电热驱动SU-8微夹钳的相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS技术的不断发展及对物质在微/纳尺度特性研究的深入,研究和开发适用于复杂MEMS器件微装配及对各种具有微/纳尺度研究对象进行微操作的微夹持系统,能够很好地促进这些领域的发展。作为末端执行部分的微夹持器是微夹持系统与被夹持对象之间的接口,其夹持效果直接决定微夹持系统的性能,因此微夹持器已成为目前的研究热点。对目前微夹持装置的研究现状进行分析可知,电热驱动微夹钳具有结构紧凑、控制容易及输出力较大等优点。而SU-8胶材料具有高热膨胀系数、低热导系数、良好的生物兼容性和较好的工艺性等特点,特别适合制作电热微夹钳。基于以上原因,本文以电热驱动SU-8微夹钳为研究对象,对其设计、制作及测试等相关问题进行了深入研究。
     在设计方面,针对目前设计方法的不足,提出了一种电热驱动微夹钳柔性机构的系统设计方法。首先归纳及推导了明确的用于微夹钳柔性机构拓扑结构设计的选择准则。利用选择准则对用于微夹钳拓扑结构设计的六杆、八杆及十杆对称单自由度刚性机构进行了综合,得到了66种备选机构。为避免在几何优化过程中对设计者经验的依赖,提高优化效率,基于刚度矩阵方法建立微夹钳参数化刚度模型,利用所建模型对微夹钳几何尺寸进行优化。采用该系统设计方法,设计出一种钳口常闭型(A型)及一种钳口常开型(B型)电热驱动SU-8微夹钳,由ANSYS软件仿真结果可知,优化结果满足设计要求,性能优于经验设计,A型及B型微夹钳的放大倍数分别为30.4和14.8。基于拓扑优化方法及伪刚体模型方法对具有纳米级钳口结构电热驱动微夹钳进行了设计。
     提出了一种具有三层对称三明治结构的新型SU-8胶V形电热驱动器,考虑了聚合物材料电、热耦合及多材料结构热膨胀分布不均问题,能够有效避免驱动过程中的平面外运动,并具有驱动电压低、工作温度低及结构紧凑等特点。采用整体释放及双面溅射工艺对设计的电热驱动SU-8微夹进行了成功制作,并对影响加工质量关键工艺参数进行了优化。针对所设计具有纳米级钳口结构电热驱动微夹钳的结构特点,提出了一套采用纳米压印工艺与微加工工艺相结合的制作工艺,并对该工艺进行了初步探索。
     搭建了一套微夹钳微操作及性能测试系统,在25℃的洁净实验室环境下,对制作出的A型及B型微夹钳进行了钳口位移输出特性及驱动器温度特性测试。由测试结果可知:A型微夹钳需73.6mV的驱动电压(此时输入功率25.61mW,驱动器平均温升45℃),可输出107.5μm的钳口距离变化量,其钳口响应时间均约为0.3s。对于B型微夹钳,施加195mV的驱动电压(此时输入功率为111.1mW,驱动器平均温升为53.7℃)可使钳口闭合,钳口距离变化量为-71.51μm,其钳口响应时间均约为0.23s。在测试过程中,两型微夹钳钳口的平面外位移小于500nm,证明了电热驱动器结构的合理性。A型微夹钳的驱动效率为4.18μm/mW,在已报道的同类微夹钳中最大。同时,A型及B型微夹钳所需驱动电压在同类微夹钳中最低。
     提出了一种基于SU-8胶压阻式微悬臂梁微力传感器的微夹钳夹持力直接测量方法,并研制了相应的测量装置,实现了对微夹钳夹持力的直接测量。基于该测量装置,对制作出的两种微夹钳进行了夹持力测量及钳口刚度标定。由实验结果可知:A型及B型微夹钳的钳口刚度分别约为2.83N/m及7.22N/m,满足设计要求。该方法所用传感器结构简单,成本低,精度与尺寸满足微夹钳夹持力测量需要。
     为验证微夹钳的夹持效果,在25℃的洁净实验室环境下,采用A型及B型微夹钳成功地进行了毛发和长耳鸮覆羽羽小枝微拉伸测试试样的微装配实验,又成功地对PS小球、微血管标本和蓝藻细胞进行了微操作实验。实验结果说明这两种微夹钳可以很好地完成多种形状及尺寸的微小生物试样及微小物体的微操作及微装配。
To promote the MEMS technologies and the studies of microscale and nanoscale effects, it's necessary to develop the micro-gripping system which is suitable for the micro-assemblies of complicated MEMS devices and the micro-manipulations of microscale and nanoscale objects. As the end execution part of the micro-gripping system, the microgripper is the interface between the micro-gripping system and the gripped object. Therefore, the performances of the micro-gripper system are directly determined by the clamping capacity of the microgripper which has become a reseach focus currently. Based on the analysis of the current research achievements of micro-gripping devices, it can be known that electrothermal microgrippers have many advantages such as compact structure, easily control and relatively large gripping force. And with the characteristics including a relatively high coefficient of thermal expansion, low coefficient of thermal conductivity, good biocompatibility and simple processing, SU-8is suitable to be the material of electrothermal microgrippers. For these reasons, the design method, fabrication processes and performace tests of the electrothermal SU-8microgripper is studied in this thesis.
