集装箱船共同结构规范(CSR)疲劳强度基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自国际船级社协会油船和散货船共同结构规范实施以后,集装箱船规范的共同化越来越受到关注。
     当前国际船级社主要工作是对油船和散货船两本结构规范进行协调性比较计算研究,最终的目标是将两本规范中不协调一致的问题予以统一,特别是其中的船体结构疲劳强度部分,设计载荷和使用的SN曲线完全不同。同时国际海事组织正在紧锣密鼓地推出其GBS目标型标准,其目标是要对所有船级社的规范进行符合性验证,油船共同结构规范的符合性验证刚刚开始。可以预见,未来集装箱船共同结构规范必须符合GBS验证标准的规范。为了达到这个目的,必须建立载荷、疲劳应力和评估衡准一致的分析型规范体系,考虑到目前各船级社水平的差异性,新发展的集装箱船规范应该由规范校核和直接强度分析共同组成。
     本文作为“大型船舶结构的超规范研究”的后续研究,以集装箱船共同结构规范制定的技术储备为目标,主要研究工作有如下几个方面:
     (1)通过研究船级社船体结构规范的发展趋势,结合当前IMO和IACS的最新工作,预见集装箱船结构规范疲劳强度的发展趋势,确定迫切需要解决的主要问题。
     (2)对国内外船舶结构疲劳强度的研究方法以及集装箱船疲劳强度的研究情况进行调研和分析。
     (3)对集装箱船船体结构损伤进行实船案例分析,用实际案例验证分析方法的正确性。
     (4)以分析型规范为目标,以等效设计波为基础,建立大型集装箱船的全船疲劳应力求解体系,给出双直线SN曲线形式下的许用疲劳应力范围衡准,实现载荷、应力和标准的统一。
     (5)以等效设计波为基础,通过波浪载荷的数值计算,定性分析集装箱船波浪扭矩的基本组成形式,在此基础上,对不同船级社之间总体波浪扭矩公式进行系统的比较,提出集装箱船波浪扭矩的推荐性公式,该计算公式考虑了集装箱船首斜浪和尾斜浪的情况,并用直接载荷计算程序进行验证,为IACS进行波浪载荷的协调性研究提供依据和范例。
     (6)对集装箱船船体结构典型节点进行科学的分类,研究其疲劳损伤特点。并为此研制船体结构典型节点细化分析工具,可以对绝大多数船体典型结构节点进行疲劳分析,提高分析的精度和效率。
     (7)对集装箱船典型节点进行抗疲劳设计研究。
     (8)在对船体结构疲劳损伤进行现场勘验的基础上,通过数值计算讨论建造公差和焊缝焊接规格对船体结构典型节点疲劳强度的影响,为规范的指定和修订提供有力的支持。
     通过本文的研究得出的主要结论如下:
     (1)以第一原则为指导思想,在等效设计波的基础上,建立了大型集装箱船的全船疲劳应力求解体系,实现了载荷、应力和标准的统一,并用实际工程案例验证了该方法的合理性。
     (2)以线性累计损伤理论为基础,考虑了SN曲线的双直线形式,推导出了极端海况下疲劳许用应力范围值表格。
     (3)以等效设计波为基础,通过波浪载荷的数值计算,定性分析了集装箱船波浪扭矩的基本形式应为双峰型,在此基础上,对船级社间总体波浪扭矩公式进行了系统的比较,提出了集装箱船波浪扭矩的推荐性公式,该计算公式可以考虑首斜浪和尾斜浪,并用直接载荷计算程序进行了验证,为IACS进行波浪载荷的协调性研究提供了依据和范例。
     (4)对集装箱船船体结构典型节点进行了科学的分类,基于MSC/PATRAN的PCL语言编制了船体结构典型节点细化分析工具,可以对绝大多数船体典型结构节点进行疲劳分析,提高了分析的精度和效率,创造了很好的经济价值。
     (5)对集装箱船纵骨端部连接、舱口角隅和折角结构节点形式进行了比较计算分析,提出了集装箱船关键节点抗疲劳设计表格,供集装箱船共同结构规范使用。
     (6)通过数值计算讨论了建造公差和焊缝规格对船体结构典型节点疲劳强度的影响,用工程案例进行了验证,同时对焊缝表面的几何形状参数与应力集中的关系进行了研究,论证了焊缝形状和焊缝打磨对集装箱船船体结构疲劳寿命的关系。以上诸项成果为今后集装箱船共同结构规范的制定提供了技术基础。
Since the implementation of IACS Common Structure Rules (CSR) for oil tankers andbulk carriers, there is an increasing interest in developing CSR for container ships.The IACS is currently working on comparative studies and calculation for harmonizationof these two CSRs, in order to finally harmonize contradictory parts in the two rules,especially the part that relates to hull structure fatigue strength, for which design loads andSN curves are completely different. Meanwhile, IMO spares no effort in staging its GoalBased Standards (GBS), so as to carry out compliance verification of rules of all classsocieties. Compliance verification of the CSR for oil tankers just kicked off. It isforeseeable that the potential CSR for container ships have to fulfill the requirements ofGBS. For this purpose, rules systems should be analytical and consistent in loads, fatiguestresses and assessment criteria. Considering the current disparity of competence amongclass societies, the CSR for container ships should consist of rule check and direct strengthanalysis.
