马铃薯粉对乙醇—水体系的吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料乙醇作为一种可再生能源,可以用作汽车燃料的添加剂,并可以部分取代化石燃料,同时减少了环境污染,因而受到普遍关注。随着我国经济的高速发展,我国石油的需求量也越来越大,原油进口连年增长,2008年原油对外依存度已达49.8%。同时,化石燃料的燃烧排放了大量有害物质,严重威胁了我国的环境安全。为了确保能源安全、降低对进口石油的依赖和减少环境污染,我国也在积极发展燃料乙醇。
     能耗大和成本高是制约燃料乙醇发展的两个主要因素。燃料生产过程最大的能耗来自于乙醇和水的分离,由于乙醇-水混合物存在共沸现象,采用传统精馏的方法无法得到无水乙醇。而无水乙醇时燃料乙醇的重要基础成分。采用共沸精馏法提纯乙醇的能耗占到燃料乙醇工厂能耗的60%~80%。目前以节能为目的研发的乙醇的分离技术很多,其中吸附法由于能耗低而具有良好的应用前景。
     本文采用生物质吸附法,以马铃薯粉为吸附剂制备无水乙醇。马铃薯粉作为吸附剂具有原料易得、价格低廉、能耗低,使用失效后可作为发酵法生产乙醇的原料等优点。
     测定了马铃薯粉作为吸附剂的基本理化性质,并利用红外光谱、X射线衍射和扫描电镜等手段对吸附前后的马铃薯粉吸附剂的结构进行了表征;以马铃薯粉吸附剂为研究对象,设计了塔内径为25mm,有效填充高度为900mm的固定床恒温吸附柱用于研究乙醇-水体系在马铃薯粉上的吸附过程。测量了乙醇-水体系中水在马铃薯粉上的吸附等温线,测定了不同进料流量、床层温度、吸附剂粒度、进料浓度、不同床层高度和不同生物质吸附剂等操作条件下的透过曲线、透过时间、99.5%(v/v)生产能力和床层不同位置的温度变化曲线;对乙醇-水体系中水在马铃薯粉吸附剂上的吸附平衡进行了模型拟合、比较和分析;利用BET模型计算了马铃薯粉的吸附比表面积,通过反气相色谱法研究了马铃薯粉吸附剂对乙醇和水的吸附选择性;利用Klinkenberg模型和神经网络模型对马铃薯粉的吸附传质过程和透过曲线进行预测。试验结果如下:
     1马铃薯粉作为吸附剂的基本性质研究结果表明:马铃薯粉中淀粉含量为71.91%,淀粉中支链淀粉比例高达77%。40~60目的马铃薯粉床层空隙率达0.5,床层阻力小适合于作为淀粉吸附剂。利用红外光谱、X射线衍射分析和扫描电镜照片对马铃薯粉吸附剂表征,经吸附后马铃薯粉的结构未发生明显变化,说明吸附和再生操作对马铃薯粉的晶形和微观结构影响较小,马铃薯粉作为吸附剂具有良好的稳定性。马铃薯粉在90℃吸附15min后,在相同温度下经过30min即可完成解吸,说明马铃薯粉作为吸附剂易于再生,再生温度低,再生条件温和。经过1个月的反复吸附试验的马铃薯粉发酵后乙醇含量为9.6%,与对照相比较没有明显差异,马铃薯粉吸附剂在吸附活性下降后可以作为发酵原料进行利用。
     2吸附过程研究结果表明:在本试验条件下,透过时间和生产能力随床层温度升高、进料流量增大和粒径增大而变小,随床层高度增加而增大。吸附剂的粒径和床层高度的变化对透过时间和生产能力的影响最大,进料流量的影响次之,床层温度的高低对透过时间和生产能力的影响较小,但对吸附过程中的能耗影响较大。在吸附操作时,在共沸点附近浓度进行吸附是效率最高的,所以生产上可以采用传统的精馏方法使含水乙醇的浓度提高到共沸点附近,再进行吸附脱水制备无水乙醇。在操作温度为80℃、吸附剂粒径40-60目、原料乙醇进料浓度94.5%(v/v)和进料流量为3ml/min左右条件下,生产能力可达20.51gH_2O/100g吸附剂。在其他操作条件基本相同的情况下,床层高度与生产能力均和透过时间存在线性关系,其方程分别为t_b=0.085h-33.333和P=0.113h-49.445。
     3吸附平衡研究结果表明:乙醇-水体系中水在马铃薯粉中的吸附等温线为S型,属于Brunauer's分类中的Ⅱ型吸附等温线。各模型拟合效果的优劣排序为:GAB模型、Henderson模型、Sircar模型、Oswin模型、Peleg模型、Langmuir模型、吸附势理论、Smith模型和Henry定律。根据BET模型,利用相对湿度下(0.05<α_w<0.35)的吸附平衡数据,计算出水在40-60目马铃薯粉的BET吸附比表面积为93.019 m~2/g马铃薯粉。
     4吸附选择性研究结果表明:在70℃~140℃,乙醇和水在马铃薯粉中的吸附属于放热过程,分离因子和吸附自由能的变化规律均表明低温有利于吸附的进行,因此适当降低床层温度有利于乙醇-水的吸附分离。马铃薯粉对乙醇和水的吸附具有较强的选择性,其对水的吸附能力远大于乙醇,对于水分子能优先吸附,分离因子最大达203.65。粒径小的马铃薯粉由于表面积大,对乙醇和水的吸附作用强于粒径大的马铃薯粉,对乙醇和水的分离能力大于粒径大的马铃薯粉。70℃~140℃马铃薯粉对乙醇的吸附热ΔH_s在-12.55kJ/mol至-13.14kJ/mol之间,对水的吸附热在-24.88kJ/mol至-45.79kJ/mol之间,属于物理吸附的范围,水的吸附热显著大于乙醇吸附热,说明在马铃薯粉上水的吸附作用比乙醇强烈。
     5透过曲线预测研究结果表明:利用Klinkenberg模型求得80℃、84℃和88℃下马铃薯粉的总传质系数k分别为0.001413、0.001637和0.001936。并利用Klinkenberg模型和BP神经网络模型对不同温度的马铃薯粉透过曲线进行拟合与比较,利用本文给出的Klinkenberg模型和BP神经网络模型可以预测所需条件下的透过曲线,用于指导工业生产。
Fuel ethanol is a kind of renewable fuel, which can be used as the additive of automobile fuel, and replace to the part of the mineral fuel, and reduce the pollution at the same time, and has been paid more attention widespread. With the high economic growth in china, petroleum consumption is rapidly increasing and imports of crude oil are also rising, 49.8% of domestic consumption has to rely on import. The increase in petroleum consumption is causing a serious air pollution problem. To deal with energy security and the air pollution problem, the Chinese government has strongly promoted the fuel ethanol.
     However, mail issues with fuel ethanol are high product cost and high energy consumption. The highest energy cost of ethanol is the separation of ethanol and water. The key point in ethanol dehydration is represented by the fact that ethanol forms with water an azeotropic mixture. This mixture is usually separated into its constituents by azeotropic distillation, a step which consumes 60%~80% of the overall energy required by the fermentative plant. Among the alternative techniques to dehydrate ethanol, adsorption dehydration system has good industrial application prospect in producing anhydrous alcohol.
     Adsorption with starchy materials was evaluated as an energy efficient technology for separation of the ethanol-water azeotrope. Potato powder was used as adsorbent for water removal in this study. The advantages of potato powder adsorbent as following, potato powder is cheap, the energy consumption is low, in addition, it can be used as the raw material of fermentation method to produce anhydrous alcohol.