     A new systematic design procedure for the compliant mechanisms of electrothermal microgrippers is presented. The explicit selection terms for the compliant mechanisms topology design are summarized and proofed firstly. Based on the selection terms, the structural synthesis of the symmetrical one-DOF6-bar,8-bar and10-bar rigid-body mechanisms for the microgripper compliant mechanism topology design is carried out, and66reasonable mechanisms are obtained. In order to avoid the reliance on designer's experience and improve the design efficiency, the stiffness parametric modeling of microgripper is carried out based on the stiffness matrix model method. And then the geometric size optimizes are implemented based on the proposed models. A normally closed type (A type) and a normally open type (B type) electrothermal SU-8microgripper are designed using the systematic design procedure. According to ANSYS software simulation results, the obtained microgrippers meet the design requirements, and their performances are better than the empirical designs. The amplification ratios of A type and B type microgripper are respectively30.6and14.8. Then, the SU-8electrothermal microgripper with nanoscale jaws is designed based on the topology optimization method and the pseudo-rigid model method.
     Considering the polymer electricity and thermal coupling and the thermal expansion uneven distribution of multi-material structure, a novel SU-8chevron electrothermal micro-actuator with three-layer symmetrical sandwich structure is proposed. Without the out-of-plane actions, the novel micro-actuator has the advantages of low driving voltage, low working temperature and compact structure. Then, the designed microgrippers are successfully fabricated using the entire piece releasing process and two-sided sputtering process process. And the critical process parameters affecting the processing quality are optimized. A fabrication process combining micro fabrication process and nanoimprint process is proposed for the fabrication of the designed microgripper with nanoscale jaws. A preliminary study of the proposed process is carried out.
     A micro-manipulation and performance test system of fabricated A type and B type microgripper is developed for the measurements of jaw displacement output characteristics and the actuator temperature characteristics. The test experiments are carried out at25℃in clean laboratory. The experimental results demonstrate that for A type microgripper, a jaw gap change of107.5μm requires only73.6mV,25.61mW and only44.92℃average temperature increase at the actuator, and the jaws response time is about0.3s. For B type microgripper, with195mV,111.1mW and53.7℃average temperature increase at the actuator, a71.5μm jaws gap change is obtained, making jaws to be cloesd. The jaws response time of B type microgripper is about0.23s. During both performance tests, the out-of-plane actuations of jaws are less than500nm, which verifies the rationality of the micro-actuator structure. It can be known that A type microgripper has the maximum driving efficiency (4.18μm/mW) in the reported SU-8electrothermal microgrippers. And A type and B type microgripper require lower voltages than others.
     This thesis presents a direct measuring method of microgripper gripping force based on SU-8micro-cantilever sensors with integrated copper piezoresistive strain gauge. The corresponding measuring device is developed and the direct measurements of microgripper gripping forces are implemented. Then, the micro gripping forces of two developed microgrippers are measured by the developed device and the jaw stiffness calibrations are also carried out. According to the experiment results, A type microgripper has a jaw stiffness of about2.83N/m and the jaw stiffness of B type microgripper is about7.22N/m. The calibration results meet the design requirements. With a simple structure, appropriate size and measurement accuracy, the low cost micro-cantilever sensor is suitable for the microgripper gripping force measurements.
     In order to test the gripping performances, micro-assembly experiments of specimen of fine hair and asio otus covert feather barbule for micro-tensile testing, and micro-manipulation of PS balls, micro blood vessel specimen and cyanobacteria cell are successfully implemented using A or B type microgripper. The test experiments are carried out at25℃in clean laboratory. The experiment results demonstrate that the developed microgrippers can accomplish many micro-manipulation and micro-assembly experiments of microscale objects and biological samples with a variety of shapes and sizes.
引文
[1]FEYNMAN R P. There's plenty of room at the bottom [J]. Engineering and Science, 1960,23(5):22-36.
    [2]PETERSEN K E. Silicon as a mechanical material [J]. Proceedings of the IEEE,1982, 70(5):420-457.
    [3]FAN L-S, TAI Y-C, MULLER R S. IC-processed electrostatic micromotors [J]. Sensors and actuators,1989,20(1):41-47.
