微光学集成的高精度MOEMS加速度传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微加速度传感器是军械、车辆、船舶等抗冲击、抗振动测量,地震监测,惯性导航与制导系统的重要传感器,特别是微型10-6-10-9g量级的高精度加速度传感器更是先进军事与国防创新研究的高技术基础,对精密导航,目标定位,陆地,太空及海洋重力分布测量具有突破性意义。近年来国外的MEMS加速度传感器技术发展很快,但是国内在加速度传感器技术上尚未有突破,仍沿用传统的压电技术等,精度上大体处于10-4-10-5g的水平。本课题所做的研究,主要是为了填补国内在高精度微加速度传感器方面的空白,对于提升国家整体的惯导技术水平具有重要意义。
     本文提出了一种微光学集成的高精度MOEMS口速度传感器,开创性的设计了由光栅、压电陶瓷和硅微机械结构组成的三明治式加速度传感芯片,并通过微加工技术完成了该方案的加速度传感器原理样机的制作。基于相位调制-解调的信号处理方法,对制作完成的加速度传感器原理样机进行了静态测试与分析。本论文的研究内容主要包括以下几个方面:
     1.简要介绍了加速度传感器的工作原理、分类方法以及发展进程,并给出了MEMS和MOEMS的概念,详细分析了一些典型的MEMS和MOEMS加速度传感器的工作原理、发展现状及各自的优缺点。提出了本文的主要研究内容、研究方案目标、以及主要的创新点。
     2.将迈克尔逊干涉仪与光栅测量技术结合,提出了由光栅、压电陶瓷和反射镜组成的相位敏感的光栅干涉结构,建立了相位调制的光栅干涉技术理论,推导了各级次干涉光强与位移之间的函数关系式。结合相位调制-解调技术,提出了相位调制的光栅干涉技术可用于纳米量级以下位移的检测。由于加速度是位移的二次微分,因而,该光栅干涉技术可以扩展用于加速度的测量。
     3.根据加速度传感器的力学模型,结合光栅干涉技术理论,开创性的设计了由光栅、压电陶瓷和硅微机械结构组成的三明治式加速度传感芯片,建立了微光学集成的高精度MOEMS加速度传感器的理论与模型,并推导出了各级次干涉光强与加速度之间的函数关系式。利用ANSYS有限元仿真分析软件,围绕微机械传感结构的参数设计、建模、并对其模态、线性等性能进行了仿真分析。最后,根据该方案的加速度传感器的输出信号特性,提出了基于相位调制-解调的信号检测方法。
     4.结合微光学集成的高精度MOEMS加速度传感器系统的组成,依次介绍了各个组成元件及其参数等。包括利用电子束曝光技术制作光栅;压电陶瓷的参数与性能;采用光刻、ICP (Inductively Coupled Plasma)即感应等离子体刻蚀等技术加工制作硅微机械传感结构。然后,对制作完成的光栅、压电陶瓷、硅微机械传感结构进行封装与键合,完成了三明治式加速度传感芯片的制作与封装。最后详细介绍了加速度传感器系统的信号处理电路的工作原理及各电子元器件的选择。
     5.为了对微光学集成的高精度MOEMS加速度传感器的原理样机进行性能的测试与分析,我们在高精度光学转台上搭建了静态重力场测试平台。针对评价微加速度传感器的主要性能指标参数,我们主要完成了灵敏度、线性度、迟滞性、重复性与稳定性等参数的测试与分析。经过多次、反复实验,其测试结果表明我们制作完成的加速度传感器,在一个周期的线性区域内,采用相位调制-解调方式的加速度探测灵敏度为1676V/g,分辨率小于3.1μg,且具有良好的稳定性与重复性。
     最后,本文对所涉及的研究工作进行了总结,并对未来的主要工作内容与方向提出了展望。
Micro-accelerometers are very important sensors for anti-vibration measurement of vehicles, seismic monitoring, inertial navigation and guidance systems, especially high-resolution accelerometers withμg-resolution or ng-resolution, not only can be used in inertial navigation systems for precise positioning of the target, but also have wide applications in other scientific fields, such as ultra-precise measurement of Earth's surface and the distribution of the gravity field of outer space. In recent years, MEMS acceleration sensor foreign technology has developed rapidly, but the domestic acceleration sensor has not yet been a technical breakthrough. Therefore, the research we made is to fill the blank in the micro-acceleration sensor, and has great significance for enhancing the overall level of inertial navigation technology.