     The physical and chemical properties of potato powder were investigated in this study, before and after adsorption, the adsorbents were examined with IR, X-RD and SEM. A bench test scale apparatus with a stainless steel column of 25mm inner diameter and of 900mm packed able height for fixed bed adsorption was designed to perform the experiments at constant temperature. The experiments were performed to measure water isotherms on potato powder, measure breakthrough curves with 99.5wt% ethanol as breakthrough point and temperature distribution curves for adsorption under various operation conditions of different levels of superficial velocity, bed temperature, bed depth, granularities adsorbent and inlet concentration. The analysis and the comparison of experimental data were also performed to attain series basic conclusions about the effect of operation conditions on adsorption capability of potato powder. Adsorption equilibrium models have been used to fit the experimental data for water adsorption isotherms on potato powder. BET model was used to calculate the specific surface area of water on potato powder. Inverse gas chromatography (IGC) was used to study the adsorption of water and ethanol on potato powder. Klinkenberg model and BP neural network model were used to analyze the breakthrough curves for different operation conditions.
     The main results of our research work are as follows:
     1. Results from the adsorbent evaluate experiments indicated that starch content of potato powder is 71.91%, the ratio is approximately 23% amylose to 77% amylopectin in potato powder and bed voidage is 0.5 with small bed pressure drop,potato powder is suitable for adsorbent. adsorption did not create visible change, After adsorption, potato powder keep the granules structures, and conserve the size and shape.was shown by the IR spectrum, X-RD patterns and SEM micrographs. Under experiment conditions, potato powder is stable adsorbent. It operates and regeneration at relatively mild conditions, and is stable under cyclic use when regeneration is carried out with air at 90℃. In the event that capacity was lost over a period of time, the potato powder could still be used to make fermentation-derived ethanol.
     2. Results from the adsorption experiments indicated that the sensitive factors for the vapor adsorption process included the vapor superficial velocity, the temperature, granularities and bed depth. Under experiment conditions, the breakthrough time and production capacity of potato for alcohol-water systems decreases as temperture rise, vapor superficial velocity increases and the size of adsorbent increases, and increases as the bed depth increases. From 93% to 95% ethanol, potato powder is high performance. Distillation of fermentation strengh ethanol to a about 93% ethanol-water production below the azeotrope, followed by adsorption to remove the remaining water. the production capacity is about 21.51g H_2O/g adsorbent at 80℃and inlet ethanol concentration 94.5% (v/v). When both the vapor superficial velocity and the feed composition are constant, the adsorption bed depth would be proportional to the breakthrough time and production capacity, the relation obtained was t_b = 0.085h-33.333 and P = 0.113h - 49.445, respectively.
     3. Results from the adsorption equilibrium experiments indicated that isotherm of potato powder exhibited Type II (according to the Brunauer's classification). The performances of the models examined in this work for experimental data fitting have the following order: GAB model, Handerson model, Sircar model, Oswin model, Peleg model, Langmuir model, adsorption potential theory of Polanyi, Smith model, and Henry law. GAB model included temperature parameters, and its precision was better than other mathematical models. Based on water-potato powder isotherm data in the range 0.05<α_w<0.35, the specific surface area was estimated for water adsorption as 93.019m~2/g potato powder.
     4. Results from the IGC experiments indicated that water was adsorbed more strongly than ethanol on potato powder at 70~140℃. In addition, it was found that lower temperatures were more favourable for the adsorption of both solutes. In contrast, the separation capacities of potato powder with smaller particle size, i.e. 140 mesh and 100~120 mesh, were greater. The 140 mesh potato powder exhibited the highest separation at 70~140℃. Heats of adsorption were calculated from retention data are in the range from -12.55 to-13.1 kJ/mol for ethanol and -24.88 to -45.79 kJ/mol for water.
     5. Results from the predict of breakthrough curves indicated that by fitting the experimental results of breakthrough curves to Klinkenberg model, the overall mass-transfer coefficients were estimated as 0.001413, 0.001637 and 0.001936 at 80℃, 84℃and 88℃, respectively. Klinkenberg model and BP neural network model were successfully used for the prediction of breakthrough curves at different temperatures, the models can be used to instruct adsorption system design and operate.
引文
1. Al-Rub F. A. Abu, Datta R., 1999.Theoretical study of the vapor - liquid equilibrium inside capillary porous plates[J].Fluid Phase Equilibria, 162(1):83~96
    
