天山1号冰川表面雪中细菌群落的季节性变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰川中蕴藏着丰富的微生物资源,这些微生物按年代保存于冰川中、其组成特性的变化是大气及环境变化信息的响应。在冰川沉积过程中,微生物及花粉、孢子、植物片断等随大气环流的运移,与粉尘一起沉降在冰川表面,经历冰川环境的选择,微生物自身的适应性调节等一系列变化,然后随新雪的降临,逐埋藏于深层冰川中。因此,表层雪中微生物群落变化特征对于揭示雪坑及深层冰芯中微生物和环境变化的关系具有重要意义。
     本研究以天山1号冰川各个月份的表面雪为实验材料,利用分子标记变性梯度凝胶电泳(denaturing gradient gel electrophoresis.DGGE)技术,荧光显微计数、微生物恢复培养和16SrDNA-PCR基因克隆技术,通过对雪样中微生物数量和群落结构的研究,分析了不同季节表面雪中微生物的数量、群落结构特征及其与气候环境因子的关系。主要结果如下:
     1、天山1号冰川表面雪中的细菌数量分布具有明显的季节性分布特征。细菌总数分布范围在3.20×103-57.85×103(cell/ml)(Mean,20.56×103; SD,16.17×103;N=22)之间,细菌数量在春季和夏季雪层中较低,变化趋势较平缓;在秋冬季节雪层中较高,波动幅度也较大。11cm-20cm雪层中细菌浓度普遍比Ocm-10cm雪层高。细菌总数与可培养细菌数量正相关,变化趋势一致。月平均气温、Ca2+浓度与表面雪中细菌数量分布也有一定的关系。
     2、细菌群落具有季节性分布特征。表面雪中恢复培养得到的细菌隶属于5个系统发育组(Actinobacteria(HGC), Firmicute(LGC),α-proteobacteria,β-proteobacteria,γ-proteobacteria),属于Arthrobacter, Curtobacterium, Corynebacterium, Frigoribacterium, Microbacterium, Rathayibacter, Bacillus Paenibacillus, Sporosarcina, Sphingomonas, Brevundimonas, Massilia, Psychrobacter和两个未定属[unclassified genus(代表菌株TS0211R和TS0914T)],总计15属。Actinobacteria(HGC)组普遍存在于各个季节中,占全部分离菌株的60%,其次是Firmicute(LGC)组占17%。春节和夏季(4月-8月)细菌种类较少,秋冬季节(9月-2月)细菌种类较多。Arthrobacter和Sphingomonas两属普遍存在于各个月份中,其它属细菌只在一些特定的月份分离到。
     3、变形梯度凝胶电泳(DGGE)结果显示了细菌DNA的季节性变化特征。各个月份细菌DNA泳道相似性聚类分析显示:Ocm-10cm雪层中细菌群落分布特征规律性较10cm-20cm雪层明显,其春季与夏季细菌DNA相似(5月-8月聚类成簇),秋季与冬季相似(10月-2月聚类成簇)。Shannon指数(H’)显示细菌多样性较高,在不同深度雪层中分别于1月和5月出现峰值。DGGE图谱代表性条带中的DNA经过测序分析后显示:这些序列所代表的细菌同属于可培养细菌隶属的5个系统发育组;其中Arthrobacter属和Bacillus属在DGGE和分离培养中都有发现,Cryobacterium属,Devosia属,Janthinobacterium属,cryptococcus属和两个未定属则只是在DGGE条带中发现。
     以上研究结果表明:天山1号冰川表面雪中细菌数量和群落季节性变化特征明显;荧光显微技术、细菌恢复培养和DGGE技术分别从不同角度说明了细菌群落的季节性分布规律,将这些技术综合运用能更为准确的揭示表面雪中的微生物多样性和季节性沉降特征。
Glacier ice is a unique habitat because it preserves microbial life and past climate records chronologically for hundreds of thousands of years. Microbial cells and other biological material, such as pollen gains, spores, plant debris and insects, associated with dust particles are propelled by the wind from neighbouring and distant places, deposited on the ice surface, and gradually, as snow accumulates, embedded into the deeper ice layers. The microbial studies of deep glacier ice suggested that in-depth fluctuations in cell numbers and microbial composition were related to different dust concentrations and climate changes, could be a potential bio-indicator of paleoclimatology. Therefore, the study of microbial community changes in surface snow is important to reveal the dynamics of correlation between microorganisms and environmental changes in deep ice cores.
