光纤生物传感的动态范围及灵敏度增强效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从满足微型生化分析仪器特别是片上实验室对小尺寸、高集成、低成本、高灵敏度、宽动态范围等要求出发,研究了结构简单、成本低廉、抗干扰能力强、方便集成的双锥形光纤折射率传感器,探讨其灵敏度提高的方法,并研究了在无标生物检测方面的应用。论文完成的工作及主要结论如下:
     (1)基于均匀光纤中传导模式的特性及存在条件,采用局部模式法分析了双锥形光纤中的模式耦合机制,推导了耦合效率的计算公式。
     (2)用二氧化硅纳米小球对双锥形光纤表面进行修饰,利用米氏散射效应与模式传输特性相结合实现了宽动态范围高灵敏度的折射率传感,给出并分析了纳米小球修饰后的光传输模型,得出了与实验结果相一致的结论。
     (3)发现并证明了纳米小球的高阶模式过滤效果。从理论上分析了其模式过滤的机理,并设计多个实验进行了验证。高阶模式过滤使纳米小球修饰后光纤对亚甲基兰的检测灵敏度大大降低,说明纳米修饰能够在提高折射率检测灵敏度的同时降低对吸收的敏感性,这在需要从吸收物质中提取折射率信息的场合中将会有重要潜在应用。
     (4)利用弯曲锥形光纤的简单结构实现了高灵敏度的折射率传感。分析了这种折射率传感器的原理,并推导了理论计算模型,通过计算说明了锥形包层对高灵敏度的贡献,实验得到了4000nm/RIU的灵敏度。
     (5)利用双锥形微纳光纤对多种抗原进行了高灵敏度无标检测。探讨了微纳光纤的导光及物理机械特性,解释了其高灵敏度的内在原因。研究了对不同溶解环境中的不同性质抗原的检测能力,其中由去离子水配制的相思子毒素的检出限达到10pg/mL。最后,通过解离实验探讨了传感器的再生能力。
In order to meet the requirements of small size, high integration, low cost, highsensitivity, and broad dynamic range for micro biochemical analysis systems,particularly lab on a chip, a biconical fiber-optic refractometer (BFOR) is studied. Ithas a simple structure, low cost, strong immunity to electromagnetic interference, andthe feasibility for integration. The schemes to improve the sensitivity have beeninvestigated and the application to label-free biological detections has been studied.The accomplished work and main points in this thesis are as follows:
     (1) Based on the properties of bound modes of a uniform optical fiber, the modetransition in a tapered fiber was illustrated by resort to local modes and the formulaefor calculating the coupling efficiencies were derived.
     (2) Silica nanospheres were used to modify the BFOR, combination of the Miescattering of nanospheres and multimode propagation in the tapered optical fiber(TOF) contributed to an enhanced sensitivity and a broadened detection range forrefractive index (RI) measurement. The theoretical model of the modified TOF(MTOF) was provided and analyzed, and the theory fitted well with experiments.
     (3) The effect of filtering higher-order optical fiber modes was discovered andproofed. The underlying mechanism was theoretically investigated and severalexperiments were designed for support. It was also experimentally-revealed that theMTOF was much less sensitive to methylene blue due to the higher-order mode filtering. Thus, while silica nanospheres improved the sensitivity for RI detection,they reduced the absorbancy sensitivity, which suggested the MOTF was suitable forextracting the RI information from an absorbing medium.
     (4) A simple bent TOF was proposed for highly-sensitive RI measurements. Theprinciple was illustrated. The theoretical models were deduced and the contribution oftapered cladding was shown through theory. A high sensitivity of4000nm/RIU wasexperimentally-obtained.
     (5) Biconically-tapered optical micro/nano fibers were used to realize label-freebiological recognition of several kinds of antigen dissolved in different solutions. Thelight guiding and mechanical properties of micro/nano fibers were investigated, andthe reasons for high sensitivities were revealed. A detection limit of10pg/mL forabrin in deionized water was obtained. In the end, the release experiments indicatedthe excellent regeneration ability.
引文
[1]袁倬斌等.现代分析化学原理与技术[J].中国科学院研究生院讲义,2001.
    [2]北京大学化学系仪器分析教学组编.仪器分析教程[M].北京:北京大学出版社,1988.
    [3] R. Narayanaswamy and O.S. Wolfbeis. Optical Sensors [M]. New York:Springer,2004.
    [4] W. E. Moerner. New Directions in Single-Molecule Imaging and Analysis [J].Proc. Natl. Acad. Sci.,2007,104:12596-12602.
    [5] W.G. Cox and V.L. Singer. Fluorescent DNA hybridization probe preparationusing amine modification and reactive dye coupling [J]. Biotechniques,2004,36:114-122.
    [6]郝鹏.小型波长SPR生化分析仪的关键技术研究[D]:[博士学位论文].北京:中国科学院研究生院,2009.
    [7] Anuj K. Sharma, Rajan Jha, and B. D. Gupta. Fiber-optic sensors based onsurface plasmon resonance: a comprehensive review [J]. IEEE Sensors J.,2007,7(8):1118-1129.
    [8] Robert G. Hunsperger. Integrated Optics [M]. New York: Springer,2009.
    [9] Website. http://www.neosensors.com.
    [10] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J.D. Suter, and Y.Sun. Sensitiveoptical biosensors for unlabeled targets: A review [J]. Anal. Chim. Acta,2008,23:8-26.
    [11] A. Ramachandram, S. Wang, J. Clarke, and et al. A universal biosensingpaltform based on optical micro-ring resonators [J]. Biosens. Bioelectron.,2008,23:939-944.