    2. Adriaan Klinkenberg. 1948.Numerical Evaluation of Equations Describing Transient Heat and Mass Transfer in Packed Solids[J].Ind. Eng. Chem., 40 (10), pp 1992—1994
    
    3. Ahmed H, Rask N, Bsldwin E D, 1989. Ethanol Fuel as an Octane Enhancer in the Us Fuel Market[J].Biomass, 19(3):215~232
    
    4. AL-AshEH S., BANAT F., AL-LAGTAH N. 2004.Separation of Ethanol-Water Mixtures Using Molecular Sieves and Biobased Adsorbents[J].Chemical Engineering Research and Design, 82(A7):855~864
    
    5. Al-Muhtaseb A.M., McMinn W.A.M., Magee T.R.A.2004. Water sorption isotherms of starch powders Part 1: mathematical description of experimental data [J]. Journal of Food Engineering (61): 297~307
    
    6. Banat Fawzi A., Al-Rub Fahmi A. Abu, Simandl Jana.2000.Analysis of vapor-liquid equilibrium of ethanol-water system via headspace gas chromatography: effect of molecular sieves[J]. Separation and Purification Technology, 18(2): 111-118
    
    7. Beery KE, GulatiM, KvamEP, et al. 1998.Effect of enzyme modification of corn grits on their properties as an adsorbent in a skarstrom pressure swing cycle Dryer[J].adsorption, 4:321~335
    
    8. Beery K.E., Ladisch M.R.,2001a.Chemistry and properties of starch based desiccants, Enzyme Microb. Technol. 28:573-581
    
    9. Beery KE,Ladisch M R. 2001b. Adsorption of water from liquid-phase ethanol-Water mixtures at room temperature using starch-based adsorbents[J].Industrial and Engineering Chemistry Research, 40 (9):2112—2115
    
    10. Bennett M., Brisdon B.J., England R., et al. 1997.Field.Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams [J]. Journal of Membrane Science, 137: 63—88
    
    11. Benson T J. 2003.Dehydration of an ethanol/water mixture using lignocellulosic based adsorbents [D]. Mississippi State: Mississippi State University
    
    12. Benson T.J., George C.E. 2005.Cellulose based adsorbent materials for the dehydration of ethanol using thermal swing adsorption, Chem. Mater. Sci. 11 (1):697~701
    
    13. Berthold J., Rinaudo M., Salmen L. 1996.Association of water to polar groups;estimations by an adsorption model for igno-cellulosic materials[J].Colloids Surf. A: Physicochem. Eng. Aspects 112 (2):117—129
    
    14. Borivoje Adnadevic,Zorica Mojovic,Andjela Abu Rabi,et al. 2007. Isoconversional kinetic analysis of isothermal selective ethanol adsorption on zeolite type NaZSM-5[J]. Chem. Eng. Technol. 30(9): 1228— 1234
    
    15. Borivoje Adnadevic,Zorica Mojovic,Andjela Abu Rabi. 2008.The kinetics of ethanol adsorption from the aqueous phase onto zeolite NaZSM-5[J]. Adsorption, 14(1): 123—131
    
    16. Boudreau T.M., Hill G.A.2006. Improved ethanol-water separation using fatty acids[J]. Process Biochem. 41:980—983
    
    17. Bushuk W, Winkler CA.1957.Sorption of Organic Vapors on Wheat Flour at 27 ℃[J].Cereal Chem.34(2):87-91
    
    18. Carmo, M. J., Gubulin, J. C. 1997.Ethanol-water adsorption on commercial 3A zeolites: kinetic and thermodynamic data[J].Brazilian Jouurnal of Chemical Engineering, Eng. 14 (3): 1 — 10
    19. Carmo M.J., Adeodato M.G., Moreira A.M., et al. 2004. Kinetic and Thermodynamic study on the liquid phase adsorption by starchy materials in the alcohol-water system[J]. Adsorption 10 (3) 211—218
    
    20. Carton, A., Gonzalez, G., Torre, A.I. et al. 1987.Separation of Ethanol-Water Mixtures Using 3A Molecular Sieve[J].J. Chem Tech. Biotechnol, 39:125-132
    