     The seasonal change of microbial numbers and community structure in the surface snow sampled every month from glacier No.l of Tianshan were analyzed by denaturing gradient gel electrophoresis (DGGE), fluorescence microscopy count, microbial culture and the PCR amplification of bacteria 16S rRNA gene. The main results were as follows:
     1. The distribution of bacteria in surface snow of glacier No.1 in Tianshan demonstrated obvious seasonal characteristic. Total number of bacteria ranged from 3.20 ×103 to 57.85×103 (cells/ml) (Mean,20.56×103; SD,16.17×103; N= 22). The number of bacteria in the spring and summer is lower than that in autumn and winter; the fluctuation of bacterial quantity is larger in autumn and winter. In general, the concentration of bacteria in the snow of 11-20cm layer is higher than that in snow of 0-10cm layer. The amounts of bacteria and cultured bacteria that are positive correlation ship show the same trend related to seasonal changes. There is a certain relationship among the distribution of bacteria, concentration of Ca2+and average temperature of months.
     2. The seasonal change of bacteria communities was obvious. Cultured bacteria belonged to five phylogenetic groups(Actinobacteria(HGC), Firmicute(LGC),α-proteobacteria,β-proteobacteria,γ-proteobacteria).Including:Arthrobacter, Curtobacterium, Corynebacterium, Frigoribacterium, Microbacterium Rathayibacter, Bacillus, Paenibacillus, Sporosarcina, Sphingomonas, Brevundimonas, Massilia, Psychrobacter and unclassified genus(Representative strain TS0211R and TS0914T), total 15 genera. Actinobacteria(HGC) group commonly existed in all seasons, accounting for 60%of all isolates, followed Firmicute (LGC) group accounted for 17%. There were fewer species of bacteria in Spring and summer (April-August) samples than that in fall and winter season (September-February). Arthrobacter and Sphingomonas were isolated from the samples of all of months; other genera only existed in specific months.
     3. The results showed the seasonal compositions of bacterial DNA by denaturing gradient gel electrophoresis (DGGE).The cluster analysis of DGGE displayed better regularity in 0cm-10cm snow layer than that in 10cm-20cm snow layer. The structure of bacteria DNA in May to August and October to February displayed high similarity forming two clusters respectively in 0-10cm snow layer. Shannon index (H') showed high bacterial diversity; its peak value appeared in January and May in two snow layer respectively. Sequencing analysis demonstrated Arthrobacter and Bacillus were found in cultivation and DGGE; Crybacterium, Devosia, Janthinobacterium and Cryptococcus were only found in cultivation.
     There were obvious seasonal change of bacterial diversity and quantity in surface snow of glacier No.1 in Tianshan. The comprehensive picture of microbial shift can be approached by the combined techniques such as fluorescent microscopy, bacterial cultivation and DGGE.
引文
Abyzov, S., Bobin, N., and Koudryashov, B. (1982). Quantitative assessment of microorganisms in microbiological studies of Antarctic glaciers. Biol Bull Acad Sci USSR 9,558-564.
    Abyzov, S., Mitskevich, I., and Poglazova, M. (1998). Microflora of the deep glacier horizons of central Antarctica. Microbiology(New York, NY) 67,451-458.
    Aguilera, A., Gomez, F., Lospitao, E., and Amils, R. (2006). A molecular approach to the characterization of the eukaryotic communities of an extreme acidic environment:Methods for DNA extraction and denaturing gradient gel electrophoresis analysis. Systematic and Applied Microbiology 29,593-605
    Aller, J., Kuznetsova, M., Jahns, C., and Kemp, P. (2005). The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. Journal of aerosol science 36,801-812.