    [4]章吉良,杨春生.微机电系统及其相关技术[M].上海交通大学出版社,2000:1-2.
    [5]王立鼎,刘冲.微机电系统科学与技术发展趋势[J].大连理工大学学报,2000,40(5):505-508.
    [6]王晓东,刘冲,王立鼎.微型夹钳的最新研究[J].功能材料与器件学报,2004,10(1):1-8.
    [7]ASHKIN A. Acceleration and trapping of particles by radiation pressure [J]. Physical review letters,1970,24(4):156-159.
    [8]ASHKIN A, DZIEDZIC J, BJORKHOLM J, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics letters,1986,11(5): 288-290.
    [9]JUAN M L, RIGHINI M, QUIDANT R. Plasmon nano-optical tweezers [J]. Nature Photonics, 2011,5(6):349-356.
    [10]HOCHENG H, TSENG C. Mechanical and optical design for assembly of vascular endothelial cells using laser guidance and tweezers [J]. Optics Communications, 2008,281(17):4435-4441.
    [11]崔国强,李银妹,翁明琪,等.环形光对光阱有效捕获力的提高[J].中国激光,2001,28(1):89-92.
    [12]HOEB M, R DLER J 0, KLEIN S, et al. Light-induced dielectrophoretic manipulation of DNA [J]. Biophysical journal,2007,93(3):1032-1038.
    [13]倪中华,朱树存,陈科.光诱导介电泳微操纵过程中的光电旋转[J].中国科学:技术科学,2012,42(1):91-102.
    [14]朱晓璐,尹芝峰,高志强,等.基于光诱导介电泳的微粒子过滤,输运,富集和聚焦的实验研究[J].中国科学:技术科学,2011,41(3):334-342.
    [15]MITCHISON J, SWANN M. The mechanical properties of the cell surface I. The cell elastimeter [J]. Journal of Experimental Biology,1954,31(3):443-460.
    [16]路敦武,黄惠杰,沈蓓军,等.组装微构件吸附用玻璃针尖规范化加工工艺研究[J].光学精密工程,1997,2(5):54-57.
    [17]PETROVIC D, POPOVIC G, CHATZITHEODORIDIS E, et al. Gripping tools for handling and assembly of microcomponents [C].23rd International Conference on Micorelectronics, Nish, Yugosiavia,2002:247-250.
    [18]HUANG X, CHANG L, WANG M. An automatic vacuum microgripper [C].8th World Congress on Intelligent Control and Automation (WCICA), Jinan, China,2010:5528-5532.
    [19]HOXHOLD B, WREGE J, B TEFISCH S, et al. Tools for Handling and Assembling of Microparts [M]. Springer,2011:287-308.
    [20]VASUDEV A, JAGTIANI A, DU L, et al. A low-voltage droplet microgripper for micro-object manipulation [J]. Journal of Micromechanics and Microengineering, 2009,19(7):075005.
    [21]CHU P B, PISTER S. Analysis of closed-loop control of parallel-plate electrostatic microgrippers [C]. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA,1994:820-825.
    [22]KIM C-J, PISANO A, MULLER R. Overhung electrostatic microgripper [C].1991 International Conference on Sol id-State Sensors and Actuators, Francisco, CA, USA, 1991:610-613.
    [23]KIM K, YOON H-M, LEE K R, et al. Fabrication and wafer-level packaging of Si electrostatic microgripper for micro assembly [C]. The 13th International Conference on Sol id-State Sensors, Actuators and Microsystems, Seoul, South Korea, 2005:952-955.
    [24]HAROUCHE I P, SHAFAI C. Simulation of shaped comb drive as a stepped actuator for microtweezers application [J]. Sensors and Actuators A:Physical,2005,123-124(9): 540-546.
    [25]WIERZBICKI R, HOUSTON K, HEERLEIN H, et al. Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation [J]. Microelectronic engineering,2006,83(4):1651-1654.
    [26]BEYELER F, BELL D, NELSON B, et al. Design of a micro-gripper and an ultrasonic manipulator for handling micron sized objects [C].2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,2006:772-777.
    [27]M LHAVE K, WICH T, KORTSCHACK A, et al. Pick-and-place nanomanipulation using microfabricated grippers [J]. Nanotechnology,2006,17(10):2434-2441.
    [28]BEYELER F, NEILD A, OBERTI S, et al. Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field [J]. Microelectromechanical Systems, Journal of,2007,16(1): 7-15.
    [29]CHEN T, SUN L, CHEN L, et al. A hybrid-type electrostatically driven microgripper with an integrated vacuum tool [J]. Sensors and Actuators A:Physical,2010,158(2): 320-327.