    21. Chang H., Yuan X.-G., Tian H., et al. 2006a. Experimental investigation and modeling of adsorption of water and ethanol on cornmeal in an ethanol-water binary vapor system[J]. Chem. Eng. Technol. 29 (4) ;454~461
    
    22. Chang H., Yuan X.-G., Tian H., et al. 2006b.Experimental study on the adsorption of water and ethanol by cornmeal for ethanol dehydration[J].Ind. Eng. Chem. Res. 45:3916~3921
    
    23. Crawshaw J P, Hills J H. 1990.Sorption of Ethanol and Water by Starchy Materials [J]. Industrial&Engineering Chemistry Research, 29(2):307~309
    
    24. Crawshaw J P., Hills J H.. 1992.Experimental determination of binary sorption and desorption kinetics for the system ethanol, water, and maize at 90℃[J]. Ind. Eng. Chem. Res. 31,887-892
    
    25. Czepirski L., Komorowska-Czepirska E., Szymonskab J. 2002. Fitting of different models for water vapour sorption on potato starch granules[J]. Applied Surface Science 196:150—153
    
    26. Farrell A E, Plevin R J, Turner B T, et al. 2006.Ethanol can contribute to energy and environmental goals[J].Science,311:506—508
    
    27. Feng G., Fan L.T., Friedler F. 2000 .Synthesizing alternative sequences via a P-graph-based approach in azeotropic distillation systems[J].Waste Manag. 20:639—643
    
    28. Figen Kaymak-Ertekin, Atil Gedik. 2004. Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes[J]. Lebensmittel-Wissenschaft und-Technologie, 37(4): 429—438
    
    29. Garg D. R., Ausikaitis J. P. 1983.Molecular Sieve Dehydration Cycle for High Water Content Streams[J]. Chemical Engineering Progress, 79(4):60
    
    30. GB 18350-2001, 变性燃料乙醇[S]
    
    31. Gomis V., Font A., Pedraza, R. et al. 2005 .Saquete, Isobaric vapor-liquid and vapor-liquid- liquid equilibrium data for the system water+ethanol+cyclohexane[J].Fluid Phase Equilibria, 235:7—10
    
    32. Gonz'alez-Velasco J.R., et al. 2002.Pervaporation of ethanol~ water mixtures through poly(1-trimethylsilyl-1-propyne) (PTMSP) membranes[J].Desalination 149:61 ~65
    
    33. Groot W J Kraayenbrink M R. 1992. Ethanol production in an intergrated process of fermentation and ethanol recovery by pervaporation[J].Bioproc.Eng. 8: 99—111
    
    34. Guan H.M., Chung T.S., Huang Z., et al. 2006.Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture[J].J. Membr. Sci. 268: 113~ 122
    
    35. Guan Jianyu, Hu Xijun. 2003. Simulation and analysis of pressure swing adsorption: ethanol drying process by the electrical analogue[J]. Separation and Purification Technology, 31:31 ~35
    
    36. Gupta S.L., Bhatia R.K.S. 1969.Sorption of Water and Organic Vapors on Starch at 35℃ [J].lndian J. chem.,7:1231
    
    37. Han Xiuli, Ma Xiaojian, Liu Jindun, et al. 2009.Adsorption characterisation of water and ethanol on wheat starch and wheat gluten using inverse gas chromatography [J]. Carbohydrate Polymers, 78:533-537
    
    38. Hassaballah A.A., Hills, 1990.Drying of Ethanol Vapors by Adsorption on corn Meal [J]. BiotechnologyandBioengineering, 35(6):598—608
    
    39. Hills J.H., Pirzada I.M. 1989.Analysis and prediction of breakthrough curves for packed bed adsorption of water vapor on corn-meal[J].Chem. Eng.Res. Des. 67 (5):442-450
    
    40. Hiromitu Naono, Masako Hakuman, Manabu Shimoda, et al. 1996.Separation of water and ethanol by the adsorption technique: selective desorption of water from micropores of active carbon[J]. Journal of colloid and interface science 182: 230—238
    41. Hoekman S.Kent.2009.Biofuels in the U.S.-challenges and opportunities [J]. Renewable Energy,34: 14-22
    
    42. Hong J., Voloch M., Ladisch M.R., et al. 1982.Absorption of ethanol-water mixture by biomass materials[J].Biotechnology and Bioengineering,24:725~732
    
    43. Hu X., Xie W. 2001. Fixed-Bed adsorption and fluidized-bed regeneration for breaking the azeotrope of ethanol and water[J].Sep. Sci. Technol. 36 (1): 125—136
    
    44. Huang Hua-Jiang, Shri Ramaswamy, Tschirner U.W.,etal. 2008. A review of separation technologies in current and future biorefineries[J]. Separation and Purification Technology , 62:1—21
    
    45. lglesias HA,Chirife J,Buera MP. 1997.Adsorption isotherm of amorphous trehalose[J]. Journal of the Science of Food and Agriculture, 75(2): 183 —186
    
    46. lglesias Olvido, Julio L. Bueno.1999. Water agar-agar equilibrium: determination and correlation of sorption isotherms[J]. International journal of food science & technology, 34(3): 209—216
    
    47. Iguedjtal.T, Louka. N, Allaf.K.2008.Sorption isotherms of potato slices dried and texturized by controlled sudden decompression[J]. Journal of Food Engineering,85:180—190
    
    48. Jeong Jun-Seong, Byung-Uk Jang,Young-Ran Kim,et al. Production of dehydrated fuel ethanol by pressure swing adsorption process in the pilot plant[J]. Korean J.Chem. Eng, 2009,26(5): 1 —5
    