    [12] Katrien De Vos, Irene Bartolozzi, Etienne Schacht, Peter Bienstman, and RoelBaets. Silicon-on-insulator microring resonator for sensitive and label-freebiosensing.pdf [J]. Opt. Express,2007,15(12):7610-7615.
    [13] Bernard H. Schneider, John G. Edwards, and Nile F. Hartman. Hartmaninterferometer: versatile integrated optic sensor for label-free, real-timequantification of nucleic acids, proteins, and pathogens [J]. Clinical Chemistry,1997,43(9):1757-1763.
    [14] Aurel Ymeti, Jan Greve, Paul V. Lambeck, and et al. Fast, ultrasensitive virusdetection using a Young interferometer sensor [J]. Nano Lett.,2007,7(2):394-397.
    [15] Nina Skivesen, Amelie Tetu, Martin Kristensen, Jorgen Kjems, Lars H.Frandsen, and Peter I. Borel. Photonic-crystal waveguide biosensor [J]. Opt.Express,2007,15(6):3169-3176.
    [16] E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami. Ultracompactbiochemical sensor built with two-dimensional photonic crystal microcavity[J]. Opt. Lett.,2003,29(10):1093-1095.
    [17] Kevin H. Smith, Benjamin L. Ipson, and et al. Surface-relief fiber Bragggratings for sensing applications [J]. Appl. Opt.,2006,45(8):1669-1675.
    [18] Ming Han, Fawen Guo, and Yongfeng Lu. Optical fiber refractometer based oncladding-mode Bragg grating [J]. Opt. Lett.,2010,35(3):399-401.
    [19] V. V. R. Sai, Tapanendu Kundu, and Soumyo Mukherji. Novel U-bent fiberoptic probe for localized surface plasmon resonance based biosensor [J].Biosens. Bioelectron.,2009,24:2804-2809.
    [20] Hidehisa Tazawa, Tomohiko Kanie, and Makoto Katayama. Fiber-opticcoupler based refractive index sensor and its application to biosensing [J].Appl. Phys. Lett.,2007,91,113901.
    [21] Pengfei Wang, Gilberto Brambilla, Ming Ding, Yuliya Semenova, Qiang Wu,and Gerald Farrell. High-sensitivity, evanescent field refractometric sensorbased on a tapered, multimode fiber interference [J]. Opt. Lett.,2011,36(12):2233-2235.
    [22] Otto S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors [J]. Anal.Chem.,2000,72:81R-10.
    [23] Otto S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors [J]. Anal.Chem.,2002,74:2663-2678.
    [24] Otto S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors [J]. Anal.Chem.,2004,76:3269-3284.
    [25] Otto S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors [J]. Anal.Chem.,2006,78:3859-3874.
    [26] Otto S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors [J]. Anal.Chem.,2008,80:4269-4283.
    [27] Xu-Dong Wang and Otto S. Wolfbeis. Fiber-Optic Chemical Sensors andBiosensors [J]. Anal. Chem.,2012,85:487-508.
    [28] B. Lee, S. Roh, and J. Park. Current status of micro-and nano-structuredoptical fiber sensors [J]. Opt. Fiber Technol.,2009,15:209-221.
    [29] David J. Monk and David R. Walt. Optical fiber-based biosensors [J]. Anal.Bioanal. Chem.,2004,379:931-945.
    [30] Angela Leung, P. Mohana Shankar, and Raj Mutharasan. A review offiber-optic biosensors [J]. Sens. Actuators B,2007,125:688-703.
    [31] María Dolores Marazuela and María Cruz Moreno-Bondi. Fiber-opticbiosensors-an overview [J]. Anal. Bioanal. Chem.,2002,372:664-682.
    [32]陈新,李维晖,张宏.用分光计测液体折射率[J].现代科学仪器,2006,2:93-95.
    [33]花世群,骆英,洪云.基于等厚干涉原理的液体折射率测量方法[J].中国激光,2006,33:1542-1546.
    [34] C. Meneghini, S. Caron, A. C. J. Poulin, and et al. Determination of ethanolconcentration by Raman spectroscopy in liquid-core microstructured opticalfiber [J]. IEEE Sensors J.,2008,8(7):1250-1255.
    [35] A. K. Sharma and B. D. Gupta. Comparison of performance parameters ofconventional and nano-plasmonic fiber optic sensors [J]. Plasmonics,2007,2:51-54.
    [36] M. Kanso, S. Cuenot, and G. Louarn. Sensitivity of optical fiber sensor basedon surface plasmon resonance: modeling and experiments [J]. Plasmonics,2008,3:49-57.
    [37] C. Ronot-Trioli, A. Trouillet, C. Veillas, and H. Gagnaire. Monochromaticexcitation of surface plasmon resonance in an optical-fibre refractive-indexsensor [J]. Sens. Actuators A,1996,54:589-563.
    [38] Kyung-Su Kim, Yosuke Mizuno, Masayuki Nakano, Seiichi Onoda, andKentaro Nakamura. Refractive index sensor for liquids and solids usingdielectric myltilayer films deposited on optical fiber end surface [J]. IEEEPhoton. Technol. Lett.,2011,23(20):1472-1474.
    [39] O. Frazao, P. Caldas, J. L. Santos, P. V. S. Marques, C. Turck, D. J. Lougnot,and O. Soppera. Fabry-Perot refractometer based on an end-of-fiber polymertip [J]. Opt. Lett.,2009,34(16):2474-2476.
