86.
    [157] Benvenuti S., Pellati F., Melegari M., et al. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes and Aronia[J]. Journal of Food Science, 2004, 69: 164-169.
    [158] Moreno J.J., Cerpa-Calderon F., Cohen S.D., et al. Effect of postharvest dehydration on the composition of pinot noir grapes {Vitis vinifera L.) and wine[J]. Food Chemistry, 2008, 109 : 755- 762.
    [159] Bozan B., Tosun G., Ozcan D. Study of polyphenol content in the seeds of red grape (Vitis vinifera L.)varieties cultivated in Turkey and their antiradical activity[J]. Food Chemistry, 2008, 109: 426- 430.
    [160] Garc(?)a-Ruiz A., Bartolom(?) B., Mart(?)nez-Rodr(?)guez A J., et al. Potential of phenolic compounds for controlling lactic acid bacteria growth in wine[J]. Food Control, 2008, 19: 835-841.
    [161] Clifford A.J., Ebeler S.E., Ebeler J.D., et al. Delayed tumor onset in transgenic mice fed an amino acid-based diet supplemented with red wine solids[J]. American Society for Clinical Nutrition, 1996, 64: 748-756.
    [162] Modun D., Music I., Vukovic J., et al. The increase in human plasma antioxidant capacity after red wine consumption is due to both plasma urate and wine polyphenols[J]. Atherosclerosis, 2008, 197: 250-256.
    [163] Katalinic V., Milos M., Modun D., et al. Antioxidant effectiveness of selected wines in comparison wuth (+)-catechin[J]. Food Chemistry, 2004, 86: 593-600.
    [164] Bastianetto S., Zheng W.H., Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents againstnitric oxide-related toxicity in cultured hippocampal neurons[J]. British Journal of Pharmacology, 2000, 131: 711-720.
    [165] Mar(?)a M., Rafael S., Carmen G.C., et al. Simultaneous Determination of Nonanthocyanin Phenolic Compounds in Red Wines by HPLC-DAD/ESI-MS[J]. American Journal of Enology and Viticulture, 2005,56(2): 139-147.
    [166] Bisson L.F., Waterhouse A.L., Ebeler S.E., et al. The present and future of the international wine industry. Nature insight[J]: Food and the Future, 2002, 418(6898): 696-700.
    [167] Gaulejac N.V., Nonier M.F., Guerra C, et al. Anthocyanin in grape skins during maturation of Vitis viniferal L. cv. Cabernet Sauvignon and Merlot noir from different Bordeaux terroirs[J]. Journal International des Sciences de la Vigne et du vin, 2001, 35(3): 149-156.
    [168] Yokotsuka K., Nagao A., NakaZawa K. Changes in anthocyanins in berry skins of Merlot and Cabernet Sauvignon grapes grown in two soils modified with limestone or oyster shell versus a native soil over two years[J]. American Journal of Enology and Viticulture, 1999, 50(1): 1 - 12.
    [169] Cliff MA., King MC, Schlosser J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines[J]. Food Research International, 2007,40: 92-100.
    [170] Spayd S.E., Tarara J.M., Mee D.L., et al. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv.'Merlot' berries[J]. American Journal of Enology and Viticulture. 2002,53: 171-182.
    [171] Bergqvist J., DokooZlian N., Ebisuda N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California[J]. American Journal of Enology and Viticulture, 2001, 52(1): 1-7
    [172] Downey M.O., Dokoozlian N.K., & Krstic, M.P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine[J]: A review of recent research. American Journal of Enology and Viticulture, 2006, 57(3): 257-268.
    [173] James A.K., Mark A.M., Andrew L.W. Changes in grape seed polyphenols during fruit ripening[J]. Phytochenmistry, 2000, 55: 77-85.
    [174] Downey M.O., Harvey J.S., Robinson S.P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes[J]. Australian Journal of Grape and Wine Research, 2004, 10: 55-73.
    [175] Gonzalez-Neves G., Barreiro L., Gil G. Anthocyanic composition of Tannat grapes from the south region of Uruguay [J]. Analytica Chimica Acta, 2004 (513): 197-202.
    [176] Shahidi F., Naczk M. Wine in food phenolics: Sources, chemistry, effects, applications[M]. Pennsylvania: Technomic Publishing Co., 1995, 136-148.