    [30]KIM D-H, LEE M G, KIM B, et al. A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors:a numerical and experimental study [J]. Smart materials and structures,2005,14(6):1265-1272.
    [31]CHOI H-S, LEE D-C, KIM S-S, et al. The development of a microgripper with a perturbation-based configuration design method [J]. Journal of Micromechanics and Microengineering,2005,15(6):1327-1333.
    [32]BLIDERAN M M, BERTSCHE G, HENSCHEL W, et al. A mechanically actuated silicon microgripper for handling micro-and nanoparticles [J]. Microelectronic engineering,2006,83(4):1382-1385.
    [33]NAH S, ZHONG Z. A microgripper using piezoelectric actuation for micro-object manipulation [J]. Sensors and Actuators A:Physical,2007,133(1):218-224.
    [34]BLIDERAN M, FLEISCHER M, GRAUVOGEL F, et al. Real-time gripping detection for a mechanically actuated microgripper [J]. Microelectronic engineering,2008,85(5): 1022-1026.
    [35]ZUBIR M N M, SHIRINZADEH B, TIAN Y. Development of a novel flexure-based microgripper for high precision micro-object manipulation [J]. Sensors and Actuators A:Physical,2009,150(2):257-266.
    [36]HUANG X, CAI J, WANG M, et al. A piezoelectric bimorph micro-gripper with micro-force sensing [C]. Proceedings of 2005 International Conference on Information Acquisition, Hong Kong, China,2005:5 pp.
    [37]G TZE H, PAGEL L. Development of a micro-manipulator based on piezoelectric-technology [J]. Microelectronic engineering,2007,84(5): 1333-1336.
    [38]RAKOTONDRABE M, IVAN I A. Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks [J]. IEEE Transactions on Automation Science and Engineering,2011,8(4):824-834.
    [39]CL VY C, HUBERT A, AGNUS J, et al. A micromanipulation cell including a tool changer [J]. Journal of Micromechanics and Microengineering,2005,15(10):S292-S301.
    [40]PROBST M, H RZELER C, BORER R, et al. A microassembly system for the flexible assembly of hybrid robotic MEMS devices [J]. International Journal of Optomechatronics,2009,3(2):69-90.
    [41]ROCH I, BIDAUD P, COLLARD D, et al. Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film [J]. Journal of Micromechanics and Microengineering,2003,13(2):330-336.
    [42]ZHONG Z, YEONG C. Development of a gripper using SMA wire [J]. Sensors and Actuators A:Physical,2006,126(2):375-381.
    [43]KYUNG J, KO B, HA Y, et al. Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges [J]. Sensors and Actuators A: Physical,2008,141(1):144-150.
    [44]HOUSTON K, EDER C, SIEBER A, et al. Polymer sensorised microgrippers using SMA actuation [C].2007 IEEE International Conference on Robotics and Automation, Roma, Italy,2007:820-825.
    [45]HAJHASHEMI M, BARAZANDEH F, NEJAD S N, et al. Design and microfabrication of a constant-force microgripper [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2011,225(11): 2739-2748.
    [46]李路明,王立鼎.基于热力学的SMA微夹钳工作原理的研究[J].光学精密工程,1997,5(3):35-39.
    [47]B TEFISCH S, SEIDEMANN V, B TTGENBACH S. A new micro pneumatic actuator for micromechanical systems [C].11th International Conference on Solid-State Sensors and Actuators, Munich, Germany,2001:722-725.
    [48]SEIDEMANN V, B TEFISCH S, B TTGENBACH S. Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers [J]. Sensors and Actuators A:Physical,2002,97-98(4):457-461.
    [49]LEE J S, LUCYSZYN S. Design and pressure analysis for bulk-micromachined electrothermal hydraulic microactuators using a PCM [J]. Sensors and Actuators A: Physical,2007,133(2):294-300.
    [50]DU H, SU C, LIM M, et al. A micromachined thermally-driven gripper:a numerical and experimental study [J]. Smart materials and structures,1999,8(5):616-622.
    [51]QUE L, PARK J-S, GIANCHANDANI Y B. Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices [J]. Journal of Microelectromechanical Systems, 2001,10(2):247-254.
    [52]CHAN H-Y, LI W J. A thermally actuated polymer micro robotic gripper for manipulation of biological cells [C].20th IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan,2003:288-293.
    [53]OH Y S, LEE W H, STEPHANOU H E, et al. Design, optimization, and experiments of compliant microgripper [C]. ASME International Mechanical Engineering Congress, Washington, DC, USA,2003:345-350.
    [54]GREMINGER M A, SEZEN A S, NELSON B J. A four degree of freedom MEMS microgripper with novel bi-directional thermal actuators [C].2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta., Canada,2005: 2814-2819.