    Amann, R., Ludwig, W., and Schleifer, K. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews 59,143.
    BaiYu, Y, Daqun, Wang, J., Xu, S., Wang, X., and An, L. (2006). Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Research in Microbiology 157,741-751.
    Bakermans, C., Tsapin, A., Souza-Egipsy, V, Gilichinsky, D., and Nealson, K. (2003). Reproduction and metabolism at-10 C of bacteria isolated from Siberian permafrost. Environmental Microbiology 5,321-326.
    Bay, R., Bramall, N., and Price, P. (2005). Search for microbes and biogenic compounds in polar ice using flourescence. Life in ancient ice Princeton University Press, Princeton,268-276.
    Bhatia, M., Sharp, M., and Foght, J. (2006). Distinct bacterial communities exist beneath a high Arctic polythermal glacier. Applied Environment Microbiology 72,5838-5845.
    Bodhaine, B., Deluisi, J., Harris, J., Houmere, P., and Bauman, S. (1986). Aerosol measurements at the South Pole. Tellus B 38,223-235.
    Brinkmeyer, R., Knittel, K., Jurgens, J., Weyland, H., Amann, R., and Helmke, E. (2003). Diversity and Structure of Bacterial Communities in Arctic versus Antarctic Pack Ice. Appl Environ Microbiol 69,6610-6619.
    Cano, R., and Borucki, M. (1995). Revival and identification of bacterial spores in 25-to 40-million-year-old Dominican amber. Science 268,1060.
    Carpenter, E.J., Lin, S., and Capone, D.G (2000). Bacterial Activity in South Pole Snow. Appl Environ Microbiol 66,4514-4517.
    Castello, J., Lakshman, D., Tavantzis, S., Rogers, S., Bachand, G, Jagels, R., Carlisle, J., and Liu, Y. (1995). Detection of infectious tomato mosaic tobamovirus in fog and clouds. Phytopathology 85,1409-1412.
    Castello, J., and Rogers, S. (2005). Life in ancient ice (Princeton Univ Pr).
    Castello, J., Rogers, S., Starmer, W., Catranis, C., Ma, L., Bachand, G., Zhao, Y., and Smith, J. (1999). Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biology 22,207-212.
    Christner, B.C., Mikucki, J.A., Foreman, C.M., Denson, J., and Priscu, J.C. (2005). Glacial ice cores:A model system for developing extraterrestrial decontamination protocols. Icarus 174,572-584.
    Christner, B.C., Mosley-Thompson, E., Thompson, L.G., and Reeve, J.N. (2001). Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology 3,570-577.
    Christner, B.C., Mosley-Thompson, E., Thompson, L.G., and Reeve, J.N. (2003). Bacterial recovery from ancient glacial ice.5,433-436.
    Christner, B.C., Mosley-Thompson, E., Thompson, L.G., Zagorodnov, V., Sandman, K., and Reeve, J.N. (2000). Recovery and identification of viable bacteria immured in glacial ice. Icarus 144,479-485.
    Darling, C., and Siple, P. (1941). Bacteria of Antarctica. Journal of Bacteriology 42, 83.
    Diez, B., Pedros-Alio, C., Marsh, T., and Massana, R. (2001). Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Applied and Environmental Microbiology 67,2942.
    Ekelof, E. (1908). Bakteriologische Studien wahrend der Schwedischen Siidpolar-Expedition. Wiss Ergeb Schwed Siidpolar Exped,1901-1903,4 (7).
    Fong, N., Burgess, M., Barrow, K., and Glenn, D. (2001). Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Applied microbiology and biotechnology 56,750-756.
    Garbeva, P., van Overbeek, L., van Vuurde, J., and van Elsas, J. (2001). Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecology 41,369-383.
    Gerard Muyzer, K.S. (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73,127-141.
    Karl, D., Bird, D., Bj rkman, K., Houlihan, T., Shackelford, R., and Tupas, L. (1999). Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286, 2144-2147.
    Keer, J., and Birch, L. (2003). Molecular methods for the assessment of bacterial viability. Journal of microbiological methods 53,175-183.