    49. Josef Modl. 2004.Jilin fuel ethanol plant[J].International sugar journal, 106:142-145
    
    50. Julian A.Quintero, Carlos A.Cardona. Ethanol dehydration by adsorption with starchy and cellulosic materials[J]. Ind.Eng.Chem.Res.2009,48,6783-6788
    
    51. Kann J, Rang H. 2000.Bioethanol as a fuel to reduce the greenhouse effect[J].Proc Estonian Acad Sci Chem, 49:83-104
    
    52. Kazuhiko l.,Kiyohide M. 1987.Pervaporation of ethanol-water mixture through composite membranes composed of styrene-fluoroalkyl acrylate graft copolymers and cross-linked ploydimethylsiloxane membrane [J]. Journal of Applied Polymer Science, 34:437 440
    
    53. Kazuyuki Nakai. 2001. Development of Automatic Adsorption Apparatus for Binary Mixture: Measurement of Individual Adsorption Isotherms of Ethanol and Water from Their Mixed Vapors by Active Carbon Fiber[J]. Journal of Colloid and Interface Science, 240: 17—23
    
    54. Kupiec Krzysztof, Jan Rakoczy, Lukasz ZielinsKi,etal. 2008.adsorption-desorption cycles for the separation of vapour phase ethanol/water mixture[J]. Adsorption Science & Technology, 26(3):209—224
    
    55. Ladisch MR, Dyck K. 1979.Dehydration of ethanol: New approach gives positive energy balance[J]. Science, 205:898—900
    
    56. Ladisch MR., Tsao G.T. 1982. Vapor phase dehydration of aqueous alcohol mixtures, U.S. Patent 4 345 973
    
    57. Ladisch MR.,Marclo Voloch, Hong Juan,et al.1984.Cornmeal adsorber for dehydrating ethanol vapors [J]. Ind Eng Chem Process Des Dev, 23: 437—443
    
    58. Lee Jay Y., Westgate Paul J., Ladisch Michael R.. 1991. Water and ethanol sorption phenomena on starch[J]. Industrial & Engineering Chemistry Research,37(8):1187—1195
    
    59. Lomauro C J ,Bekshi A S, Labuza T P. 1985.Evaluation of food moisture sorption isotherm equations. Part 1. Fruit,vegetable and meat products [J]. Lebensmittel-Wissenchaft and Technology, 18: 111 — 117
    
    60. Leland M.V.A review of pervaporation for product recovery from biomass fermentation processes[J]. J. Chem, technol. biotechnol.2005, (80):603-629
    
    61. Lewicki. Piotr P. 1997.The applicability of the GAB model to food water sorption isotherms[J]. International Journal of Food Science and Technology,32:553—557
    
    62. Mann P ,Siewert S ,Totter J . 2002 . Fermenting potato peels and chips into ethanol [J ] .Biocycle, 43 (12):38—40
    
    63. Marian Simo, Christopher J. Brown, 1982 .Vladimir Hlavacek.Simulation of pressure swing adsorption in fuel ethanol production process[J]. Computers and Chemical Engineering,2008,32:1635—1649
    
    64. Marihart J.1982.Production of ethanol from starch industry by-products, especially potato pulp[J]. Starch,34:290-293
    
    65. Mario Linao-RestrePo,Jaime Augilar-Jias.2003.Modeling and simulation of saline Extractive distillation columns for the production of absolute ethanol[J].Computers and Chemical Engineering, 27:527-549
    
    66. Mazza.G,LeMaguer.M. 1980.Dehydration of onion: some theoretical and practical considerations [J]. Journa I of Food Technology, ,(15):181~194
    
    67. McMinn,W.A.M.and Magee,T.R.A. 1997.Moisture sorption characteristics of starch materials[J]. Drying Technology, 15:5,1527—1551
    
    68. McMinn .W.A.M, Magee T.R.A. 2003a.Thermodynamic properties of moisture sorption of potato[J]. Journal of Food Engineering,60: 157—165
    
    69. McMinn W.A.M.,AL-muhtaseb A.H., Magee T.R.A.2003b. Moisture sorption characteristics of starch gels. part 1: mathematical description of experimental data[J]. Journal of food process engineering, 26(4):323—338
    
    70. Misharina T. A., Samusenko A. L., Kalinchenko M. A.2003.Effect of the Composition of Polysaccharides in Gelatinized Comstarch on Alcohol Absorption[J]. Applied Biochemistry and Microbiology, 39(6):618~622
    
    71. Mustafa Balat,Havva Balat,Cahide Oz. 2008.Progress in bioethanol processing [J]. Progress in Energy and Combustion Science, 34: 551—573
    
    72. Nan sun,Chidubem Okoye, Catherine Hui Niu, et al. 2007.Adsorption of water and ethanol by biomaterals[J]. International .Journal of Green Energy, 4: 623—634
    
    73. Okamoto K.I., Kita H., Horii K., et al. 2001.Zeolite NaA membrane :preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures[J].Ind. Eng. Chem. Res. 40:163-175
    
    74. Palipane,K.B.,Driscoll,R.H. 1992.Moisture sorption characteristics of in shell macadamia nuts[J]. Journal of Food Engineering, 18:63—76
    
    75. Pascual E.Viollaz, Clara O.Rovedo. 1999.Equilibrium sorption isotherms and thermodynamic properties of starch and gluten[J]. Journal of Food Engineering, 40: 287—292
    