     This dissertation presents a high-resolution MOEMS (Micro-Optical Electro-Mechanical System) accelerometer based on integrated micro-optics, which combines the grating interference with silicon MEMS (Micro-electro mechanical system) technology. A sandwich structure, which consists of a grating, a PZT (Piezoelectric Translator), and the micro-machined structure, is designed as the acceleration sensing chip for the first time. The main content of the dissertation is as follows.
     Firstly, we introduced the principle, classification, development of the micro-accelerometer, and then made a comparison with kinds of MEMS and MOEMS accelerometers. The research main contents, object and novel ideas of this work were also introduced.
     Combined the Michelson-Interferometer with the grating measurement technique, and based on the phase modulation-demodulation technique, the phase-sensitive grating interference theory consisting of the grating, PZT, and the mirror has been analyzed, and the functional relationship between the intensity and the displacement has also been derived. As the acceleration is the quadratic differential of the displacement, and therefore, the phase-sensitive grating interference can be extended for the acceleration measurement.
     Combination the grating interference theory and the MEMS technology, the theory and model of a high resolution MOEMS accelerometer based on the integrated micro-optics have been established, and the functional formula between the intensity and the acceleration has also been given. By use of ANSYS, the simulation and analysis software, the parameter design, model, performance of the mechanical structure have been simulated and analyzed. According to the characteristics of the accelerometer system output signal, the signal detection method by means of the lock-in amplifier was introduced.
     We also made much effort to the fabrication of the prototype of the proposed MOEMS accelerometer. Use the electron-beam lithography to fabricate the grating, and use the photolithography, ICP (Inductively Coupled Plasma) to manufacture the silicon micro-machined structure. Then, we completed the package of the sandwich structure, which consisted of the grating, PZT, and the silicon micro-machined structure, as the acceleration sensing chip. The principle and electric components of the signal processing circuit were also demonstrated.
     According to performance parameters of evaluation of the accelerometer, test validation experiments of the MOEMS accelerometer about sensitivity, linearity, hysteresis, etc., have been made, and experimental results show that the fabricated MOEMS accelerometer provides acceleration sensitivity of1676V/g and high-resolution acceleration less than3.1μg in the linear region, and with good stability and repeatability.