     Subsequent to the Super-rule research on Large Ship Structures and aim to develop CSRfor container vessel, this thesis focuses on the research of the following issues:
     (1) forecast of the development trends of container ship structural rules for fatiguestrength and of relevant key issues to be solved on the basis of the research on thedevelopment trends of hull structural rules of class societies and in combination withupdated IMO and IACS works;
     (2) summarization of domestic and oversea research methods on ship structure fatiguestrength and of research progress on container ship fatigue strength;
     (3) case study of hull structural damage for container ships;
     (4) on the basis of numerical calculation of equivalent design waves and for the analyticalpurpose, establishment of a solution system for overall fatigue stresses for largecontainer ships and determination of a range of permissible fatigue stressescorresponding to duel linear SN curves, in order to achieve consistency of loads,stresses and relevant standards;
     (5) a qualitative analysis of form of wave torsional moment for container ships based onequivalent design waves and through numerical calculation of wave loads, and, on thebasis of the analysis, a systematic comparison of overall formulae for wave torsionalmoment given by individual class societies, in order to find a recommendatory formulafor calculating container ship wave torsional moment. This formula is to take accountof quarter head seas and quarter following seas and to be verified by direct loadcalculation program, so as to provide a criterion and model for IACS harmonizationstudy on wave loads;
     (6) scientific categorization of typical details of container ship hull structures foranalysis of fatigue damage characteristics. For this purpose, a tool for fine analysis oftypical details is to be developed, which can allow a more accurate and efficientfatigue analysis of the typical details for most of the ships;
     (7) research on anti-fatigue design for typical details of container ships; and
     (8) exploration of, based on field examination of hull structure fatigue damage andnumerical calculation, the impacts of building tolerances and weld specifications onfatigue strength of typical details for hull structures, which may be very helpful for thedevelopment and revision of relevant rules.
     The following conclusions are made through the research:
     (1) With First Principle as the guiding principle and based on equivalent design waves, asolution system for overall fatigue stresses on large container ships is established andhence the consistency of loads, stresses and standards is achieved. Feasibility of thissystem has been verified through project case study;
     (2) A tabulated range of permissible fatigue stresses is derived based on linear cumulativedamage and by taking account of dual linear SN curves;
     (3) A qualitative analysis of wave torsional moment for container ships, based onequivalent design waves and numerical calculation of wave loads, has been carried outand the wave torsional moment is found to be of dual peak type. On the basis of thisanalysis, a systematic comparison of overall formulae for wave torsional moment fromindividual class societies has been performed, which gives rise to a recommendatoryformula for calculating container ship wave torsional moment. Quarter head seas andquarter following seas are considered in this formula, and it has been verified bymeans of direct load calculation program, therefore may serve as a criterion and model for IACS harmonization study on wave loads;
     (4) The typical details of container ship hull structures are categorized. A tool for fineanalysis of typical details of hull structures is developed on the basis of PCL languageof MSC/PATRAN, which is capable of fatigue analysis of typical structural details ofmost of the ships. This tool may help to increase accuracy and efficiency of analysisand yield good economic returns;
     (5) Container vessel longitudinal end connections, hold hatch corners and knuckles arecompared, calculated and analyzed, and tabulated anti-fatigue designs for key detailsof container ships are developed for the CSR for container ships;
     (6) The impacts of building tolerances and weld specifications on fatigue strength oftypical details of hull structures have been explored on the basis of numericalcalculation and have been verified through project cases. Meanwhile, research hasbeen carried out on the relationship between weld surface geometry parameters andstress concentration, which has proved the impacts of weld profile and grinding onfatigue life of hull structures. All the above is very helpful for the development of CSRrules for container vessel.