    [177] James F.H., Sara S. Measuring Phenolics in the Winery[J]. American Journal of Enology and Viticulture, 2006, 57(3 ): 280-288.
    [178] Bautista-Ort(?)n A.B., Fern(?)ndez-Fern(?)ndez J.I., L(?)pez-Roca J.M., et al. The effects of enological practices in anthocyanins, phenolic compounds and wine colour and their dependence on grape characteristics[J]. Journal of Food Composition and Analysis, 2007, 20: 546-552.
    [179] Monagas M., Bartolom(?) B., G(?)mez-Cordov(?)s C. Evolution of polyphenols in red wines from Vitis vinifera L.during aging in the bottle.Ⅱ. Non-anthocyanin phenolic compounds[J]. European Food Research and Technology, 2005, 220: 331 -340.
    [180] G(?)mez-Plaza E., Gil-Muf(?)oz R., L(?)pez-Roca J.M., et al. Maintenance of color composition of a red wine during storage. Influence of prefermentative practices, maceration time and storage[J]. Food Science and Technology, 2002, 35: 46-53.
    [181] Selli S., Cabaroglu T. Effect of contanct on the aroma composition of the musts Vitis Vinifera L. cv. Muscat of Bornova and Narince grown in Turkey[J]. Food Chemistry, 2003, 81: 341-347.
    [182] Pekka L. Determination of amino and amino acid in wine[J]. American Journal of Enology and Viticulture, 1996,47(2): 127-133.
    [183] Monteiro F.F., Bisson L.F. Nitrogen supplementation of grape juice. I .Effect on amino acid utilization during fermentation[J]. American Journal of Enology and Viticulture, 1992,43(1): 1 -10.
    [184] Koki Y., Masakazu F. Changes in nitrogen compounds in berries of six grape cultivars during ripening over two years[J]. American Journal of Enology and Viticulture, 2002, 53(1): 69-77.
    [185] Hernandez Orte P., Cacho J., Ferreira, V. Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study[J]. Journal of Agricultural and Food chemistry, 2002, 50: 2891 -2899.
    [186] Garde-Cerd(?)n T., Anc(?)n-Azpilicueta C. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation[J]. Food Science and Technology, 2008,41: 501-510.
    [187] Hern(?)ndez-Orte P., Ibarz M.J., Cacho J., et al. Addition of amino acids to grape juice of the Merlot variety:Effect on amino acid uptake and aroma generation during alcoholic fermentation[J]. Food Chemistry, 2006, 98: 300-310.
    [188] Hern(?)ndez-Orte P., Ibarz M.J., Cacho J., et al. Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine[J]. Food Chemistry, 2005, 89: 163-174.
    [189] Sivertsen H.K., Holen B., Nicolaysen F., et al. Classification of French red wines according to their geographical origin by the use of multivariate analyses[J]. Journal of the Science of Food and Agriculture, 1999, 79: 107-115.
    [190] Soufleros E.H., Bouloumpasi E., Tsarchopoulos C, et al. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage[J]. Food Chemistry, 2003, 80: 261-273.
    [191] Spayd S.E., Andersen-Bagge J. Free amino acid composition from 12 Vitis vinifera cultivars in Washington[J]. American Journal of Enology and Viticulture, 1996, 47(4): 389-402.
    [192] Rodriguezd-Lovelle B., Soyer J.P., Molot C. Incidence of permanent grass cover on grapevine phonological evolution and grape berry ripening[J]. Acta Hoticulturae, 2000, 526: 241-248.
    [193] Ferrini F., Mattii G.B., Storchi P. Effect of various ground covers on berry and must characteristics of Sangiovese'wine grape in the "Brunello Di Montalcino"area[J]. Acta Hoticulturae, 1997, 427: 29-36.
    [194] Dokoozlian N.K., Kliewer W.M. Influence of light on grape berry growth and composition varies during fruit development[J]. Journal of the American Society of Horticultural Science, 1996, 121: 869-874.
    [195] Keller M., HraZdina G. Interaction of nitrogen availability during bloom and light intensity during veraison. Ⅱ. Effects on anthocyanin and phenolic development during grape ripening[J]. American Journal of Enology and Viticulture, 1998, 49(3): 341-349.
    [196] Egger E., Raspini L., Storchi P. Soil management in a vineyard. Results in Central Italy[J]. Vignevini (Italy), 1995, 22:3-8.