     Finally, we summarized the research done, and made prospects for the future work.
引文
[1]张攀峰,光学高精度微加速度计的位移测量系统研究[D],浙江大学,2006
    [2]Roylance L M, Angel J B, A batch-fabricated silicon accelerometer[J], IEEE Trans Electron Devices,1979,26:11-19
    [3]刘妤,温志渝,张流强,刘玉奎,梁玉前,微加速度传感器的研究现状及发展趋势[J],光学精密工程,2004,12(3):81-86
    [4]汪延成,仿生蜘蛛振动感知的硅微加速度传感器研究[D],浙江大学,2010
    [5]胡晓明等,加速度传感器偏置及敏感度测量方法的研究[J],压电与声,2006,6(6):728-729,732
    [6]苏中,李擎,李旷振,杨宝利,惯性技术[M],国防工业出版社,2010
    [7]李旭辉,MEMS发展应用现状[J],传感器与微系统,2006(25):7-9
    [8]周巧芬,基于可变光栅微加速度传感器的研究[D],浙江大学,2011
    [9]金大重,生化检测用集成微机械悬臂梁谐振传感器技术[D],中国科学院上海微系统与信息技术研究所,2006
    [10]任杰等,一种双轴电容式微机械加速度传感器[J],传感技术学报,2006,10(5):2174-2176
    [11]方澍,郭群英等,电容式MEMS加速度传感器技术[J],集成电路通讯,2011,29(3):1-8
    [12]凌灵,陈文元等,微机械电容式加速度计的结构及检测技术研究[J],仪表技术与传感器,2008(8):3-12
    [13]Kruager S, Grace R., New changes for microsystems-technology in automotive applications[J], MSTNews,2001(1):4-7
    [14]刘凤丽等,内端固定三轴梳齿电容式加速度计[J],仪表技术与传感器,2012(7):18-20
    [15]杨畅,航天惯性仪表40年与未来趋势[J],导弹与航天运载技术2000(1):17-20
    [16]Kijin Kwon, Sekwang Park, A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer[J], Sensors and Actuators A,1998(66):250-255
    [17]J.A.Plaze, H. Chen et al., New bulk accelerometer for triaxial detection[J], Sensors and Actuators A,1998(66):105-108
    [18]刘妤,温志渝,张流强等,微加速度传感器的研究现状及发展趋势[J],光学精密工程,2004(12):81-86
    [19]刘宵鹏,基于MEMS技术的差分电容加速度微传感器的研究和设计[D],西安电子科技大学,2006
    [20]裘安萍等,硅微振梁式加速度传感器中微杠杆结构的设计[J],传感技术学报,2006,5(5):2204-2207
    [21]Dong Haifeng, Jia Yubin, Hao Yilong, et al., A novel out-of-plane MEMS tunneling accelerometer[J], Sensors and Actuators A,2005(120):360-364
    [22]童志义,赵晓东,国内外MEMS器件现状及发展趋势[J],电子工业专用设,2002,04(31):200-206
    [23]吴俊伟,惯性技术基础[M],哈尔滨工程大学出版社,2002
    [24]杨立溪,国外惯性技术的发展现状与展望[J],导航与控制,2004(2):58-62
    [25]黄德鸣,惯性技术的发展沿革[J],海陆空天惯性世界,2003(8):8-24
    [26]杨国光等,微光学与系统[M],浙江大学出版社,2008
    [27]Brett Piekarski, Don De Voe, Surface micromachined piezoelectric resonant beam filters[J], Sensors and Actuators A,2001(91):313-320
    [28]Amm D T, Corrigan R W, Grating light valve technology:update and novel applicatons[C], Society for Information Display Symposium, Anaheim, CA, 1998
    [29]Yu Wu, Xu Zeng, Yun-Jiang Rao, MOEMS accelerometer based on microfiber knot resonator[C], Pro. SPIE,2009,7503:75036U-1
    [30]吴宇,微纳光纤环的MOEMS口速度传感器理论与应用研究[D],浙江大学,2008
    [31]Dustin W. Carr, J. P. Sullivan, and T. A. Friedmann, Laterally deformable nanomechanical zeroth-order gratings:anomalous diffraction studied by rigorous coupled-wave analysis, Optics Letters,2003,28(18):1636-1638