    [55]NGUYEN N-T, HO S-S, LOW C L-N. A polymeric microgripper with integrated thermal actuators [J]. Journal of Micromechanics and Microengineering,2004,14(7): 969-974.
    [56]LUO J, FLEWITT A, SPEARING S, et al. Comparison of microtweezers based on three lateral thermal actuator configurations [J]. Journal of Micromechanics and Microengineering,2005,15(6):1294-1302.
    [57]CHRONIS N, LEE L P. Electrothermally activated SU-8 microgripper for single cell manipulation in solution [J]. Microelectromechanical Systems, Journal of,2005, 14(4):857-863.
    [58]BORDATCHEV E V, ZEMAN M, KNOPF G K. Electro-thermo-dynamic performance of a microgripping system [C].2005 IEEE International Conference on Mechatronics and Automations, Niagara Falls, CANADA,2005:1848-1853.
    [59]ZEMAN M J, BORDATCHEV E V, KNOPF G K. Design, kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation applications [J]. Journal of Micromechanics and Microengineering,2006,16(8): 1540-1549.
    [60]LUO J, HUANG R, HE J, et al. Modelling and fabrication of low operation temperature microcages with a polymer/metal/DLC trilayer structure [J]. Sensors and Actuators A:Physical,2006,132(1):346-353.
    [61]MAYYAS M, SHIAKOLAS P, LEE W H, et al. Static and dynamic modeling of thermal microgripper [C].14th Mediterranean Conference on Control and Automation, Ancona, Italy,2006:1-6.
    [62]FRASER J, HUBBARD T, KUJATH M. Theoretical and experimental analysis of an off-chip microgripper [J]. Canadian Journal of Electrical and Computer Engineering,2006, 31(2):77-84.
    [63]IVANOVA K, IVANOV T, BADAR A, et al. Thermally driven microgripper as a tool for micro assembly [J]. Microelectronic engineering,2006,83(4):1393-1395.
    [64]CECIL J, POWELL D, VASQUEZ D. Assembly and manipulation of micro devices-A state of the art survey [J]. Robotics and computer-integrated manufacturing,2007,23(5): 580-588.
    [65]SOLANO B, WOOD D. Design and testing of a polymeric microgripper for cell manipulation [J]. Microelectronic engineering,2007,84(5):1219-1222.
    [66]VOLLAND B, IVANOVA K, IVANOV T, et al. Duo-action electro thermal micro gripper [J]. Microelectronic engineering,2007,84(5):1329-1332.
    [67]ANDERSEN K N, CARLSON K, PETERSEN D H, et al. Electrothermal microgrippers for pick-and-place operations [J]. Microelectronic engineering,2008,85(5): 1128-1130.
    [68]HOXHOLD B, B TTGENBACH S. Easily manageable, electrothermally actuated silicon micro gripper [J]. Microsystem Technologies,2010,16(8-9):1609-1617.
    [69]COLINJIVADI K S, LEE J-B, DRAPER R. Viable cell handling with high aspect ratio polymer chopstick gripper mounted on a nano precision manipulator [J]. Microsystem Technologies,2008,14(9-11):1627-1633.
    [70]ELBUKEN C, GUI L, REN C L, et al. Design and analysis of a polymeric photo-thermal microactuator [J]. Sensors and Actuators A:Physical,2008,147(1):292-299.
    [71]褚金奎,郝秀春,关乐,等.柔性电热镍微夹钳结构设计及加工测试研究[J].大连理工大学学报,2007,47(3):363-367.
    [72]曹建玉.柔性电热微夹钳的设计和制作[D].大连:大连理工大学,2008.
    [73]刘帅.柔性电热微夹钳的关键技术研究[D].大连:大连理工大学,2009.
    [74]张立国,陈迪,杨帆,等.SU-8胶光刻工艺研究[J].光学精密工程,2002,10(3):266-269.
    [75]黄新龙,熊瑛,陈光焱,等.UV-LIGA技术制作微型螺旋形加速度开关[J].光学精密工程,2010,18(005):1152-1158.
    [76]MILLET 0, BERNARDONI P, R GNIER S, et al. Electrostatic actuated micro gripper using an amplification mechanism [J]. Sensors and Actuators A:Physical,2004, 114(2):371-378.
    [77]于靖军,毕树生,宗光华,等.基于伪刚体模型法的全柔性机构位置分析[J].机械工程学报,2002,38(2):75-78.
    [78]BENDS E M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Computer methods in applied mechanics and engineering, 1988,71(2):197-224.
    [79]HASSANI B, HINTON E. A review of homogenization and topology optimization Ⅰ-homogenization theory for media with periodic structure [J]. Computers & Structures,1998,69(6):707-717.