    [40] Allan W. Snyder. Surface mode coupling along a tapered dielectric rod [J].IEEE Trans. Antennas Propag.,1965,13:821-823.
    [41] A. W. Snyder and J.D.Love. Optical Waveguide Theory [M]. London:Chapman and Hall,1983.
    [42] S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures. Tapered monomodeoptical fibers: understanding large power transfer [J]. Appl. Opt.,1986,25(23):4421-4425.
    [43] Suzanne Lacroix, Richard J. Black, Christian Veilleux, and Jean Lapierre.Tapered single-mode fibers: external refractive-index dependence [J]. Appl.Opt.,1986,25(15):2468-2469.
    [44] Lloyd C. Bobb, P. M. Shankar, and Howard D. Krumboltz. Bending effects inbiconically tapered single-mode fibers [J]. J. Lightwave Technol.,1990,8(7):1084-1090.
    [45] L. C. Bobb, H. D. Krumboltz, and P. M. Shankar. Pressure sensor that usesbent biconically tapered single-mode fibers [J]. Opt. Lett.,1991,16(2):112-114.
    [46] M. Shadaram, L. Espada, J. Martinez, and F. Garcia. Modeling andperformance evaluation of ferrocene-based polymer clad tapered optical fibergas sensors [J]. Opt. Eng.,1998,37(4):1124-1129.
    [47] Shangping Guo and Sacharia Albin. Transmission property and evanescentwave absorption of cladded multimode fiber tapers [J]. Opt. Express,2003,11(3):215-223.
    [48] J. Villatoro, D. Monzon-Hernandez, and D. Talavera. High resolutionrefractive index sensing with cladded multimode tapered optical fibre [J].Electron. Lett.,2004,40(2).
    [49] David Monzon-Hernandez, Joel Villatoro, and Donato Luna-Moreno.Miniature optical fiber refractometer using cladded multimode tapered fibertips [J]. Sens. Actuators B,2005,110:36-40.
    [50] Argha Banerjee, Sayak Mukherjee, and et al. Fiber optic sensing of liquidrefractive index [J]. Sens. Actuators B,2007,123:594-605.
    [51] G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A.Cardenas-Sevilla, and J. Villatoro. Optical microfiber mode interferometer fortemperature-independent refractometric sensing [J]. Opt. Lett.,2012,37(11):1974-1976.
    [52] Thevenot DR, Thoth K, Durst RA, and Wilson GS.[J].1999.
    [53] Otto S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors [J]. Anal.Chem.,2000,72:81R-89R.
    [54] George P. Anderson, Chris A. Rowe-Taitt, and Frances S. Ligler, presented atthe the first conference on point detection for chemical and biological defense,2000(unpublished).
    [55] Pawel J. Wiejata, P. M. Shankar, and R. Mutharasan. Fluorescent sensing usingbiconical tapers [J]. Sens. Actuators B,2003,96:315-320.
    [56] Bao-Yu Hsieh, Ying-Feng Chang, Ming-Yaw Ng, Wei-Chih Liu, Chao-HsiungLin, Hsieh-Ting Wu, and Chien Chou. Localized surface plasmon coupledfluorescence fiber-optic biosensor with gold nanoparticles [J]. Anal. Chem.,2007,79:3487-3493.
    [57]黄惠杰,翟俊辉,任冰强,扬瑞馥.光纤倏逝波传感器及其应用[J].光学学报,2003,23(4).
    [58] Hua Wei, Yongkai Zhao, Yujing Bi, Haihong Liu, Zhaobiao Guo, Yajun Song,Junhui Zhai, Junhui Zhai, and R. Yang. Direct detection of Yersinia pestis fromthe infected animal specimens by a fiber optic biosensor [J]. Sens. Actuators B,2007,123:204-210.
    [59] Angela Leung, P.M. Shankar, and Raj Mutharasan. Real-time monitoring ofbovine serum albumin at femtogram/mL levels on antibody-immobilizedtapered fibers [J]. Sens. Actuators B,2007,123:888-895.
    [60] Hong S. Haddock, P. M. Shankar, and R. Mutharasan. Evanescent sensing ofbiomolecules and cells [J]. Sens. Actuators B,2003,88:67-74.
    [61] Kishan Rijal, Angela Leung, P. Mohana Shankar, and Raj Mutharasan.Detection of pathogen Escherichia coli0157:H7at7cells/mL usingantibody-immobilized bioconical tapered fiber sensors [J]. Biosens.Bioelectron.,2005,21:871-880.
    [62] David Maraldo, P. Mohana Shankar, and R. Mutharasan. Measuring bacterialgrowth by tapered fiber and changes in evanescent field [J]. Biosens.Bioelectron.,2006,21:1339-1344.
    [63] Angela Leung, Kishan Rijal, P. M. Shankar, and R. Mutharasan. Effects ofgeometry on transmission and sensing potential of tapered fiber sensors [J].Biosens. Bioelectron.,2006,21:2202-2210.
    [64] Angela Leung, P. Mohana Shankar, and Raj Mutharasan. Model proteindetection using antibody-immobilized tapered fiber optic biosensors (TFOBS)in a flow cell at1310nm and1550nm [J]. Sens. Actuators B,2008,129:716-725.
    [65]庄须叶.高灵敏度光纤消逝场传感器制作方法的研究[D]:[博士学位论文].北京:中国科学院研究生院,2009.
    [66] A. W. Snyder and J. D. Love. Optical waveguide theory [M]. London:Chapman and Hall,1983.