    [197] Dupuch V. Management of viticultural soils and oenological consequences[J]. Progres-Agricole- et- Viticole. 1997, 114(7): 152-156.
    [198] Maigre D. Influence of grassing down and nitrogen fertilizer on the quality of Chasselas wines[J]. Progres-Agricole-et-Viticole, 1996, 114(11): 255-258.
    [199] Rodriguez-lovelle B., Soyer J.P., Molot C. Nitrogen availablity in vineyard soil according to soil management practices. Effects on vine[J]. Acta Horticulture, 2000, 526: 277-285.
    [200] Chantelot E., Carsoulle J., Legoff I., et al. Maintenance of grapevine soil by permanent vegetation, Maintain the nitrogen level of must by foliar nitrogen input[J]. Phytoma, 2002, 545: 32-34.
    [201] Nauleau F. New techniques for maintaining viticultural soils. Oenological consequences. Summary of 5 years of trails carried out in different French vineyard[J]. Progrs-Agricole-et-Viticole, 1997, 114(8): 188-190.
    [202] Agulhon O., Voile C. Soil management and wine quality[J]. Seizime conference du COLUMA, 1996, 3: 1179-1185.
    [203] Spring J.L., Mayor J.P. The management of vineyard soil[J]. Revue Suisse de Viticulture, Arboriculture et Horticulture, 1996, 281: 83-86.
    [204] Compant S., Reiter B., Sessitsch A., et al. Endophytic colonization of Vitis vinifera by plant growth-promoting bacterium Burkholderia sp. Strain PsJN[J]. Applied and Environmental Microbiology, 2005, 71: 1685-1693.
    [205] Sinsabaugh R.L., Antibus R.K., Linkins A.E., et al. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[J]. Ecology, 1993, 74: 1586-1593.
    [206] Criquet S., Farnet A.M., Tagger S. Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain biotic and abiotic factors[J]. Soil Biology & Biochemistry, 2000, 32: 1505-1513.
    [207] Taylor J.P., Wilson B., Mills M.S., et al. Comparison of numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology & Biochemistry, 2002, 34: 387-401.
    [208] Arshad M.A. Tillage and soil quality, tillage practices for sustainable agriculture and environmental quality in different agroecosystems[J]. Soil & Tillage Research, 1999, 53(1): 1-2.
    [209] King A.P., Berry A.M. Vineyard δ~(15) N, nitrogen and water status in perennial clover and bunch grass cover crop systems of California's central valley[J]. Agriculture, Ecosystems and Environment, 2005, 109,262-272.
    [210] Steenwerth K., Belina K.M. Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem[J]. Applied Soil Ecology, 2008, 40(2): 370-380.
    [211] Esteban A.A., Santiago J.S., Mariana E.M., et al. Ecological sustainability evaluation of traditional management in different vineyard systems in Berisso, Argentina[J]. Agriculture, Ecosystems and Environment, 2007, 119: 335-345.
    [212] Tiquia S.M., Lioyd J., herms D.A., et al. effect of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of RFLPs of PCR-amplified 16s rRNA genes[J]. Applied Soil Ecology, 2002, 21: 31-48.
    [213] Garc(?)a-Gil J.C., Plaza C, Soler-Rovira P., et al. Long-term effects of municipal solid waste compost application on soil enzyme activities end microbial biomass[J]. Soil Biology and Biochemistry, 2000, 32:1907-1913.
    [214] Geoffrion R., L'enherbement permanent, 40 ans apres[J]. Phytoma, 1999, 519: 25-27.
    [215] Gulick S.H., Grimes D.W., Munk D.S., et al. Cover-crop-enhanced water infiltration of a slowly permeable fine sandy loam[J]. Soil Science Society of America Journal, 1994, 58: 1539-1546.
    [216] Gurbuz O., Gocmen D., Dagdelen F., et al. Determination of flavan-3-ols and trans resveratrol ingrapes and wine using HPLC with fluorescence detection[J]. Food Chemistry, 2007, 100: 518- 525.
    [217] Orak H.H. Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape varieties and their correlation[J]. Scienta Holticulturae, 2007, 111: 235-241.