    Kohshima, S. (1989). Glaciological importance of microorganisms in the surface mud-like materials and dirt layer particles of the Chongce Ice Cap and Gozha Glacier, West Kunlun Mountains, China. Bulletin of Glacier Research 7,59-65.
    Koizumi, Y., Kojima, H., and Fukui, M. (2003). Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments. FEMS Microbiology Ecology 46,147-157.
    Leiper, R., and Atkinson, E. (1914). Helminthes of the British Antarctic Expedition, 1910-1913.
    Liu, Y., Yao, T., Jiao, N., Kang, S., Huang, S., Li, Q., Wang, K., and Liu, X. (2008). Culturable bacteria in glacial meltwater at 6,350 m on the East Rongbuk Glacier, Mount Everest. Extremophiles.
    Liu, Y, Yao, T., Jiao, N., Kang, S., Zeng, Y, and Huang, S. (2007). Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiol Ecol 21,11-11.
    Liu, Y, Yao, T., Kang, S., Jiao, N., Zeng, Y, Shi, Y, Luo, T., Jing, Z., and Huang, S. (2006). Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest. Chinese Science Bulletin 51,1476-1486.
    Mader, H., Pettitt, M., Wadham, J., Wolff, E., and Parkes, R. (2006). Subsurface ice as a microbial habitat. Geology 34,169.
    McLean, A. (1918). Bacteria of ice and snow in Antarctica. Nature 102,35-39.
    Miteva, V. (2008). Bacteria in snow and glacier ice. Psychrophiles:from biodiversity to biotechnology,31-50.
    Miteva, V.I., and Brenchley, J.E. (2005). Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Applied and Environmental Microbiology 71,7806-7818.
    Miteva, V.I., Sheridan, P.P., and Brenchley, J.E. (2004). Phylogenetic and Physiological Diversity of Microorganisms Isolated from a Deep Greenland Glacier Ice Core, pp.202-213.
    Muyzer, G., De Waal, E., and Uitterlinden, A. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59,695.
    Porazinska, D., Fountain, A., Nylen, T., Tranter, M., Virginia, R., and Wall, D. (2004). The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research 36,84-91.
    Price, P. (2000). A habitat for psychrophiles in deep Antarctic ice. Proceedings of the National Academy of Sciences of the United States of America 97,1247.
    Price, P. (2005). Life in solid ice. Arxiv preprint q-bio/0507004.
    Price, P.B. (2007). Microbial life in glacial ice and implications fora cold origin of life. FEMS Microbiol Ecol 217-231.
    Priscu, J.C., Adams, E.E., Lyons, W.B., Voytek, M.A., Mogk, D.W., Brown, R.L., McKay, C.P., Takacs, C.D., Welch, K.A., Wolf, C.F., et al.(1999). Geomicrobiology of Subglacial Ice Above Lake Vostok, Antarctica. Science 286, 2141-2144.
    Priscu, J.C., Fritsen, C.H., and Adams, E.E. (1998). Perennial Antarctic lake ice:an oasis for life in a polar desert. science 280,2095-2098.
    Royston-Bishop, G., Priscu, J., Tranter, M., Christner, B., Siegert, M., and Lee, V. (2005). Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica. Annals of Glaciology 40,145-150.
    S. Zhang, S.H., X. Ma, D. Qin, and T. Chen (2007). Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation. Biogeosciences 4,,1-9.
    Sattler, B., Puxbaum, H., and Psenner, R. (2001). Bacterial growth in supercooled cloud droplets. Geophysical Research Letters 28,239-242.
    Shannon, C., and Weaver, W. (1963). The mathematical theory of communities. University
    Sheridan, P., Miteva, V, and Brenchley, J. (2003). Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Applied and Environmental Microbiology 69,2153.
    Stibal, M., abacka, M., and Ka tovska, K. (2006). Microbial communities on glacier surfaces in Svalbard:impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecology 52,644-654.
    Straka, R., and Stokes, J. (1960). Psychrophilic bacteria from Antarctica. Journal of Bacteriology 80,622.