    [32]U. Krishnamoorthy et.al., In-plane MEMS-based on nano-g accelerometer with sub-wavelength optical resonator sensor[J], Sensors and Actuators A, 2008,145-146:283-290
    [33]J. A. Plaza et.al., BESOI-based integrated optical silicon accelerometer[J], Journal of microelectromechanical system,2004,13(2):355-364
    [34]Nin. C. Loh, Sub-10cm3 interferometric accelerometer with nano-g resolution, Journal of microelectromechanical system[J],2002,11 (3):182-187
    [35]Gerold Schropfer, et.al., Lateral optical accelerometer micromachined in(100) silicon with remote readout based on coherence modulation[J], Sensors and Actuators A,1998(68):344-349
    [1]郁道银,谈恒英,工程光学[M],机械工业出版社,2006
    [2]Vest, C. M. Holographic interferometry[J], New York, John Wiley and Sons, Inc., 1979.476
    [3]周灿林,亢一澜,数字全息干涉法用于变形测量[J],光子学报,2004(2):171-173
    [4]陈华平,散斑干涉技术及其图像处理系统的研究[D],广东工业大学,2004
    [5]卿新林,云纹干涉法的理论与应用研究评述[J],力学与实践,1997(6):14-21
    [6]http://baike.baidu.com/view/321080.htm
    [7]袁冬媛,徐富新,大学物理实验教程[M],中南大学出版社,2002:171-177
    [8]徐兰珍,干涉厚度的研究[J],西安矿业学院学报,1998,18(4):386-389
    [9]宋敏,李波欣,郑亚茹,利用光学方法测量薄膜厚度的研究[J],光学技术,2004,30(1):103-106
    [10]沈伟东,刘旭,叶辉等,确定薄膜厚度和光学常数的一种新方法[J],光学学报,2004,24(7):885-889
    [11]沈朝晖,王晶,马廷均,用迈克尔逊干涉仪测量单层薄膜的厚度和折射率[J],大学物理实验,1994,7(1):1-3
    [12]栾兰,闪辉,马秀芳等,迈克尔逊干涉仪测平行玻璃板折射率的进一步研究[J],大学物理,2000,19(11):20-23
    [13]罗洁,物理实验中微小位移测量的几种光学测量方法[J],经营管理者,2009(14):56-59
    [14]赵贤森,用高频相位调制干涉仪快速测距[J],北京测绘,1994(1):37-40
    [15]陈本永,朱若谷,基于干涉条纹跟踪实现纳米级位移测量的方法研究[J],光学技术,2001(3):223-225
    [16]苏昭璟,大量程纳米级光栅位移测量理论及关键技术研究[D],国防科学技术大学,2001
    [17]侯昌伦,白剑,侯西云,杨国光,基于Ronchi光栅Talbot效应的角度精确测量[J],光学仪器,2004(1):11-14
    [18]苏玿璟,刘辉,吕海宝,王跃科,纳米级位移分辨率双光栅系统的多普勒分析[J],光学精密工程,2003(11):17-21
    [19]江晓军,黄惠杰,王向朝,基于光栅传感器的位移测量仪的研制[J],电子测量技术,2008(31):147-158
    [20]Oppenheim A.V., and R. W. Schafer. Discrete-time signal processing[M], Englewood Cliffs, N. J.:Prentice-Hall,1989:458-562
    [21]M. C. Hultey, Diffraction Gratings[M], New York:Academic Press(London) INC,1982
    [22]U. S. Patent 5.621.527, Apparatus for measuring relative displacement between the apparatus and a scale which a grating is formed,1997
    [23]祝绍箕等,衍射光栅[M],机械工业出版社,1986
    [24]祝绍箕等,光栅数字显示技术及其应用[M],机械工业出版社,1992
    [25]辛企明,近代光学制造技术[M],国防工业出版社,1997
    [26]Kim, Kyung-Suk, Clifton, Rodney J., Kumar and Prashant, A combined normal- and transverse- displacement interferometer with an application to impact of y-cut quartz[J], J. Appl. Phys.1977(48):4132-4139
    [27]Jun Xu, Donglin Peng, Wenlue Wan and Wei Yang, New way of producing electrical traveling wave signal based on photoelectricity technology in design of time-grating displacement sensor[J], Chin. J. Sens. Act.2007,20:532-535