引文
ABS (1995) Analysis Procedure Manual For the DLA for Container Carriers.
    ABS (2002) Rules for building and classing steel vessels. New York
    ABS (2004) Guide for Fatigue Strength Assessment of Tanker.
    ABS (2004) Guide for Fatigue Strength Assessment of Bulk Carrier.
    Almar-Naess, A.(1985) Fatigue Handbook, Tapir.
    Basquin,O.H.(1910) The exponential law of endurance tests. Proceedings ofthe American Society for Testing and Materials10. p:625-630
    BSI (1997) Specification for unified fusion welded pressure vessels.BS5500:1997. Annex C, British Standard Institute
    BV (2002) Rules for the Classification of Steel Ships.
    Chaboche J.L., Lesne P.M.(1988) A non-linear continuous fatigue damage model. Fatigueand Fracture of Engineering Materials and Structures,11(1):1-17
    Chen W.M., Landet E.(2001) Stress Analysis of Cutouts with and without Reinforcement.Proceedings of the twentieth International Conference on Offshore Mechanics andArctic Engineering, Rio de Janeiro, Brazil
    Chen Yingqiu, Zhan Zhihu (2007) The Application of CSR for Design of Bulk Carrierswith CSR Notation. Prads2007, Huston
    Cheung M.C., Slaughter S.B.(1998) Innerbottom design problems in double-hulltankers. Marine Technology, Vol.35, No.2:65-73
    Cui Weicheng (2002a) A state-of-the-art review on fatigue life prediction methods formetal structures. Journal of Marine Science and Technology7:43-56
    Cui W.C.(2002b) Relation between crack growth rate curve and S-N curve for metalfatigue. Journal of Ship Mechanics, Vol.6, No.6:93-106
    Cui Weicheng (2003) A feasible study of fatigue life prediction for marine structures basedon crack propagation analysis. Journal of Engineering for the Maritime Environment,217(5):11-23
    Cui W.C., Huang X.P.(2003) A general constitutive relation for fatigue crack growthanalysis of metal structures. Acta Metallurgica Sinica,16:342-354
    DNV (1998) Fatigue assessment of ship structures. Det Norske Veritas Class Notes No.30.7
    DNV (2005) Recommended Practice-Fatigue design of offshore steel structures.
    DNV (2006) Recommended Practice-Fatigue methodology of offshore ships.
    Doerk O., Fricke W., Weissenborn C.(2003) Comparison of different calculation methodsfor structural stresses at welded joints. International Journal of Fatigue25:359–369
    Doerk O., Fricke W.(2004) Fatigue strength assessment of fillet-welded toes of bracketsand stiffeners.9th Symposium on Practical Design of Ships and Other FloatingStructures. Luebeck-Travemuende. Germany
    Dong P.(2001) A structural stress definition and numerical implementation for fatigueanalyses. Int J Fatigue23:865–876
    Dong P.(2003) A robust structural stress method for fatigue analysis of ship structures.Proceedings of the22nd International Conference on Offshore Mechanics and ArcticEngineering
    Dong P., Hong J.K.(2003) Analysis of Hot Spot Stress and Alternative Structural StressMethods. Proceedings of the22nd International Conference on Offshore Mechanics andArctic Engineering
    DNV (1998) Wave Load of LNG.
    DNV (2002) Rules for the Classification of Steel Ships.