    [67]李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002.
    [68]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [69]任伟,赵家升.电磁场与微波技术[M].北京:电子工业出版社,2006.
    [70]国分泰雄.光波工程[M].北京:国防工业出版社,2002.
    [71] Snitzer. Cylindrical dielectric waveguide modes [J]. J. Opt. Soc. Am.,1961,51:491-498.
    [72] E. Snitzer and H. Osterberg. Observed dielectric waveguide modes in thevisible spectrum [J]. J. Opt. Soc. Am.,1961,51(6):499-505.
    [73] Lars Thytlen. The beam propagation method: an analysis of its applicability [J].Optical and Quantum Electronics,1983,15:433-439.
    [74] B. M. A. Rahman. Finite element analysis of optical waveguides [J]. Progressin Electromagnetics Research,1995,10:187-216.
    [75] T.A. Birks and Y.W. Li. The shape of fiber tapers [J]. J. Lighewave Technol.,1992,10(4):432-438.
    [76] Ye Tian, Wenhui Wang, Nan Wu, Xiaotian Zou, and Xingwei Wang. Taperedoptical fiber sensor for label-free detection of biomolecules [J]. Sensors,2011,11:3780-3790.
    [77] H.S. Haddock, P.M. Shankar, and R. Mutharasan. Fabrication of bioconicaltapered optical fibers using hydrofluoric acid [J]. Mater. Sci. Eng.,2003, B97:87-93.
    [78] Limin Tong, Rafael R. Gattass, Jonathan B. Ashcom, Sailing He, Jingyi Lou,Mengyan Shen, Iva Maxwell, and Eric Mazur. Subwavelength-diameter silicawires for low-loss optical wave guiding [J]. Nature,2003,426:816-819.
    [79] Alexander Hartung, Sven Brueckner, and Hartmut Bartelt. Limits of lightguidance in optical nanofibers [J]. Opt. Express,2010,18(4):3754-3761.
    [80] Fu Jian, Xu Yingying, Tang Shaofang, Li Yang, and Sun Shuo. Transversemultimode evolution in non-adiabatic optical micro/nanofiber tapers [J]. Chin.Phys. Lett.,2010,27(1),014202.
    [81] Limin Tong. Brief introduction to optical microfibers and nanofibers [J]. Front.Optoelectron. China,2010,3(1):54-60.
    [82] Pavel Polynkin, Alexander Polynkin, N. Peyghambarian, and MasudMansuripur. Evanescent field-based optical fiber sensing device for measuringthe refractive index of liquids in microfluidic channels [J]. Opt. Lett.,2005,30(11):1273-1275.
    [83] Jingyi Lou, Limin Tong, and Zhizhen Ye. Modeling of silica nanowires foroptical sensing [J]. Opt. Express,2005,13(6):2135-2140.
    [84] Fuxing Gu, Lei Zhang, Xuefeng Yin, and Limin Tong. Polymersingle-nanowire optical sensors [J]. Nano Lett.,2008,8(9):2757-2761.
    [85] Lei Zhang, Jingyi Lou, and Limin Tong. Micro/nanofiber optical sensors [J].Photonic sensors,2011,1(1):31-42.
    [86] Heather K. Hunt and Andrea M. Armani. Label-free biological and chemicalsensors [J]. Nanoscale,2010,2:1544-1559.
    [87] Liang Tang, Yongjie Ren, Bin Hong, and Kyung A. Kang.Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system forrapid diagnosis and prognosis of cardiovascular diseases [J]. Journal ofBiomedial Optics,2006,11(2):021011.
    [88] Heath I. Balcer, Hyun J. Kwon, and Kyung A. Kang. Assay procedureoptimization of a rapid, reusable protein C immunosensor for physiologicalsamples [J]. Annals of Biomedical Engineering,2002,30:141-147.
    [89] M. I. Zibaii, H. Latifi, M. Karami, M. Gholami, S. M. Hosseini, and M. H.Ghezelayagh. Non-adiabatic tapered optical fiber sensor for measuring theinteraction between α-amino acids in aqueous carbohydrate solution [J]. Meas.Sci. Technol.,2010,21:105801.
    [90] M. I. Zibaii, H. Latifi, M. Karami, M. Gholami, S. M. Hosseini, and M. H.Ghezelayagh. Biconical tapered optical fiber biosensor for measuringrefractive index of α-amino acids in aqueous D-glucose and sucrose solution[J]. Proc. of SPIE,2010,7715.
    [91] Angela S.Y. Leung, Kishan Rijal, Gregory J. Thomas, Raj Mutharasan, and P.Mohana Shankar. Continuous tapered fibers as sensors for cellular growth andpathogen detection [J].
    [92] Angela Leung, P. Mohana Shankar, and Raj Mutharasan. Label-free detectionof DNA hybridization using gold-coated tapered fiber optic biosensors(TFOBS) in a flow cell at1310nm and1550nm [J]. Sens. Actuators B,2008,131:640-645.
    [93] Kishan Rijal, Angela Leung, P. M. Shankar, and R. Mutharasan. Detection ofpathogen Escherichia coli O157:H7AT70cells/mL usingantibody-immobilized bioconical tapered fiber sensors [J]. Biosens.Bioelectron.,2005,21:871-10.
    [94] Angela Leung, P. M. Shankar, and R. Mutharasan. Real-time monitoring ofbovine serum albumin at femtogram/nL levels on antibody-immobilizedtapered fibers [J]. Sens. Actuators B,2007,123:888-895.