    [28]Guangya Zhou, Logeeswaran VJ, and Fook Siong Chau, An open-loop nano-positioning micromechanical digital-to-analog converter for grating light modulation[J], IEEE Photonics Tech. Lett.,2005,17:1010-1012
    [29]楼仁海,符果行,袁敬闳,电磁理论[M],电子科技大学出版社,1996
    [30]童诗白,华成英,模拟电子技术基础[M],高等教育出版社,2006
    [31]郑家龙,王小海,章安元,集成电子技术基础教程[M],高等教育出版社,2002
    [32]http://jpkc.hdu.edu.cn/comm/txyl/webstandard/wljc/txtch4/ch422.htm
    [33]安毓英,曾晓东,光电探测原理[M],西安电子科技大学出版社,2004
    [34]潘建彬,用于高分辨率加速度计的PGC纳米位移[D],浙江大学,2007
    [35]王琢,光纤加速度传感器技术研究[D],哈尔滨工程大学,2008
    [36]唐晓琪,唐继,Mach-Zehnder光纤干涉仪相位载波调制及解调方案的研究[J],计量学报,2002(23):10-12
    [37]Smith W. H., Philips D. H., Digital scanned interferometer:sensors and results[J], App. Opt.,1996,35(16):2902-2909
    [38]杨国光,近代光学测试[M],浙江大学出版社,2002
    [1]程耀东,李培玉,线性系统[M],浙江大学出版社,2005
    [2]潘建彬,用于高分辨率加速度计的PGC纳米位移[D],浙江大学,2007
    [3]汪延成,仿生蜘蛛振动感知的硅微加速度传感器研究[D],浙江大学,2010
    [4]林日乐,谢佳维,蔡萍等,体微加工技术在MEMS中的应用[J],压电与声光,2005(3):324-327
    [5]陶家渠,李应选,万达,刘佑宝,沈文正,白丁,硅微机械传感器[M],中国宇航出版社,2003
    [6]胡国良,任继文,有限元分析入门与提高[M],国防工业出版社,2009
    [7]吴宇,微纳光纤环加速度传感器的理论与应用研究[D],浙江大学,2008
    [1]http://baike.baidu.com/view/2258410.htm
    [2]袁明权,硅基微机械加工技术[J],半导体技术,2001(26):6-10
    [3]王亚珍,朱文坚,微机电系统(MEMS)技术及发展趋势[J],机械设计与研究,2004(20):10-12
    [4]黄良甫,贾付云,微机电系统的加工技术及研究进,真空与低温,2003,9:1-5
    [5]埃尔文斯波克(Elwenspoek M.),硅微机械传感器,中国宇航出版社,2003
    [6]周巧芬,基于可变光栅微加速度传感器的研究[D], 浙江大学,2011
    [7]http://baike.baidu.com/view/3053134.htm
    [8]Paul A. K., Rangelow I. W., Fabrication of high aspect ratio structures using chlorine gas chopping technique[J], Microelectronic Engnieering,1997(35): 79-82
    [9]郑志霞,冯勇建,张春权,ICP刻蚀技术研究[J],厦门大学学报,2004(43):365-368
    [10]樊中朝,余金中,陈少武,ICP刻蚀技术及其在光电子器件制作中的应用[J],微细加工技术,2003(2):21-28
    [11]F. Laermer, A. Schilp, K. Funk, M. Offenberg, Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications[J], Technical Digest MEMS,1999:211-216
    [12]http://baike.baidu.com/view/1182515.htm
    [13]李远明,陈文涛,微弱光信号前置放大电路设计[J],电子元器件应用,2007(8):51-53
    [14]陈张玮,李玉和,李庆祥,王亮,段瑞玲,光电探测器前级放大电路设计与研究[J],电测与仪表,2005(42):32-34
    [15]张娟,高精度微光学加速度计信号处理系统[D],浙江大学,2013
    [1]邓和莲,加速度传感器标定的数据自动采集系统的设计[J],机电工程技术,2008,37(5):60-62
    [2]杜美琪,加速度计静态标定方法及设备[J],地震工程与工程振动,1996(16):127-133
    [3]杜清府,刘海,检测原理与传感技术[M],山东大学出版社,2008
    [4]郝颖等,微机械加速度计的分析与测试[J],应用科技,2000(30):39-41
    [5]http://www.clgj.net/news/19170093.html
    [6]汪延成,仿生蜘蛛振动感知硅微加速度传感器[D],浙江大学,2010
    [7]李浩,陆德仁,分度头检测加速度计时横向效应对线性度的影响[J],功能材料与器件学报,2002(8):40-44
    [8]刘佳钰,郑宾,惯性加速度计横向灵敏度测量方法及特性分析[J],弹箭与制导学报,2008,28(4):49-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700