    DNV (2003) Manual of wadam.
    Espen H. Cramer et al (1995) Fatigue assessment of ship structures. Marine Structures8:359-383
    Fricke W., Paetzold H.(1987) Application of the cyclic strain approach to the fatiguefailure of ship structural details. Journal of Ship Research, Vol.31, No.3:177-185
    Fricke W., Petershagen H., Paetzold H.(1997) Fatigue Strength of Ship Structures, Part I:Basic Principles. GL Technology
    Fricke W., Petershagen H., Paetzold H.(1998) Fatigue Strength of Ship Structures, Part II:Examples. GL Technology
    Fricke W., Cui W., Kierkegaard H., Kihl D., Koval M., Lee H L, Mikkola T., Parmentier G.,Toyosada M., Yoon J.-H.(2002) Comparative fatigue strength assessment of a structuraldetail in a containership using various approaches of classification societies. MarineStructures15:1-13
    Fricke W., Kahl A.(2005) Comparison of different structural stress approaches for fatigueassessment of welded ship structures. Marine Structures18:473–488
    Garbatov Y., Rudan S., Soares C.G.(2002) Assessment of geometry correction functions oftanker knuckle details based on fatigue tests and finite element analysis. Proceedings ofthe21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo,Norway
    GL (2002) Rules for the Classification of Steel Ships.
    Gurney T.R.(1979) Fatigue of welded structures. Cambridge University Press.Second Edition
    Hansen P.F., Winterstein S. R.(1995) Fatigue Damage in the Side Shells of Ships. MarineStructures8:631-655
    Healy B., Thomsen T.(2000a) Comparative Fatigue Performance of AlternativeOuter Hull Connection Details-Part I: Procedure, Particulars, and Modeling.Proceedings of the Tenth International Offshore and Polar EngineeringConference, Seattle, USA
    Healy B., Thomsen T.(2000b) Comparative Fatigue Performance of AlternativeOuter Hull Connection Details-Part II: Results and Discussion. Proceedingsof the Tenth International Offshore and Polar Engineering Conference,Seattle, USA
    Huther M., Parmentier G., Maherault S.(2004) Knowledge limits in cumulative fatigueassessment of marine structures. SeaTech2004–Fatigue of Maritime Structures
    IACS (1993) Unified requirement S11.
    IACS (1999) Fatigue Assessment of Ship Structures.
    IACS (2001) REC34, Standard Wave Data.
    IACS (2002)2D Linear Comparative Works On Wave Induced Ship Motions and Loadsin Regular Waves.
    IACS (2004) Guidelines for surveys, assessment and repair of hull structure-BulkCarriers.
    IACS (2005) CONTAINER SHIPS-Guidelines for Surveys Assessment and Repair of HullStructures.
    IACS (2006a) Common Structural Rules for Double Hull Oil Tankers.
    IACS (2006b) Common Rules for Bulk Carrier.
    IACS (2006c) Shipbuilding and repair quality standard.
    IACS (2006d) Guidelines for coating maintenance&repairs for ballast tanks andcombined cargo/ballast tanks on oil tankers.
    IACS (2009) PT47IACS Guideline for Rule Development-Ship Structure(Draft).
    IACS (2009a) HPT08Form1-harmonization of fatigue strength for IACS CSRrules.