    [95] Liang Tang, Hyun J. Kwon, and Kyung A. Kang. Theoretical and experimentalanalysis of analyte transport in a fiber-optic, protein C immuno-biosensor [J].Biotechnology and bioengineering,2004,88(7):869-879.
    [96] Qiang Wu, Yuliya Semenova, Binbin Yan, Youqiao Ma, Pengfei Wang,Chongxiu Yu, and Gerald Farrell. Fiber refractometer based on a fiber Bragggrating and single-mode-multimode-single-mode fiber structure [J]. Opt. Lett.,2011,36(12):2197-2199.
    [97] Qian Wang and Gerald Farrell. All-fiber multimode-interference-basedrefractometer sensor: proposal and design [J]. Opt. Lett.,2006,31(3):317-319.
    [98] Qiang Wu, Yuliya Semenova, Jinesh Mathew, Pengfei Wang, and GeraldFarrell. Humidity sensor based on a single-mode hetero-core fiber structure [J].Opt. Lett.,2011,3610:1752-1754.
    [99] Qiang Wu, Yuliya Semenova, Pengfei Wang, and Gerald Farrell. Highsensitivity SMS fiber structutre based refractometer-analysis and experiment[J]. Opt. Express,2011,19(9):7937-7944.
    [100] Andres M. Cardenas-Valencia, Robert H. Byrne, and Eric T. Steimle.Development of stripped-caldding optical fiber sensors for continuousmonitoring I. Theoretical study of a referencing method for measuringrefractive indices of fluids [J]. Sens. Actuators B,2006,115:178-188.
    [101] Andres M. Cardenas-Valencia, Robert H. Byrne, Melynda Calves, LarryLangebrake, David P. Fries, and Eric T. Steimle. Development ofstripped-caldding optical fiber sensors for continuous monitoring Ⅱ.Referencing method for spectral sensing of environmental corrosion [J]. Sens.Actuators B,2007,122:410-418.
    [102] Joseba Zubia, German Garitaonaindia, and Jon Arrue. Passive device based onplastic optical fibers to determine the indices of refraction of liquids [J]. Appl.Opt.,2000,39(6):941-946.
    [103] Jiahua Chen, Wojtek J. Bock, and Predrag Mikulic. Simple fiber-opticrefractive index sensor based on evanescent higher order modes [J]. Proc. ofSPIE,2009,7386.
    [104] Joel Villatoro and David Monzon-Hernandez. Low-cost optical fiberrefractive-index sensor based on core diameter mismatch [J]. J. LightwaveTechnol.,2006,24(3):1409-1413.
    [105] Fufei Pang, Huanhuan Liu, Hairun Guo, Yunqi Liu, Xianglong Zeng, Na Chen,Zhenyi Chen, and Tingyun Wang. In-fiber Mach-Zehnder Interferometer basedon double cladding fibers for refractive index sensor [J]. IEEE Sensors J.,2011,11(10):2395-2400.
    [106] Mitsuhiro Iga, Atsushi Seki, Yuzuru Kubota, and Kazuhiro Watanabe. Aciditymeasurements based on a hetero-core structured fiber optic sensor [J]. Sens.Actuators B,2003,96:234-238.
    [107] Ye Tian, Wenhui Wang, Nan Wu, Xiaotian Zou, Charles Guthy, and XingweiWang. A miniature fiber optic refractive index sensor built in a MEMS-Basedmicrochannel [J]. Sensors,2011,11:1078-1087.
    [108] Zhaobing Tian and Scott S.-H. Yam. In-line single-mode optical fiberinterferometric refractive index sensors [J]. J. Lightwave Technol.,2009,27(13):2296-2306.
    [109] Martin S. Meyer and Gary L. Eesley. Optical fiber refractometer [J]. Rev. Sci.Instrum.,1987,58(11):2047-2048.
    [110] Xiufeng Yang, Shaojun Luo, Zhihao Chen, and Jun Hong Ng. Refractive indexsensor based on fiber laser [J]. Microwave Opt. Technol. Lett.,2006,49(4):916-918.
    [111] Tian-Hao Xia, A. Ping Zhang, Bobo Gu, and Jing-jing Zhu. Fiber-opticrefractive-index sensors based on transmissive and reflective thin-core fibermodal interferometers [J]. Opt. Commun.,2010,283:2136-2139.
    [112] Pengfei Wang, Yuliya Semenova, Qiang Wu, Gerald Farrell, Yunqiang Ti, andJie Zheng. Macrobending single-mode fiber-based refractometer [J]. Appl.Opt.,2009,48(31):6044-6049.
    [113] Fei Xu and Gilberto Brambilla. Demonstration of a refractometric sensorbased on optical microfiber coil resonaor [J]. Appl. Phys. Lett.,2008,92,101126.
    [114] C. R. Liao, D. N. Wang, Xiaoying He, and M. W. Yang. Twisted opticalmicrofibers for refractive index sensing [J]. IEEE Photon. Technol. Lett.,2011,23(13):848-850.
    [115] Tao Li, Xinyong Dong, C. C. Chan, Chun-Liu Zhao, and Shangzhong Jin.Power-referenced optical fiber refractometer based on a hybrid fiber grating[J]. IEEE Photon. Technol. Lett.,2011,20(8):635-637.
    [116] Jun-long Kou, Sun-jie Qiu, Fei Xu, Yan-qing Lu, Ye Yuan, and Gang Zhao.Miniaturized metal-dielectric-hybrid fiber tip grating for refractive indexsensing [J]. IEEE Photon. Technol. Lett.,2011,23(22):1712-1714.