    [80]HASSANI B, HINTON E. A review of homogenization and topology opimization Ⅱ-analytical and numerical solution of homogenization equations [J]. Computers & Structures,1998,69(6):719-738.
    [81]HASSANI B, HINTON E. A review of homogenization and topology optimization Ⅲ-topology optimization using optimality criteria [J]. Computers & Structures, 1998,69(6):739-756.
    [82]MLEJNEK H, SCHIRRMACHER R. An engineer's approach to optimal material distribution and shape finding [J]. Computer methods in applied mechanics and engineering,1993, 106(1):1-26.
    [83]左孔天.连续体结构拓扑优化理论与应用研究[D].武汉:华中科技大学,2004.
    [84]袁振,吴长春.复合材料周期性线弹性微结构的拓扑优化设计[J].固体力学学报,2003,24(1):40-45.
    [85]ALLAIRE G, JOUVE F, TOADER A-M. A level-set method for shape optimization [J]. Comptes Rendus Mathematique,2002,334(12):1125-1130.
    [86]WANG M Y, WANG X, GUO D. A level set method for structural topology optimization [J]. Computer methods in applied mechanics and engineering,2003,192(1):227-246.
    [87]AMSTUTZ S, ANDR H. A new algorithm for topology optimization using a level-set method [J]. Journal of Computational Physics,2006,216(2):573-588.
    [88]YANG R, CHUANG C. Optimal topology design using linear programming [J]. Computers & Structures,1994,52(2):265-275.
    [89]SIGMUND 0. A 99 line topology optimization code written in Matlab [J]. Structural and Multidisciplinary Optimization,2001,21(2):120-127.
    [90]BRUNS T E, TORTORELLI D A. Topology optimization of non-linear elastic structures and compliant mechanisms [J]. Computer methods in applied mechanics and engineering, 2001,190(26):3443-3459.
    [91]RUBIO W M, SILVA E C, BORDATCHEV E V, et al. Topology optimized design, microfabrication and characterization of electro-thermally driven microgripper [J]. Journal of Intelligent Material Systems and Structures,2009,20(6):669-681.
    [92]郝秀春.电热驱动微夹钳的拓扑设计及相关问题研究[D].大连:大连理工大学,2006.
    [93]张成.SU-8柔性微夹钳的拓扑优化设计与制作工艺[D].大连:大连理工大学,2010.
    [94]SALAMON B. Mechanical advantage aspects in compliant mechanisms design [C].15th ASME Design Automation Conference, Montreal, Quebec, Canada,1989:47-51.
    [95]HOWELL L L, MIDHA A. A method for the design of compliant mechanisms with small-length flexural pivots [J]. Journal of Mechanical Design,1994,116(3): 280-290.
    [96]HOWELL L, MIDHA A. A loop-closure theory for the analysis and synthesis of compliant mechanisms [J]. Journal of Mechanical Design,1996,118(3):121-125.
    [97]PIO BELFIORE N, PENNESTR E. An atlas of linkage-type robotic grippers [J]. Mechanism and machine theory,1997,32(7):811-833.
    [98]TSAI Y-C, LEI S H, SUDIN H. Design and analysis of planar compliant microgripper based on kinematic approach [J]. Journal of Micromechanics and Microengineering, 2005,15(1):143-156.
    [99]褚金奎.平面连杆机构结构特征及尺寸特征的研究[D].北京:北京航空航天大学,1992.
    [100]杨廷力.机械系统基本理论:结构学·运动学·动力学[M].机械工业出版社,1996:9-22.
    [101]YU M, DYER M J, SKIDMORE G D, et al. Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope [J]. Nanotechnology,1999,10(3): 244-252.
    [102]GUTHOLD M, FALVO M R, MATTHEWS W G, et al. Controlled manipulation of molecular samples with the nanomanipulator [J]. IEEE/ASME Transactions on Mechatronics,2000, 5(2):189-198.
    [103]HAFNER J H, CHEUNG C-L, OOSTERKAMP T H, et al. High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies [J]. The Journal of Physical Chemistry B,2001,105(4):743-746.
    [104]FUKUDA T, ARAI F, DONG L. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations [J]. Proceedings of the IEEE,2003,91(11):1803-1818.
    [105]NAKABAYASHI D, SILVA P C, GONZ LEZ J C, et al. Low-cost nanomanipulator for in situ experiments in a SEM [J]. Microscopy and Microanalysis,2006,12(04):311-316.
    [106]NAKABAYASHI D, SILVA P, UGARTE D. Inexpensive two-tip nanomanipulator for a SEM [J]. Applied Surface Science,2007,254(1):405-411.
    [107]CHEN X, XU S, YAO N, et al. Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator [J]. Applied physics letters,2009, 94(25):253113.