    [218] Di Majo D., La Guardia M., Giammanco S., et al. The antioxidant capacity of red wine in relationship with its polyphenolic constituents[J]. Food Chemistry, 2008, 111: 45-49.
    [219] Arts I.C., Hollman P.C., Feskens E.J., et al. Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study[J]. American Society for Clinical Nutrition, 2001, 74: 227-32.
    [220] Angeline M.A., Mary J.D. Antioxidants prevent ethanol-associated apoptosis in fetal rhombencephalic neurons[J]. Brain Research, 2008, 1204 :16-23.
    [221] Sharma R.R., Sharma H.C., Ahmad M.F. Effect of forcing of dormant wood cuttings of grape(Vitis vinifera L.)on polyphenol content, phenolic exudation and explant survival[J]. Annals of Agricultural Research, 1999, 20(3): 274-277.
    [222] Caspari H.W., Neal S., Naylor A. Cover crop management in vineyards to enhance deficit irrigation in a humid climate[J]. Acta Horticulturae, 1997, 449: 313-320.
    [223] Pe(?)a-Neira A., Hern(?)ndez T.C., Garc(?)a-Vallejo I., et al. A survey of phenolic compounds in Spanish wines of different geographical origin[J]. European Food Research and Technology, 2000, 210: 445-448.
    [224] Monagas M., Gomez-Cordoves C.B., Bartolome O., et al. Monomeric, oligomeric and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. Graciano, Tempranillo and Cabernet Sauvignon[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 6475-6481.
    [225] Mayen M., Merida J., Medina M. Flavonoid and nonflavonoid compounds during fermentation and post-fermentation standing of musts from Cabernet Sauvignon and Tempranillo grapes[J]. American Journal of Enology and Viticulture, 1995,46: 255-261.
    [226] Monagas M., Suarez R., Gomez-Cordoves C, et al. Simultaneous Determination of Nonanthocyanin Phenolic Compounds in Red Wines by HPLC-DAD/ESI-MS[J]. American Journal of Enology and Viticulture, 2005, 56(2): 139-147 .
    [227] Jacob J.K., Hakimuddin F., Paliyath G., et al. Antioxidant and antiproliferative activity of polyphenols in novel high-polyphenol grape lines[J]. Food Research International, 2008, 41: 419- 428.
    [228] James A.K., Mark A.M., Andrew L.W. Effect of Maturity and Vine Water Status on Grape Skin and Wine Flavonoids[J]. American Journal of Enology and Viticulture, 2002, 53(4): 268-274.
    [229] Eiro M.J., Heinonen M.. Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation[J]. Journal of Agricultural and Food Chemistry, 2002, 50: 7461- 7466.
    [230] Gawel R. Red wine astringency: A review[J]. Australian Journal of Grape and Wine Research, 1998, 4: 74-95.
    [231] Kennedy J. A., Matthews M. A., Waterhouse, A. L. Effect of maturity and vine water status on grape skin and wine flavonoids[J]. American Journal of Enology and Viticulture, 2002, 53: 268-274.
    [232] Liang Z.C., Wu B.H., Fan P.G., et al. Anthocyanin composition and content in grape berry skin in Vitis germplasm[J]. Food Chemistry, 2008, 111: 837-844.
    [233] Kanner J., Frankel E., Granit R., et al. Natural and antioxidants in grapes and wines[J]. Journal of Agriculturaland Food Chemistry, 1994, 42: 64-69.
    [234] Ojeda H., Andary C, Kreava E., et al. Influence of pre-and postveraison water deficit on synthesis and. concentration of skin phenolic compound during berry growth of Vitis vinfera cv. Shiraz[J]. American Journal of Enology and Viticulture, 2002, 53: 261-267.
    [235] Kennedy J.A., Matthews M.A., Waterhouse A.L. Changes in grape seed polyphenols during fruit ripening[J]. Phytochemistry, 2000, 55: 77-85.
    [236] Bautista-Ortin A.B., Fernandez-Fernandez J.I., Lapez-Roca J.M., et al. The effect of grape ripening stage on red wine color[J]. Journal International des Sciences de la Vigne et du Vin, 2006, 40: 14- 24.
    [237] Bautista-Ortin A.B., Mart(?)nez-Cutillas A., Ros-Garc(?)a J.M., et al. Improving colour extraction and stability in red wines:the use of maceration enzymes and enological tannins[J]. International Journal of Food Science and Technology, 2005, 40: 867-878.