    [117] Janos V r s. The density and refractive index of adsorbing protein layers [J].Biophysical Journal,2004,87:533-541.
    [118] David Monzón-Hernández, Donato Luna-Moreno, Dalia Martínez Escobar,and Joel Villatoro. Optical microfibers decorated with PdAu nanoparticles forfast hydrogen sensing [J]. Sens. Actuators B,2010,151:219-222.
    [119] Pei-Kuen Wei, Yu-Jen Chang, and Chia-Wei Lee. Sensitive plasmonicbiosensor using gold nanoparticles on a nano fiber tip [J]. Proc. of SPIE,2006,6099.
    [120] Ying-Feng Chang, Bao-Yu Chen, and et al. Sensitivity enhancement offiber-optic biosensor by localized surface plasmon-coupled emission with goldnanoparticles [J]. Proc. of SPIE,2007,6447.
    [121] Hum Lee, Hyun-Jin Kim, Jae-Hyoung Park, Dae Hong Jeong, and Seung-KiLee. Effects of surface density and size of gold nanoparticles in a fiber-opticlocalized surface plasmon resonance sensor and its application to peptidedetection [J]. Meas. Sci. Technol.,2010,21,085805.
    [122] B. D. Gupta and R. K. Verma. Surface plasmon resonance-based fiber opticsensors: principle, probe designs, and some applications [J]. Journal of senosrs,2009,1-12.
    [123] Chien-Hsing Chen, Tzu-Chien Tsao, Wan-Yun Li, Wei-Chih Shen, and et al.Novel U-shaped gold nanoparticles-modified optical fiber for localizedplasmon resonance chemical sensing [J]. Microsyst. Technol.,2010,161207-1214.
    [124] J.-P Conzen, J. Burck, and H.-J. Ache. Characterization of a fiber-opticevanescent wave absorbance sensor for nonpolar organic compounds [J]. Appl.Spectrosc.,1993,47:753-763.
    [125] Shu-Fang Cheng and Lai-Kwan Chau. Colloidal gold-modified optical fiberfor chemical and biochemical sensing [J]. Anal. Chem.,2003,75(1):16-21.
    [126] Lai-Kwan Chau, Yi-Fang Lin, Shu-Fang Cheng, and Tsao-Jen Lin. Fiber-opticchemical and biochemical probes based on localized surface plasmonresonance [J]. Sens. Actuators B,2006,113:100-105.
    [127] Ning-Sheng Lai, Chun-Chien Wang, Hui-Ling Chiang, and Lai-Kwan Chau.Detection of antinuclear antibodies by a colloidal gold modified optical fiber:comparison with ELISA [J]. Anal. Bioanal. Chem.,2007,388:901-907.
    [128] F. Meriaudeau, A. Wig, A. Passian, T. Downey, M. Buncick, and T. L. Ferrell.Gold island fiber optic sensor for refractive index sensing [J]. Sens. ActuatorsB,2000,69:51-57.
    [129] F. Meriaudeau, T. D. Downey, A. Passian, A. G. Wig, S. Mangeant, P. B. Crilly,and T. L. Ferrell. Development of a fiber optic sensor based on gold islandplasmon resonance [J]. SPIE,3491:1179-1184.
    [130] Diana Vigegas, Jevier Goicoechea, José Luís Santos, Francisco Moita Araújo,Luís Alberto Ferreira, Francisco J. Arregui, and Ignacio R. Matias. Sensitivityimprovement of a humidity sensor based on silica nanospheres on along-period fiber grating [J]. Sensors,2009,9:519-527.
    [131] Jesus M. Corres, Ignacio R. Matias, Miguel Hernaez, Javier Bravo, andFrancisco J. Arregui. Optical fiber humidity sensors using nanostructuredcoatings of SiO2nanoparticles [J]. IEEE Sensors J.,2008,8(3):281-285.
    [132] Sergiy Korposh, Seung-Woo Lee, Stephen W. James, and Ralph P. Tatam.Refractive index sensitivity of fibre-optic long period gratings coated withSiO2nanoparticles mesoporous thin films [J]. Meas. Sci. Technol.,2011,22,075208.
    [133] S. Korposh, W. Batty, S. Kodaira, S-W. Lee, S. W. James, S. M. Topliss, and R.P. Tatam. Ammonia sensing using a fibre optic long period grating with aporous nanostructured coating formed from silica nanospheres [J]. Proc. ofSPIE,2010,76531D.
    [134] Sergiy Korposh, Stephen W. James, Seung-Woo Lee, Stephen Topliss, SammyC. Cheung, William J. Batty, and Ralph P. Tatam. Fiber optic long periodgrating sensors with a nanoassembled mesoporous film of sio2nanoparticles[J]. Opt. Express,2010,18(12):13227-13238.
    [135] C. F. Bohren and D. R. Huffman. Absorption and scattering of light by smallparticles [M]. New York: John wiley&sons,1983.
    [136] Guigen Liu, Yihui Wu, Kaiwei Li, Peng Hao, Ping Zhang, and MIng Xuan.Mie scattering-enhanced fiber-optic refractometer [J]. IEEE Photon. Technol.Lett.,2012,24(8):658-660.
    [137] Y. Wu, X. Deng, F. Li, and X. Zhuang. Less-mode optic fiber evanescent waveabsorbing sensor: Parameter design for high sensitivity liquid detection [J].Sens. Actuators B,2007,122:127-133.