    IMO (2008) GOAL-BASED NEW SHIP CONSTRUCTION STANDARDS, MSC85/WP.5/Add.1
    Ingo Drummen, Gaute Storhaug, Torgeir Moan,Experimental and numerical investigation
    of fatigue damage due to wave-induced vibrations in a containership in head seas,J Mar
    Sci Technol (2008)13:428–445
    ISSC (2003a) Fatigue and fracture. Committee III.2
    ISSC (2003b) Fatigue strength assessment. Special task committee VI.2
    Irwin, G.R.(1957) Analysis of stresses and strains near the end of a crack traversing a plate.Journal of Applied Mechanics24, p:361-364
    Iwahashi Y. et al (1998) Finite element comparative study of ship structural detail. MarineStructures11:127-139
    Jeon W.S. and Song J.H.(2002) An expert system for estimation of fatigue properties ofmetallic materials. International Journal of Fatigue,24(6):685-698
    Jordan C.R., Cochran C.S.(1978) In-service performance of structural details. SSC-272
    Jordan C.R., Cochran C.S.(1980) Further survey of in-service performance of structuraldetails. SSC-294
    Chakarov K., Garbatov Y., Guedes Soares C.,Fatigue analysis of ship deck structure
    accounting for imperfections,International Journal of Fatigue30(2008)1881–1897
    Kamoi, N. et al (1993) Static and fatigue strength of new slot structure. Journal of theKansai Society of Naval Architects (in Japanese)
    Kim K.S., Chen X. and Han C. et al.(2002) Estimation methods for fatigue properties ofsteels under axial and torsional loading. International Journal of Fatigue,24(7):783-793
    Kim W.S., Lotsberg I.(2004) Fatigue test data for welded connections in ship-shapedstructures. Proceedings of OMAE-FPSO2004
    Kim Myung Hyun, Sung Won Kang, Jeong Hwan Kim, Kwang Seok Kim, Joong Kyoo
    Kang, Joo Ho Heo, An Experimental Study on the Fatigue Strength Assessment of
    Longi-web Connections in Ship Structures using Structural Stress, International Journal of
    Fatigue (2009), doi:10.1016/j.ijfatigue.2009.06.018
    Kjellander S L.(1972) Hull damage on large Swedish-built ships. Styrelsen for tekniskutveckling, Report No.70-1272/U981, Stock-holm, Sweden, Secember1972
    Kumakura Y., et al (2001) Fatigue strength tests of side longitudinal frames under constantamplitude loading. Proceedings of the11th International Offshore and Polar EngineeringConference, Stavanger, Norway
    Lotsberg I., Landet E.(2005) Fatigue capacity of side longitudinals infloating structures. Marine Structures18:25-42
    LR (2002) Rules for the Classification of Steel Ships.
    Maddox S.J.(2001) Final report: Fatigue design review Task5-Assembly of availablefatigue data relevant to Pressure Equipment Design. Sept,2001
    Manson S.S.(1965) Fatigue: A complex subject-some simple approximations.Experimental Mechanics, Vol.5, No.7:193-226
    Manson S.S., Halford G.R.(1986) Reexamination of cumulative fatigue damage analysis.Engineering Fracture Mechanics, Vol.25, No.5:539-571
    Miner M.A.(1945) Cumulative damage in fatigue. Journal of Applied Mechanics,12(3):159-164
    MSC (2005) DMAP Programmer Guide. Volume1
    Neuber H.(1961) Theory of stress concentration for shear-stained prismatical bodies witharbitrary nonlinear stress-strain law. Journal of Applied Mechanics (ASME), Vol.28:544-550
    Niemi E.(2001) Structural Stress Approach to Fatigue Analysis of Welded Components-Designer’s Guide. IIW-Doc. XIII-1819-00/XV-1090-01(Final Draft), InternationalInstitute of Welding,
    NK (1998) Casualty review–comparative damage review of2nd generation VLCCs.
    NK (2002) Rules for the Classification of Steel Ships.