    [238] Revilla E., Garc(?)a-Beneytez E., Cabello F. Value of high-performance liquid chromatographic analysis of anthocyanins in the differentiation of red grape cultivars and red wines made from them[J]. Journal of Chromatography A, 2001, 915: 53-60.
    [239] Mazza G., Fukumoto L., Delaquis P. et al, Anthocyanins, phenolics, and color of Cabernet Franc, Merlot and Pinot Noir wines from British Columbia[J]. Journal of Agricultural and Food Chemistry, 1999,47:4009-4017.
    [240] Mart(?) M.P., Mestres M., Sala C, et al. Solidphase microextraction and gas-chromatography olfactometry analysis of successively diluted samples. A new approach of the aroma extract dilution analysis applied to the characterization of wine aroma[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 7861-7865.
    [241] Garc(?)a-Beneytez E., Revilla E., Cabello F. Anthocyanin pattern of several red grape cultivars and wines made from them[J]. European Food Research and Technology, 2002, 215: 32-37.
    [242] Ryan J.M., Revilla E. Anthocyanin composition of Cabernet Sauvignon and Tempranillo grapes at different stages of ripening[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 3372-3378.
    [243] Revilla E., Ryan J.M. Mart(?)n-Ortega G. Comparison of several procedures used for the extraction of anthocyanins from red grapes[J]. Journal of Agricultural and Food Chemistry, 1998, 46(11): 592- 597.
    [244] Lorenzo C., Pardo F., Zalacain A., et al. Complementary effect of Cabernet Sauvignon on Monastrell wines[J]. Journal of Food Composition and Analysis, 2008, 21: 54-61.
    [245] Cacho J., Fernandez P., Ferreira V. et al. Evolution of five anthocyanidins-3-glucosides in the skin of the Tempranillo, Moristel and Garnacha grape varieties and influence of climatological variables[J]. American Journal of Enology and Viticulture, 1992,43(3): 244-248.
    [246] Tsanova-Savova S., Dimovw S., Ribarova F. Anthocyanins and Color Variables of Bulgarian Aged Red Wines[J]. Journal of Food Composition and Analysis, 2002, 15: 647-654.
    [247] Kuns(?)gi-M(?)t(?) S., Ortmann E., Koll(?)r L., et al. Entropy-driven complex formation of malvidin-3-O-glucoside with common polyphenols in ethanol-water binary solutions[J]. Spectrochimica Acta Part A, 2008, 70: 860-865.
    [248] Rosario M.S., Jos(?) G., Francisco P. et al. Color, Polyphenol, and and Gonzalo L. Alonso. Aroma Compounds in Ros(?) Wines after Prefermentative Maceration and Enzymatic Treatments[J]. American Journal of Enology and Viticulture, 2003, (54) 3:195-202.
    [249] Ferreira V., Lopez R., Escudero A. The aroma of Grenache red wine-hierrchy and nature of its main odorants[J]. Journal of the Science of Food and Agriculture, 1998, 77: 259-267.
    [250] Perestrelo R., Fernandes A., Albuquerque F F., et al. Analytical characterization of the aroma of Tinta Negra Mole red wine: identification of the main odorants compounds[J]. Analytica Chemica Acta, 2006, 563: 154-164.
    [251] Franciolo S., Torrens J., Riu-Aumatell M., et al. Volatile compounds by SPME-GC as age markers of sparkling wines[J]. American Journal of Enology and Viticulture, 2003, 53: 158-162.
    [252] Mateo J.J., Jimenez M. Monoterpenes in grapejuice and wines(Review)[J]. Journal of Chromatography A, 2000, 881: 557-567.
    [253] Shinohara T., Gas chromatographic analysis of volatile fatty acids in wines[J]. Agricultural and Biological Chemistry, 1985, 49: 2211-2212.
    [254] Arena M.E., Manca de Nadra M. C. Influence of ethanol and low pH on arginine and citrulline metabolism in lactic acid bacteria from wine[J]. Research in Microbiology, 2005, 156(8): 858-864.
    [255] Escudero A., Hern(?)ndez-Orte P., Cacho J., et al. Clues about the role of methional as character impact odorant of some oxidized wines[J]. Journal of Agricultural and Food Chemistry, 2000, 48: 4268-4272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700