    [138] Werner St ber and Arthur Fink. Controlled growth of monodisperse silicaspheres in the micron size range [J]. Journal of Colloid and Interface Science,1968,26:62-69.
    [139] Francois Gonthier, Jean Lapierre, Christian Veilleux, Suzanne Lacroix, andJacques Bures. Investigation of power oscillations along tapered monomodefibers [J]. Appl. Opt.,1987,26(3):444-449.
    [140] A. C. Boucouvalas and G. Georgiou. External refractive-index response oftapered coaxial couplers [J]. Opt. Lett.,1986,11(4):257-259.
    [141] Daniel T. Cassidy, Derwyn C. Johnson, and Kenneth O. Hill.Wavelength-dependent transmission of monomode optical fiber tapers [J].Appl. Opt.,1985,24(7):945-950.
    [142] D. Donlagic. In-line higher order mode filters based on long highly uniformfiber tapers [J]. J. Lightwave Technol.,2006,24:3532-3539.
    [143] Yongmin Jung, Gilberto Brambilla, and David J. Richardson. Broadbandsingle-mode operation of standard optical fibers by using a sub-wavelengthoptical wire filter [J]. Opt. Express,2008,16(19):14661-14667.
    [144] S. Moon and D. Y. Kim. Effective single-mode transmission at wavelengthsshorter than the cutoff wavelength of an optical fiber [J]. IEEE Photon.Technol. Lett.,2005,17:2604-2606.
    [145] Niranjan M. Hanumegowda, Caleb J. Stica, Bijal C. Patel, Ian White, andXudong Fan. Refractometric sensors based on microsphere resonators [J].Appl. Phys. Lett.,2005,87,201107.
    [146] Dietrich Marcuse. Curvature loss formula for optical fibers [J]. J. Opt. Soc.Am.,1976,66(3):216-220.
    [147] W. A. Gambling, D. N. Payne, and H. Matsumura. Radiation from curvedsingle-mode fibers [J]. Electron. Lett.,1976,12(21):567-569.
    [148] W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut.Measurement of radiation loss in curved single-mode fibres [J]. Microwaves,optics and acoustics,1978,2(4):134-140.
    [149] Y. Murakami and H. Tsuchiya. Bending losses of coated single-mode opticalfibers [J]. IEEE J. Quantum Electron.,1978,14:495-501.
    [150] A. J. Harris and P. F. Castle. Bend loss measurements on high numericalaperture single-mode fibers as a function of wavelength and bend radius [J]. J.Lightwave Technol.,1986,4:34-40.
    [151] I. Valiente and C. Vassallo. New formalism for bending losses in coatedsingle-mode optical fibres [J]. Electron. Lett.,1989,25(22):1544-1545.
    [152] R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones. Wavelengthdependence of bending loss in monomode optical fibers: effect of the fiberbuffer coating [J]. Opt. Lett.,1990,15(17):947-949.
    [153] Hagen Renner. Bending losses of coated single-mode fibers: a simpleapproach [J]. J. Lightwave Technol.,1992,10(5):544-551.
    [154] D. Marcuse. Bend loss of slab and fiber modes computed with diffractiontheory [J]. J. Quantum Electron.,1993,29(12):2957-2961.
    [155] R. C. Gauthier and C. Ross. Theoretical and experimental considerations for asingle-mode fiber-optic bend-type sensor [J]. Appl. Opt.,1997,36(25):6264-6274.
    [156] Luca Faustini and Giuseppe Martini. Bend loss in single-mode fibers [J]. J.Lightwave Technol.,1997,15(4):671-679.
    [157] S. K. Khijwania and B. D. Gupta. Fiber optic evanescent field absorptionsensor: effect of fiber parameters and geometry of the probe [J]. Opt. Quant.Electron.,1999,31:625-636.
    [158] S. K. Khijwania and B. D. Gupta. Maximum achieveable sensitivity of thefiber optic evanescent field absorption sensor based on the U-shaped probe [J].Opt. Commun.,2000,175:135-137.
    [159] Qian Wang, Gerald Farrell, and Thomas Freir. Theoretical and experimentalinvestigations of macro-bend losses for standard single mode fibers [J]. Opt.Express,2005,13(12):4476-4484.
    [160] Qian Wang, Gerald Farrell, Thomas Freir, Ginu Rajan, and Pengfei Wang.Low-cost wavelength measurement based on a macrobending single-modefiber [J]. Opt. Lett.,2006,31(12):1785-1787.
    [161] Pengfei Wang, Qian Wang, Gerald Farrell, Ginu Rajan, Thomas Freir, andJohn Cassidy. Investigation of macrobending losses of standard single modefiber with small bend radii [J]. Microwave Opt. Technol. Lett.,2007,49(9):2133-2138.
    [162] Pengfei Wang, Ginu Rajan, Yuliya Semenova, and Gerald Farrell. Temperaturedependence of a macrobending edge filter based on a high-bend loss fiber [J].Opt. Lett.,2008,33(21):2470-2472.
    [163] Pengfei Wang, Yuliya Semenova, Ginu Rajan, Thomas Freir, and GeraldFarrell. The temperature dependence of polarization-dependent loss for amacrobending single-mode-fiber-based edge filter [J]. IEEE Photon. Technol.Lett.,2009,21(8):516-518.
    [164] Pengfei Wang, Gerald Farrell, and Yuliya Semenova. Generalized designprocess for fiber-bend-loss-based edge filters for a wavelength measurementsystem [J]. Appl. Opt.,2009,48(16):3055-3061.