    76. Peng Guilan, Chen Xiaoguang, Wu Wenfu,et al. 2006.Modeling of water sorption isotherm for corn starch[J].Journal of Food Engineering,doi: 10.1016/j.jfoodeng.2006.04.063
    
    77. Pruksathom P., Vitidsant T.. 2009.Production of pure ethanol from azeotropic solution by pressure swing adsorption[J]. American J. of Engineering and Applied Sciences ,2(1): 1—7
    
    78. Rahman Shafiur. 1995.Food properties handbook[M]. CRC Press
    
    79. Rakshit S.K., Ghosh P., Bisaria V.S. 1993. Ethanol separation by selective adsorption of water[J].Bioprocess Biosyst. Eng. 8: 279—282
    
    80. Rebar V, Fischbach ER, D Apostolopoulos, et al. 1984.Thermodynamics of water and ethanol adsorption on four starches as model biomass separation systems [J]. Biotechnology and Bioengineering. 36:513 -517
    
    81. Robertson George H., Larry r. Doyle, Attila E. Pavlath. 1983.Intensive use of biomass feedstock in ethanol conversion: the alcohol-water,vapor-phase separation[J]. Biotechnology and Bioengineering, Biotechnol.Bioeng, 25(3): 3133—3148
    
    82. Ruthven D.M. 1984. Principles of Adsorption and Adsorption Processes[M].John Wiley, New York,
    
    83. Salem M.Ben-Shehil.1999.Effect of heat of adsorption on the adsorptive drying of solvents at equilibrium in a packed bed of zeolite[J].Chem. Eng. J., 74(3): 197—204
    