    [108]XIE H, R GNIER S. In situ peeling of one-dimensional nanostructures using a dual-probe nanotweezer [J]. Review of Scientific Instruments,2010,81(3): 035112-035112-035114.
    [109]KIM P, LIEBER C M. Nanotube nanotweezers [J]. Science,1999,286(5447):2148-2150.
    [110]LEE J, KIM S. Manufacture of a nanotweezer using a length controlled CNT arm [J]. Sensors and Actuators A:Physical,2005,120(1):193-198.
    [111]JANG J E, CHA S N, CHOI Y, et al. A nanogripper employing aligned multiwall carbon nanotubes [J]. IEEE Transactions on Nanotechnology,2008,7(4):389-393.
    [112]LIM D, KWON S, LEE J, et al. Deterministic fabrication of carbon nanotube probes using the dielectrophoretic assembly and electrical detection [J]. Review of Scientific Instruments,2009,80(10):105103-105103-105105.
    [113]B GGILD P, HANSEN T M, TANASA C, et al. Fabrication and actuation of customized nanotweezers with a 25 nm gap [J]. Nanotechnology,2001,12(3):331-335.
    [114]CHANG J, MIN B-K, KIM J, et al. Electrostatically actuated carbon nanowire nanotweezers [J]. Smart materials and structures,2009,18(6):065017.
    [115]CAGLIANI A, WIERZBICKI R, OCCHIPINTI L, et al. Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper [J]. Journal of Micromechanics and Microengineering,2010,20(3):035009.
    [116]CHEN B K, ZHANG Y, PEROVIC D D, et al. From microgripping to nanogripping [C]. 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2010), Hong Kong, China,2010:296-299.
    [117]DEEPAK S R, DINESH M, SAHU D K, et al. A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms [J]. Journal of Mechanisms and Robotics-Transactions of the Asme,2009,1(1):011003.
    [118]KOSEKI Y, TANIKAWA T, KOYACHI N, et al. Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method [C].2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), Takamatsu, Japan,2000: 786-792.
    [119]CHOU S Y, KRAUSS P R, RENSTROM P J. Nanoimprint lithography [J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1996,14(6): 4129-4133.
    [120]MIDHA A, NORTON T W, HOWELL L L. ON THE NOMENCLATURE, CLASSIFICATION, AND ABSTRACTIONS OF COMPLIANT MECHANISMS [J]. Journal of Mechanical Design,1994, 116(1):270-279.
    [121]申永胜.机械原理教程[M].清华大学出版社,1998:21-22.
    [122]秦权.桥梁结构的健康监测[J].中国公路学报,2000,13(2):37-42.
    [123]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学,2003.
    [124]于靖军,裴旭,毕树生,等.柔性铰链机构设计方法的研究进展[J].机械工程学报,2010,013):2-13.
    [125]LI Y, XU Q. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator [J]. IEEE Transactions on Robotics,2009,25(3):645-657.
    [126]XIAO S, LI Y, ZHAO X. Design and analysis of a novel flexure-based XY micro-positioning stage driven by electromagnetic actuators [C].2011 International Conference on Fluid Power and Mechatronics, Beijing, China,2011: 953-958.
    [127]PARK S R, YANG S H. A mathematical approach for analyzing ultra precision positioning system with compliant mechanism [J]. Journal of materials processing technology,2005,164(5):1584-1589.
    [128]LOBONTIU N. Compliant mechanisms:design of flexure hinges [M]. CRC press,2010:
    [129]YANG R, JOUANEH M, SCHWEIZER R. Design and characterization of a low-profile micropositioning stage [J]. Precision Engineering,1996,18(1):20-29.
    [130]CHANG S, DU B. A precision piezodriven micropositioner mechanism with large travel range [J]. Review of Scientific Instruments,1998,69(4):1785-1791.
    [131]WU Y F, ZHOU Z Y. An XY theta mechanism actuated by one actuator [J]. Mechanism and machine theory,2004,39(10):1101-1110.
    [132]CHU C-L, FAN S-H. A novel long-travel piezoelectric-driven linear nanopositioning stage [J]. Precision Engineering,2006,30(1):85-95.
    [133]HA J-L, KUNG Y-S, HU S-C, et al. Optimal design of a micro-positioning Scott-Russell mechanism by Taguchi method [J]. Sensors and Actuators A:Physical, 2006,125(2):565-572.
    [134]CHOI S, HAN S, HAN Y, et al. A magnification device for precision mechanisms featuring piezoactuators and flexure hinges:Design and experimental validation [J]. Mechanism and machine theory,2007,42(9):1184-1198.