    Ohta A., Maeda Y., Nguyen N.T.(2000) Fatigue strength improvement of box section beamby low transformation temperature welding wire. Welding in the World,44(5):26-30
    Paris, P.C.&Erdogan, F.(1963) A critical analysis of crack propagation laws.Journal of Basic Engineering85, p:528-534
    Polezhaeva H., Chung H.(2001) Effect of Misalignment on the Stress Concentration of aWelded Hopper Knuckle Connection. Proceedings of the20th International Conferenceon Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil
    Robles, L.B.R., Buelta, M.A., Goncalves, E. and Souza, G.F.M.(2000) A method for theevaluation of the fatigue operational life of submarine pressure hulls. InternationalJournal of Fatigue,22(1):41-52
    Roessle M.L. and Fatemi A.(2000) Strain-controlled fatigue properties of steels and somesimple approximations. International Journal of Fatigue,22(6):495-511
    Rucho P. et al (2001) Comparison of measurements and FE analysis of side longitudinals.Proceedings of the Eleventh International Offshore and Polar Engineering Conference
    Schijve J.(2003) Fatigue of structures and materials in the20th century and the state of theart, International Journal of Fatigue, Vol.25:679-702
    Schutz W.(1996) A history of fatigue. Engineering Fracture Mechanics, Vol.54, No.2:263-300
    SHI L.J., Cui W.C.(2002) An investigation into the Uncertainty in the Calculated Hot spotStresses of a Shipside Structure Detail. Journal of Ship Mechanics, Vol.6, No.6:85-92
    Storhaug G., Berstad A.J.(2001) Fatigue in the Side Shell of Ship Shaped Structures.Proceedings of the20th International Conference on Offshore Mechanics and ArcticEngineering
    Sumi Y. et al (1996) Two-phase Finite Element Comparative Study of a Side Structure of aMiddle Size Tanker. Marine Structures9:151-179
    Tveiten B. W., Moan T.(2000) Determination of Structural Stress for Fatigue Assessmentof Welded Aluminum Ship Details. Marine Structures13:189-212
    Ulleland T., Svensson M., Landet E.(2001) Stress concentration factors in side shelllongitudinals connected to transverse webframes. Proceedings of the11th InternationalOffshore and Polar Engineering Conference, Stavanger, Norway
    Vasudevan A.K., Sadananda K.(1999) Application of unified fatigue damageapproach to compression-tension region, International Journal of Fatigue,21(S1):263–273
    Valsgard Sverre (1995) Computational Ship Analysis of Container. Prads95,2.1187-2.1202
    Wallgren G.(1949) Fatigue test with stress cycles of varying amplitude. FFAReports,28, Stockholm, Aeronautical Research Institute of Sweden