    Swstrm, C., Mumford, P., Marshall, W., Hodson, A., and Laybourn-Parry, J. (2002). The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 N). Polar Biology 25,591-596.
    Vreeland, R., Rosenzweig, W., and Powers, D. (2000). Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897-900.
    Weinbauer Markus G, B.C., Hofle Manfred G. (1998). Utility of Green Fluorescent Nucleic Acid Dyes and Aluminum Oxide Membrane Filters for Rapid Epifluorescence Enumeration of Soil and Sediment Bacteria. Applied and Environmental Microbiology 64,5000-5003.
    Wharton Jr, R., McKay, C., Simmons Jr, G., and Parker, B. (1985). Cryoconite holes on glaciers. BioScience 35,499-503.
    Willerslev, E., Hansen, A., R nn, R., Brand, T., Barnes, I., Wiuf, C., Gilichinsky, D., Mitchell, D., and Cooper, A. (2004). Long-term persistence of bacterial DNA. Current Biology 14, R9-R10.
    Xiang, S., Yao, T., An, L., Wu, G, Xu, B., Ma, X., Li, Z., Wang, J., and Yu, W. (2005). Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core Science in China Series D-Earth Science 48, 1728-1739.
    Xiao, Y, Patolsky, F., Katz, E., Hainfeld, J., and Willner, I. (2003). Plugging into Enzymes":Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science 299, 1877-1881.
    Yao, T., Liu, Y, Kang, S., Jiao, N., Zeng, Y, Liu, X., and Zhang, Y (2008). Bacteria variabilities in a Tibetan ice core and their relations with climate change. GLOBAL BIOGEOCHEMICAL CYCLES 22.
    Yao, T., Xiang, S., Zhang, X., Wang, N., and Wang, Y (2006). Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochem Cycles 20.
    Yu Bai, D.Y., Jianhui Wang, Shijian Xu, Xiaoxiang Wang,Lizhe An (2006). Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China Microbiology Volume 157, Issue 8, October 2006, Pages 741-751
    Zhang, S., Hou, S., Ma, X., Qin, D., and Chen, T. (2007). Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation. Biogeosciences 4, 1-9.
    Zhang, X., Ma, X., Wang, N., and Yao, T. (2009). New subgroup of Bacteroidetes and diverse microorganisms in Tibetan plateau glacial ice provide a biological record of environmental conditions. FEMS Microbiology Ecology 67,21-29.
    Zhang, X., Yao, T., An, L., Tian, L., and Xu, S. (2006). A study on the vertical profile of bacterial DNA structure in the Puruogangri (Tibetan Plateau) ice core using denaturing gradient gel electrophoresis. Annals of Glaciology 43,160.
    Zhang, X., Yao, T., Ma, X., and Wang, N. (2002). Microorganisms in a high altitude glacier ice in Tibet. Folia microbiologica 47,241-245.
    Zhang, X.F., Yao, T.D., Tian, L.D., and Xu, S.J. (2008). Phylogenetic and Physiological Diversity of Bacteria Isolated from Puruogangri Ice Core. Microbial Ecology 55,476-488.
    Zhou, J., Bruns, M., and Tiedje, J. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology 62,316-322.
    林娟,张新芳,安黎哲,姚檀栋,李忠勤,王飞腾,and徐世健(2008).天山冰芯细菌多样性研究.冰川冻土30,1033-1040.
    侯书贵(2001).乌鲁木齐河源区大气降水的化学特征.冰川冻土23,80-84.
    侯书贵,秦大河,and陈拓(1996).青藏高原冰川雪层中淋溶作用的初步研究.冰川冻土18,75-82.
    刘勇勤,姚檀栋,康世昌,焦念志,曾永辉,骆庭伟,井哲帆,and黄思军(2006).珠穆朗玛峰地区东绒布冰川冰雪微生物群落及其季节变化科学通报51,1287-1296.
    刘炜,马晓军,候书贵,陈拓,and秦大河(2007).东天山地区庙儿沟雪坑中微生物多样性、群落结构与环境关系研究.47,1019-1026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700