    [135]KIM D, LEE D Y, GWEON D G. A new nano-accuracy AFM system for minimizing Abbe errors and the evaluation of its measuring uncertainty [J]. Ultramicroscopy,2007, 107(4):322-328.
    [136]TIAN Y, SHIRINZADEH B, ZHANG D. A flexure-based mechanism and control methodology for ultra-precision turning operation [J]. Precision Engineering,2009,33(2): 160-166.
    [137]WU Y, ZHOU Z. Design calculations for flexure hinges [J]. Review of Scientific Instruments,2002,73(8):3101-3106.
    [138]WOUTERS K, PUERS R. Determining the Young's modulus and creep effects in three different photo definable epoxies for MEMS applications [J]. Sensors and Actuators A:Physical,2009,156(1):196-200.
    [139]LORENZ H, LAUDON M, RENAUD P. Mechanical characterization of a new high-aspect-ratio near UV-photoresist [J]. Microelectronic engineering,1998, 41(3):371-374.
    [140]LUO C, SCHNEIDER T W, WHITE R C, et al. A simple deflection-testing method to determine Poisson's ratio for MEMS applications [J]. Journal of Micromechanics and Microengineering,2003,13(1):129-133.
    [141]SMITH S T, BADAMI V G, DALE J S, et al. Elliptical flexure hinges [J]. Review of Scientific Instruments,1997,68(3):1474-1483.
    [142]陆金桂,李谦,王浩.遗传算法原理及其工程应用[M].中国矿业大学出版社,1997:23-25.
    [143]TEH W, DURIG U, DRECHSLER U, et al. Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography [J]. Journal of Applied Physics,2005,97(5): 054907-054907-054911.
    [144]李雄.UV-LIGA技术光刻工艺的研究[D].武汉:华中科技大学,2004.
    [145]刘景全,蔡炳初,陈迪,等.SU-8胶及其在MEMS中的应用[J].微纳电子技术,2003,7(8):132-136.
    [146]KOTZAR G, FREAS M, ABEL P, et al. Evaluation of MEMS materials of construction for implantable medical devices [J]. Biomaterials,2002,23(13):2737-2750.
    [147]崔铮.微纳米加工技术及其应用[M].高等教育出版社,2008:235-258.
    [148]M LHAVE K, HANSEN 0. Electro-thermally actuated microgrippers with integrated force-feedback [J]. Journal of Micromechanics and Microengineering,2005,15(6): 1265-1270.
    [149]DUC T C, LAU G-K, CREEMER J F, et al. Electrothermal microgripper with large jaw displacement and integrated force sensors [J]. Journal of Microelectromechanical Systems,2008,17(6):1546-1555.
    [150]YAMAHATA C, COLLARD D, LEGRAND B, et al. Silicon nanotweezers with subnanometer resolution for the micromanipulation of biomolecules [J]. Journal of Microelectromechanical Systems,2008,17(3):623-631.
    [151]BOISEN A, THAYSEN J, JENSENIUS H, et al. Environmental sensors based on micromachined cantilevers with integrated read-out [J]. Ultramicroscopy,2000, 82(1):11-16.
    [152]RASMUSSEN P, THAYSEN J, HANSEN O, et al. Optimised cantilever biosensor with piezoresistive read-out [J]. Ultramicroscopy,2003,97(1):371-376.
    [153]DUC T C, CREEMER J, SARRO P M. Piezoresistive Cantilever Beam for Force Sensing in Two Dimensions [J]. Sensors Journal, IEEE,2007,7(1):96-104.
    [154]HOPCROFT M, KRAMER T, KIM G, et al. Micromechanical testing of SU-8 cantilevers [J]. Fatigue & Fracture of Engineering Materials & Structures,2005,28(8): 735-742.
    [155]NORDSTR M M, KELLER S, LILLEMOSE M, et al. SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods [J]. Sensors,2008,8(3):1595-1612.
    [156]SEENA V, RAJORYA A, PANT P, et al. Polymer microcantilever biochemical sensors with integrated polymer composites for electrical detection [J]. Solid State Sciences,2009,11(9):1606-1611.
    [157]马连生,宋曦,赵永刚.材料力学[M].科学出版社,2010:86-99.
    [158]RASMUSSEN P, THAYSEN J, BOUWSTRA S, et al. Modular design of AFM probe with sputtered silicon tip [J]. Sensors and Actuators A:Physical,2001,92(1):96-101.
    [159]LILLEY G M. A study of the silent flight of the owl [J]. AIAA paper,1998, 2340(1998):1-6.
    [160]GEYER T, SARRADJ E, FRITZSCHE C. Silent Owl Flight:Comparative Acoustic Wind Tunnel Measurements on Prepared Wings [J]. Acta Acustica United with Acustica,2013, 99(1):139-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700