    Wan Zheng-quan, Wang Yong-jun, Bian Ru-fang, Zhu Bang-jun (2004) Fatigue lifeprediction of structural details of submarine pressure hull. Journal of ShipMechanics, Vol.8, No.6:63-70
    Wan Zheng-quan, Xu Bing-han (2002) Stress concentration factors of cutout forlongitudinal. Journal of Ship Mechanics, Vol.6, No.3:28-36
    Wang X.Z., Sun H.H., Cheng Z.(2004) Methods for fatigue assessment of critical shipdetails. Proceedings of the23rd International Conference on Offshore Mechanics andArctic Engineering
    Wang Y.F., Cui W.C., Wu X.Y., Wang F., Huang X.P.(2007) The extended McEvily modelfor fatigue crack growth analysis of Metal Structures. International Journal of Fatigue,Submitted
    Xiao Z.G., Yamada K.(2004) A method of determining geometric stress for fatiguestrength evaluation of steel welded joints. International Journal of Fatigue26:1277-93
    Xu T.(1997) Fatigue of ship structural details–technical development and problems.Journal of ship research, Vol.41, No.4:318-331
    Yoneya T., Kumano N., Shigemi T.(1994) Hull cracking of very large ship structures.Integrity of Offshore Structures–5. Emas Scientific Publications
    Yoneya Takuya et al (2004) A comprehensive study on the practical strength assessment oftanker and bulk carrier structures
    陈超核(2005)船体结构疲劳强度分析直接计算法.暨南大学学报(自然科学版),Vol.26,No.1
    陈庆强,朱胜昌(2006)大型集装箱船整船有限元分析计算技术研究.船舶力学,2006年10卷1期:80-91
    船舶设计实用手册编辑委员会(1965)船舶设计实用手册.国防工业出版社
    崔维成,蔡新刚,冷建兴(1998)船舶结构疲劳强度校核研究现状及我国的进展.船舶力学, Vol.2, No.4:63-81
    崔维成,刘涛,祈恩荣,徐向东(2000)散货船疲劳强度校核的确定性方法.船舶力学, Vol.4, No.1:36-49
    崔维成等(2000)《大型集装箱船疲劳强度应用研究》课题总结.上海交通大学船舶与海洋工程学院
    戴仰山,沈进威,宋竞正(2007)极限强度校核中的几个问题.中国造船,第48卷第1期,总第176期:102-105
    杜嘉立,杨盐生,郑云峰(2003)船舶疲劳强度.大连海事大学学报.11月,第28卷第4期:25-28
    冯国庆(2003)船舶结构疲劳评估方法研究.哈尔滨工程大学硕士论文
    冯铁城,朱文蔚,顾树华(1989)船舶操纵与摇荡.国防工业出版社,第1版
    葛菲(2004)非线性波浪载荷作用下多种应力成份组合的船体结构疲劳强度分析.哈尔滨工程大学博士论文
    顾晔昕,詹志鹄,汤明文(2004)集装箱船结构评估技术.上海造船,2004年,No.2
    顾晔昕,詹志鹄(2004)集装箱船全船有限元分析.上海造船,2004, No.2:15-18
    郭爱宾,邵文蛟(2000)船舶结构疲劳强度分析中的几个问题.中国造船, Vol.41,No.1:52-59
    胡毓仁,陈伯真(1996)船舶及海洋工程结构疲劳可靠性分析.人民交通出版社
    胡毓仁,陈伯真(1998)船体结构疲劳强度校核的许用应力范围衡准.中国造船,1998年第1期:66-74
    胡毓仁,陈伯真,张立,王然章,彭文科,詹志鹄(1999)船体水平波浪弯矩和扭矩规范计算公式的比较研究.中国造船,1999年03期:39-46
    华乃导主编(2000)船体修造与工艺.大连海事大学出版社
    霍立兴(1995)焊接结构工程强度.机械工业出版社
    贾法勇,霍立兴等(2003)热点应力有限元分析的主要影响因素.焊接学报,第24卷第3期:27-30
    揭敏,杨挺青(2001) X型焊缝接头焊接缺陷处的应力集中.机械,第28卷第1期
    拉达伊(Radaj D.)郑朝云张式程译(1994)焊接结构疲劳强度.机械工业出版社,北京
    李栋才,曹历杰(1997)对接接头应力集中系数的有限元分析.西安石油学院学报,第12卷第1期:30-34
    刘建成,顾永宁大开口船舱口角隅应力集中问题研究,船舶工程,2000年第6期,P9-12