    84. Santanu Basu, U.S.Shivhare, A.S.Mujumdar. 2006.Models for sorption isotherms for foods:a review[J]. Drying Technology,24:917-930
    85.Saxena R.C.,Adhikari D.K.,Goyal H.B.2009.Biomass-based energy fuel through biochemical routes:A review[J].Renewable and Sustainable Energy Reviews 13:167-178
    86.Teo Wah Koon,Ruthven,Douglas M.1986.Adsorption of Water from Aqueous Ethanol Using 3A Mollecular Sieves[J].Ind Eng Chem Process Des Dev,25:17-21
    87.Tomanee Panarat.2008.Cassava-based adsorbent for removing water from ethanol vapor[C],the 2008annual meeting,fundamentals and applications of adsorption and ion exchange
    88.Ugrozov.V.V,Shebershneva.N.N,Filippov.A.N,et al.2008.Sorption and desorption of water vapor by grain of native starch of some crops[J].Colloid Journal,70(3):366-371
    89.Uragami T.,Morikawa T.1992.Permeation and separation characteristics of alcohol-water mixtures through Ploy(dimethylsiloxane) membrane by pervaporation and evaporation[J].Journal of Applied Polymer Science,44:2009-2018
    90.Vareli GD,Demertzis PG,Akrida-Demertzi K.1997.Water and ethanol adsorption on starchy and cellulosic substrates as biomass separation systems[J].Zeitschrift f(u|¨)r Lebensmitteluntersuchung und-Forschung A,205:204-208
    91.Vareli GD,Demertzis PC,,Akrida-Demertzi K.1998.Effect of adsorbent particle size and temperature on water-ethanol separation by starchy and cellulosic substrates[J].Zeitschrift f(u|¨)r Lebensmitteluntersuchung und-Forschung A,207:122-127
    92.Vareli GD,Demertzis PG,Akrida-Demertzi K.2000.Effect of Regeneration Thermal Treatment of Cellulosic and Starchy Materials on their Capacity to Separate Water and Ethanol[J].Journal of Cerea|Science,31(2):147-154
    93.Wang,N.,Brennan,J.G.1991.Moisture sorption isotherm characteristics of potatoes at four temperatures[J].Journal of Food Engineering,14:269-282
    94.Weber T.W.,Chakravorti R.K.1974.Pore and Solid Diffusion Models for Fixed- bed Adsorbers[J].AIChE J.,20(2):228-238
    95.Westgate P J,Ladisch M R.1993.Sorption of organics and water on starch[J].Industrial and Engineering Chemistry Research,32(8):1676- 1680
    96.Westgate P,Lee JY,Ladisch MR.1992.Modeling of equilibrium sorption of water vapor on starch materials[J].American Society of Agricultural Engineers,35(11 ):213-219
    97.Wladyslaw Kaminski,Joanna Marszalek,Agnieszka Ciolkowska.2008.Renewable energy source Dehydrated ethanol[J].Chemical Engineering Journal,135:95-102
    98.Yanagishita H.,Maejima C.,Kitamoto D.,et al.1994.Preparation of asymmetric polyimide membrane for water/ethanol separation in pervaporation by the phase inversion process[J].Journal of Membrane Science,86:231-240
    99.Yang R.T.1991.吸附法气体分离(王树森,曾美云,胡竟民,译)[M].北京:化学工业出版社
    100.Young,J.H.1976.Evaluation of models to describe sorption and desorption equilibrium moisture content isotherms of Virginia-type peanuts[J].Transaction ASAE,19:146-152
    101.北川浩,铃木谦一郎.1983.吸附的基础与设计[M].北京:化学工业出版社
    102.曹亚光,周荣琪,段占庭等.2003.加盐萃取精馏制取无水乙醇的过程模拟[刀.计算机与应用化学,20(1):153-155
    103.常华,袁希钢,曾爱武.2004.用于乙醇脱水的生物质吸附性能[J].化工学报,55(2):309-312.
    104.常秀莲.2001.节能型乙醇脱水技术研究进展[J].酿酒,28(5)91-94
    105.常秀莲.2002.膜法分离无水乙醇研究进展[J].酿酒科技,98(2):49-50
    106.陈翠仙,韩宾兵,朗宁·威.2004.渗透蒸发和蒸气渗透[M].北京:化学工业出版社
    107.陈奇伟,马晓娟,李连维.2004.马铃薯淀粉生产技术[M].北京,金盾出版社
    108.代光辉.2006.广西木薯制燃料酒精的经济性优势分析[J].酿酒科技,145(7):102-105
    109.范柳萍,张慜.2006.真空油炸胡萝卜脆片等温吸湿规律的研究[J].干燥技术与设备,4(1):24-27
    1110.范立梅.1999.用大网格树脂从发酵液中吸附分离乙醇[J].浙江农业太学学报,25(1):59-61
    111.冯孝庭.2000.吸附分离技术[M].北京:化学工业出版社
    112.高浩其.1996.固定床吸附器传质区高度计算方法[M].厦门大学学报(自然科学版),35(2):232-235
    113.韩秀丽,鲁峰,董科利,等.2007a.生物质吸附法制取无水乙醇的研究进展[J].酿酒科技,1:84-86
    114.韩秀丽,刘金盾,马晓建.2007b.气相色谱法洲定燃料乙醇中的水分[J].酿酒科技,3:103-104
    115.韩秀丽,刘金盾,马晓建,等.2007c.反气相色谱法测定燃料乙醇专用吸附剂对水和乙醇的吸附,北京化工大学学报[J].34(4):377-380
    116.韩秀丽,刘金盾,马晓建,等.2008.乙醇脱水吸附剂吸附-脱附性能的研究[J].高校化学工程学报,6:1059-1064