    [165] Pengfei Wang, Yuliya Semenova, Qiang Wu, and Gerald Farrell. A fiber-opticvoltage sensor based on macrobending structure [J]. Optics&laser technology,2011,43:922-925.
    [166] Pengfei Wang, Gilberto Brambilla, Yuliya Semenova, Qiang Wu, and GeraldFarrell. A simple ultrasensitive displacement sensor based on a high bend losssingle-mode fibre and a ratiometric measurement system [J]. J. Opt.,2011,13,075402.
    [167] Sung Hyun Nam and Shizhuo Yin. High-temperature sensing using whisperinggallery mode resonance in bent optical fibers [J]. IEEE Photon. Technol. Lett.,2005,17(11):2391-2393.
    [168] Sung Hyun Nam. Whispering gallery mode and cladding mode resonance inoptical fibers [D]:[Doctor of Philosophy]. Central County: The PennsylvaniaState University,2005.
    [169] Gilberto Brambilla, Fei Xu, Peter Horak, Yongmin Jung, Fumihito Koizumi,Neil P. Sessions, Elena Koukharenko, Xian Feng, Ganapathy S. Murugan,James S. Wilkinso, and David J. Richardson. Optical fiber nanowires andmicrowires: fabrication and applications [J]. Advances in Optics and Photonics,2009,1:107-161.
    [170] Gilberto Brambilla. Optical fibre nanotaper sensors [J]. Optical FiberTechnolgoy,2010,16:331-342.
    [171] Gilberto Brambilla, Vittoria Finazzi, and David J. Richardson. Ultra-low-lossoptical fiber nanotapers [J]. Opt. Express,2004,12(10):2258-2263.
    [172] M. Sumetsky. Optics of tunneling from adiabatic nanotapers [J]. Opt. Lett.,2006,31(23):3420-3422.
    [173] M. Sumetsky. How thin can a microfiber be and still guide light?[J]. Opt. Lett.,2006,31(7):870-872.
    [174] M. Sumetsky. How thin can a microfiber be and still guide light? Errata [J].Opt. Lett.,2006,31(24):3577-3578.
    [175] Limin Tong, Jingyi Lou, and Eric Mazur. Single-mode guiding properties ofsubwavelength-diameter silica and silicon wire waveguides [J]. Opt. Express,2004,12(6):1025-1035.
    [176] Keji Huang, Shuangyang Yang, and Limin Tong. Modeling of evanescentcoupling between two parallel optical nanowires [J]. Appl. Opt.,2007,46(9):1429-1434.
    [177] Shan-Shan Wang, Jian Fu, Min Qiu, Ke-Ji Huang, Zhe Ma, and Li-Min Tong.Modeling endface output patterns of optical micro/nanofibers [J]. Opt. Express,2008,16(12):8887-8897.
    [178] Yuhang Li and Limin Tong. Mach-Zehnder interferometers assembled withoptical microfibers or nanofibers [J]. Opt. Lett.,2008,33(4):303-305.
    [179] F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel.Ultra-sensitive surface absorption spectroscopy using sub-wavelengthdiameter optical fibers [J]. Opt. Express,2007,15(19):11952-11959.
    [180] Lei Zhang, Pan Wang, Yao Xiao, Huakang Yu, and Limin Tong. Ultra-sensitivemicrofiber absorption detection in a microfluidic chip [J]. Lab Chip,2011,11(21):3720-3724.
    [181] Limin Tong and Michael Sumetsky. Subwavelength and Nanometer DiameterOptical Fibers [M].杭州:浙江大学出版社,2009.
    [182]李峰.微流控分析芯片中分光光度法吸收光谱分析的研究[D]:[硕士学位论文].北京:中国科学院研究生院,2004.
    [183]邓小红.光纤消逝波吸收传感器的参数设计与分析[D]:[硕士学位论文].北京:中国科学院研究生院,2005.
    [184]相思子毒素. http://baike.baidu.com/view/1181374.htm.
    [185] Abrin. http://en.wikipedia.org/wiki/Abrin.
    [186] D. Michael Gill. Bacterial toxins: a table of lethal amounts [J].Microbiological Reviews,1982,46(1):86-94.
    [187] Eva Felder, Ilona Mossbrugger, Mirko Lange, and Roman Wolfel.Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR)[J].Toxins,2012,4:633-632.
    [188] Eric A. E. Garber, Jennifer L. Walker, and Thomas W. O'brien. Detection ofabrin in food using enzyme-linked immunosorbent assay andelectrochemiluminescence technologies [J]. Journal of food protection,2008,71(9):1868-1874.
    [189] E. G. C. Clarke and D. J. Humphreys. The detection of abrin [J]. Journal of theForensic Science Society,1971,11(2):109-112.
    [190] D. Yan, J. A. Saunders, and K. Jennings. Kinetics of formation fornalkanethiolates self-assembled monolayers onto gold in aqueous micellarsolutions of C12E6and C12E7[J]. Langmuir,2002,18:10202-10212.
    [191] Ed Harlow and David Lane. Using antibodies: a laboratory manual [M]. ColdSpring Harbor Laboratory Press,1999.
    [192] Bacillus thuringiensis. http://web.utk.edu/~jurat/Btresearchtable.html.
    [193] Saad A. Alotaibi. Toxicological studies on populations of cotton leaf wormduring selection of recombinants in Bacillus Thuringiensis as insecticidalagent [J]. International journal of advanced biotechnology and research,2012,3(4):752-767.
    [194] CEA. http://www.medicinenet.com/carcinoembryonic_antigen/article.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700