    黎之奇,柳春图,崔民子,阚常珍(2000)海洋平台用钢的焊接疲劳性能分析.机械强度,第22卷第4期:264-266
    倪侃等(1997)随机疲劳累积损伤理论最新进展.强度与环境,1997(2):1-8
    倪侃(1999)随机疲劳累积损伤理论研究进展.力学进展, Vol.29, No.1:43-65
    秦洪德,李润培,杜忠仁,楼丹平(2005)8530TEU集装箱船纵骨疲劳强度评估.中国海洋平台,2005年20卷5期
    冉玉国,韩景龙,员海玮(2007)间隙非线性结构气弹响应分析程序的DMAP开发.南京航空航天大学学报,2007年第1期:41-46
    邵文蛟,王晖蓉(1993)船舶结构的疲劳分析.船检科技,1993年第1期:1-6
    邵文蛟(2000)船舶结构疲劳强度分析研究进展.上海造船,2000年第1期:37-40
    沈海军,郭万林,冯谦(2003)材料S N、ε N及da/dN Δ K疲劳性能数据之间的内在联系.机械强度,25(5):556-560
    施丽娟(2003)船舶结构有限元强度分析中的质量控制研究.上海交通大学博士学位论文
    施丽娟,崔维成(2003)集装箱船舱口角隅应力集中系数的有限元分析的精度.中国造船,2003年第1期;
    施明泽,黄志强(1993)关于低周疲劳损伤演变规律的探讨.浙江大学学报(自然科学版),第27卷第2期:208-213
    谭伟,张骅,韩文政,徐滨士,胡勇(2003)提高装甲车辆T型焊接接头疲劳寿命的措施研究.兵工学报, Vol.24, No.4:540-543
    王东海(1998)船体总纵弯曲时的疲劳强度分析.哈尔滨工程大学博士论文
    王东海,李润培等(2002)1700TEU集装箱船甲板大开口强度分析.上海交通大学学报, Vol.36, No.1
    王甲畏,王德禹(2004)船体焊接结构疲劳问题的热点应力研究.船海工程,2004年第5期:22-25
    王然章,彭文科,詹志鹄,胡毓仁,陈伯真(1999)采用简化方法的船体结构疲劳强度校核.中国造船,1999年02期:59-68
    王勖成编著(2003)有限单元法.清华大学出版社
    王中光等译,李家宝校(1993)材料的疲劳.国防教育出版社
    吴富民主编(1985)结构疲劳强度.西北工业大学出版社
    西田正孝(1986)应力集中.机械工业出版社
    谢里阳(1995)疲劳损伤状态的等效性.机械强度,第17卷第2期:100-104
    熊峻江(2004)飞行器结构疲劳与寿命设计北京航空航天大学出版社
    徐灏(1988)疲劳强度.高等教育出版社出版
    杨代盛(1986)船体强度与结构设计.国防工业出版社
    叶笃毅,王德俊,童小燕,姚磊江(1999)一种基于材料韧性耗散分析的疲劳损伤定量新方法.实验力学,14(1):80-88
    余小川,唐永生,杜忠仁,楼丹平(2005)8530TEU大型集装箱船船中货舱区舱口角隅疲劳强度校核.船舶, No.6
    于有生,卢伟(2005)对接接头工作应力分布及其应力集中系数的研究.武汉理工大学学报, Vol.29, No.1:123-125
    曾春华,邹十践编译(1991)疲劳分析方法及应用国防工业出版社
    詹志鹄,陈友芳(2002)集装箱船波浪载荷的计算研究.第十六届全国水动力学研讨会
    詹志鹄,顾晔昕(2002)全船直接计算分析所需的等效设计波.船海工程, No.3P.14-16
    詹志鹄(2006)油船共同结构规范中的疲劳强度校核要求.上海造船,2006年第3期
    詹志鹄(2007)船舶纵向构件疲劳评估的热点应力方法.船海工程,2007年第4期
    詹志鹄,崔维成,顾晔昕,谢基榕(2008)基于DMAP语言的全船准静态有限元分析系统.上海造船2008年年会
    詹志鹄,吴晓源,崔维成,吴龙周(2008)折角型船体结构细节有限元细化分析的程序化方法.中国造船,2008年第1期
    詹志鹄(2009)基于等效设计波组的船体结构疲劳强度评估的许用应力方法.船舶力学(已录用)
    张超,刘建英(2005)常见焊接缺陷的成因探讨及对策.煤矿机械,2005年第11期:97-98
    张瑞友(2003)船体结构中疲劳裂纹的分析与修复.中国修船,2003年第6期:21-23
    张耀春,练尉安,张文元(2005)焊接工字形截面钢支撑低周疲劳性能试验研究.建筑结构学报,第26卷第6期:114-121
    张毅,黄小平,崔维成,卞如冈(2004)对接接头焊趾应力集中有限元分析.船舶力学, Vol.8, No.5:91-99
    张在鸿(1995)对接焊接接头的疲劳寿命预测.焊接技术,1995年第4期:29-31
    章漪云(2004)高强度钢在船体结构中的应用探讨.船舶,2004年第2期:30-33
    赵思连(2001)船舶焊接缺陷及其质量检验.武汉造船,2001年第3期:21-23
    中国船级社,2D波浪载荷计算程序
    中国船级社(2001,2007)船体结构疲劳强度指南.中国船级社
    中国船级社(2006)大型船事故统计与分析. RSR0601
    中国船级社(1996,2007)钢质海船入级规范,人民交通出版社
    中国船级社(2003)集装箱船直接计算指南,人民交通出版社
    中国船级社(2008)船体结构状况监控指南,(报批稿)
    朱恒山,邢德顺(1996) MSC/NASTRA程序动频计算功能开发.燃气涡轮试验与研究,1996第3期:20-22
    朱胜昌,陈庆强(2006)基于有限元力矩阵精确确定三舱段有限元模型边界力的计算方法. Vol.10, No.1:71-79
    诸德超,傅子智等译有限元法手册科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700