    117.何余生,李忠,奚红霞,等.2004.气同吸附等温线的研究进展[J].离子交换与吸附,20(4):376-384
    118.胡华俊,陈砺,王红林,等.2007.燃料乙醇加盐萃取精馏的试验研究及机理探讨[J].可再生能源25,(5):24-30
    119.近藤精一,石川达雄,安部郁夫.2006.吸附科学(李国希泽)[M].北京:化学工业出版社
    120.李春云.2001.无水乙醇生产工艺的探讨[J].浙江工业大学学报,29(2):210-212
    121.李怀菊,黄承都,韦藤幼,等.2009.葡萄糖酸膨润土乙醇脱水材料的性能及其表征[J].酿酒科技,2:17-20
    122.李军,孙兰义,胡有元,等.2008.用共沸精馏隔壁塔生产无水乙醇的研究[J].现代化工,28,(1):93-97
    123.李立硕,韦藤幼.杨海敬等。2005.共沸精馏生产无水乙醇的敏感性分析[J].酿酒科技,128(2):54-56.
    124.李沫林,陈砺,严宗诚,等.2009.木薯吸附剂固定床吸附法生产无水乙醇[J]。酿酒科技,6:81-84
    125.李清明,谭兴和,熊兴耀,等.2007.我国利用马铃薯生产燃料乙醇的可行性研究[J].酿酒科技,11:125-127
    126.梁萌,张建安,刘德华.2002.无水酒精制备的研究进展[J].酿酒,9(29):3-6
    127.刘焕龙,潘宝海,李军国,等.2009.水分吸着等温线及其数学模型辅助预混料载体(稀释剂)的选择[J].中国粮油学报,24(4):148-155
    128.刘士消,李永丽,孙传伯.2009.马铃薯原料全价性利用发酵生产燃料乙醇的探讨[J].农机化研究,8:196-201
    129.龙立平,汤青云.1996.分子筛法制取无水乙醇工艺的改进[J].益阳师专学报,16(5):64-65
    130.罗时,谭兴利,苏小军,等.2009.马铃薯生淀粉糖化酶高产菌株的筛选与诱变研究[J].中国酿造,203(2):19-22
    131.吕巨智,染和,姜建初.2009.马铃薯的营养成分及保健价值[J].中国食物与营养,3:51-52
    132.马晓建,吴勇,牛青川.无水乙醇制备的研究进展[J].现代化工,2005,25(1):27-30
    133.马晓建,吴勇,赵银峰,等.2006.含水乙醇蒸汽脱水的生物质性能研究[J].酿酒科技,139(1):39-42
    134.马莺,顾瑞霞编著.2003.马铃薯深加工技术[M].北京:中国轻工业出版社
    135.马正飞,刘晓勤,姚虎卿,等.2006.吸附理论与吸附分离技术的进展[J].南京工业大学学报,28(1):100-106
    136.彭桂兰,陈晓光,吴文福,等.2006.玉米淀粉吸附等温线的研究及模型建立[J].农业工程学报,22(5):176-179
    137.秦统福,钟贤.1992.乙醇-水气相吸附分离工艺的研究[J].郑州工学院学报,13(2):66-67
    138.邱竹,黄承都,韦藤幼,等.2008.碱性钙基膨润土的制备工艺及在乙醇脱水中的应用[J].化工矿物与加工,6:5-8
    139.石彦忠,张浩东主编.2008.淀粉制品工艺学[M].吉林科学技术出版社
    140.史密斯(J.M.Smith),范内斯(H.C.VanNess)著苏裕光等译.1982.化工热力学导论(第三版)[J].化学工业出版社
    141.宋安东,裴广庆,王风芹,等.2008中国燃料乙醇生产用原料的多元化探索[J].农业工程学报,24(3):302-307
    142.苏小军,熊兴耀,谭兴和,等.2007a.燃料乙醇发酵技术研究进展[J].湖南农业大学学报(自然科学版),33(4):480-485
    143.苏小军,熊兴耀,谭兴和,等.2007b.马铃薯生产燃料乙醇的性能分析[J].湖南农业科学,(6):171-174
    144.孙传伯,李永丽,李云,廖梓良,等.2009.云南省马铃薯产燃料乙醇的可行性研究[J].安徽农业科学,37(1):310-311,315
    145.孙东升,刘合光.2009.我国马铃薯产业发展现状及前景展望[J].农业展望,3:25-28
    146.孙丽荣,李忠宇.2006.机动车废气对环境污染及其解决方法[J].黑龙江交通科技,147(5):74-75
    147.田华.2006.用于乙醇脱水的玉米粉吸附性能实验研究[D].天津大学
    148.田森林,朱利中,施耀.2003.反气相色谱法研究CPC-膨润土对VOCs的吸附作用[J].环境科学学报,23(4):488-493
    149.田玉新,王世铭.1996.玉米粉为吸附剂制无水乙醇的实验研究[J].天津化工,2:20-23
    150.唐启义,冯明光.2007.DPS数据处理系统[M].北京:科学出版社
    151.王洪海,李春利,方静,等.2008.加盐萃取精馏制取无水乙醇过程的模拟[J].石油化工,37(3):852-855
    152.王法争.联手BP,2006.中粮生物质能源布局再下一城[N].21世纪经济报道,2006-10-24
    153.王彦波.2008.薯类淀粉加工技术与装备.中原农民出版社
    154.王彦锋,陈砺,王红林.2004.渗透气化法在无水乙醇生产中的应用研究[J].可再生能源,135(4):9-13
    155.文友先.2001.GAB吸附模型的修正[J].粮食与饲料工业,3:13-14
    156.吴乃登.1993.玉米粉吸附乙醇蒸气中的水[J].化学工程师,4:9-11
    157.吴卫国,谭兴利,熊兴耀,等.2006.不同工艺和马铃薯品种对马铃薯颗粒全粉品质的影响[J].中国粮油学报,21(6):98-102
    158.吴席烈,刘静芝,彭曦.1998.蒸气渗透法有机溶剂气相脱水[J].膜科学与技术,4:1-4
    159.吴稚琦,孙丽娟.2007.微波真空干燥固体蜂蜜的等温吸湿规律的研究[J].干燥技术与设备,5(3):134-138
    160.谢光辉,郭兴强,王鑫,等.2007.能源作物资源现状与发展前景[J].资源科学,29(5):74-80
    161.许晖,孙兰萍,赵大庆,等.2002.马铃薯交联淀粉的制备与结构表征[J].中国粮油学报,22(5):67-72
    162.许开天,许葵,甘毅.1997.酒精制品的生产与配方[M].北京:轻工业出版社
    163.许开天.2008.酒精蒸馏技术第三版[M].北京:中国轻工业出版社
    164.杨基础,杨小民.1996.人工神经网络在吸附动力学模拟计算中的应用[J].离子交换与吸附,12(3):223-229
    165.殷建平.中国燃料乙醇发展潜力分析[J].中国石油大学学报(社会科学版),2007,(06).6-9
    166.叶振华.1992.化工吸附分离过程[J].中国石化出版社
    167.于天峰.2005.马铃薯淀粉的糊化特性、刚途及品质改良[J].中国马铃薯19(4):223-225
    168.张德义.1999.减少汽车排放污染的对策[J].石油化工技术经济,15(1):18-24
    169.张光旭.1997.用玉米物作吸附剂制取无水酒精的研究进展[J].食品与发酵工业,23(1):66-69
    170.张久凯,刘大中.1998.玉米淀粉脱水剂制备无水乙醇研究进展[J].山东轻工业学院学报,12(3):1-3
    171.张琳叶,陈砺,王红林,等.2008.木薯吸附剂制取无水乙醇可行性研究[J].酿酒科技,4:21-24
    172.张绪霞,董海洲,侯汉学.2006.燃料酒精制备及其开发前景[J].粮食与油脂,2:7-9
    173.张意静.2001.食品分析技术[J].北京:中国轻工业出版社
    174.赵萍,巩慧玲,赵瑛,等.2004.不同品种马铃薯贮藏期间干物质与淀粉含量之间的关系[J].食品科学,25(11):103-105
    175.赵振国.2005.吸附作用应用原理[M].化学工业出版社
    176.钟浩,谭兴和,熊兴耀,等.2009.双酶法液化及糖化马铃薯干粉工艺的研究[J].食品研究与开发,30(1):8-13
    177.钟娅玲,沈静,蔡跃明.2001.分子筛吸附脱水生产无水酒精的方法[P].CN1348942
    178.钟娅玲,沈静,蔡跃明.2006.分子筛吸附脱水生产无水酒精的方法[J].现代化工,12(3)7-9
    179.周三,袁希钢,曾爱武.2009.乙醇-水二元体系中水在玉米粉上的吸附平衡[J].26(2):109-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700