息肉状脉络膜血管病变的临床特征、治疗与基因多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分息肉状脉络膜血管病变单核苷酸多态性的初步研究
     目的:探讨LOC387715/HTRA1、PEDF、ELN、TIMP3、LIPC、CETP基因的多态性与中国人群息肉状脉络膜血管病变的相关性。
     方法:本研究采用病例-对照关联分析的方法。共纳入没有亲缘关系的153名PCV患者和与之年龄和性别相匹配的221名正常对照者。提取所有受试者全血DNA。采用MassAFRAY时间飞行质谱技术完成对所有SNP位点的基因型检测,基因型分布符合Hardy-Weinberg平衡。使用x2检验分析两组间的等位基因频率和基因型频率,同时对多重比较进行Bonferroni校正,所有统计学分析在SPSS17.0软件下进行。采用Haploview软件分析连锁不平衡区块和基于连锁不平衡的单体型。
     结果:LOC387715/HTRA1(rs10490924、rs3793917、rs11200638)的等位基因频率在PCV组和正常对照组比较上具有统计学差异(P=3.46×10-10、3.40×10-9、8.31×10-11),经Bonferroni进行多重检验校正,仍具有统计学意义。LOC387715/HTRA1(rs10490924、rs3793917、rsl1200638)的基因型频率在两组之间比较也具有统计学意义(P=8.926×10-9、3.408×10-8、1.099×10-9),通过Logistic回归控制年龄和性别后比较其仍有统计学意义。LOC387715/HTRA1(rs10490924、rs3793917、rs11200638)三个位点之间互相高度连锁(r2=0.95、0.89、0.85),对这个高度连锁区域进行单体型相关性的分析发现,rs10490924、rs3793917和rs11200638的TCA型和GGG型在PCV组与对照组间比较具有统计学差异(P=1.80×10-9、1.92×10-10)。PEDF (rsl136287)、ELN (rs2301995). TIMP3(rs8136803、rs2283883、rs242089. rs1962223、rs242082、rs80272、rs135025、rs715572、rs242076)、LIPC (rs6078. rs6083、rs1800588、rs3829462、rs1077834)、CETP(rs4783961、rs1800775、rsl7245715、 rs1801706、rs5882)的等位基因频率和基因型分布在PCV组与对照组比较均无统计学意义(P>0.05)。而对TIMP3、LIPC、CETP基因进行连锁不平衡和基于连锁不平衡的单体型分析,结果显示在PCV组与对照组比较也无统计学意义(P>0.05)。结论:本研究结果显示PEDF、ELN、TIMP3、LIPC、CETP基因的多态性与中国人群PCV无明显相关性;证实了LOC387715/HTRA (rs10490924、rs3793917、rs11200638)与中国人群PCV发病的显著相关。
     第二部分息肉状脉络膜血管病变的临床特征分析
     目的:观察息肉样脉络膜血管病变(PCV)的临床特征及寻找其发生和发展的相关危险因素。
     方法:回顾性、非对照性病例系列研究。临床确诊为PCV的153例患者185只眼纳入研究。对所有患者进行标准问卷调查并分析临床资料。调查的内容包括性别、年龄、职业、是否有高血压、糖尿病、高血脂、冠心病病史,吸烟、饮食习惯,身高、体重等。所有患者均行最佳矫正视力、裂隙灯显微镜、间接检眼镜、眼底彩色照像、荧光素眼底血管造影、吲哚青绿血管造影以及光相干断层扫描检查。结果:153例患者中,男性82例,占53.59%;女性71例,占46.41%。年龄44-84岁,平均年龄(64.94±9.49)岁。体重指数15.82-32.19,平均为(24.74±2.37)。有高血压病史51例,占33.33%;有高血脂病史73例,占47.71%;有吸烟史48例,占31.37%。双眼发病32例,占20.92%;单眼121例,占79.08%。121例单眼PCV患者中,另眼可见玻璃膜疣39例,占32.23%;有玻璃体积血的30只眼,占16.22%。有5例患者曾有中心性浆液性视网膜脉络膜病变(CSC)病史,占3.27%。PCV病变位于黄斑区123只眼,占66.49%:位于血管弓区23只眼,占12.43%;视盘旁8只眼,占4.32%。息肉状病灶表现为孤立状72只眼,占38.91%;簇状96只眼,占51.89%;串样2只眼,占1.08%;分支状3只眼,占1.62%;既有孤立状同时也有簇状12只眼,占6.49%。存在神经视网膜下液性暗区108只眼,占58.38%;出血性RPE脱离94只眼,占50.81%;浆液性RPE脱离22只眼,占11.89%。
     结论:PCV患者双眼发病率高,女性患病比例较高,浆液性或出血性PED发生率较高,PCV病灶主要位于黄斑区。年龄和种族因素可能是PCV最主要的危险因素,吸烟、高血压、高血脂可能与PCV发生有一定联系。
     第三部分光动力疗法与玻璃体腔注射抗血管内皮生长因子制剂治
     疗息肉样脉络膜血管病变的系统评价
     目的:系统评价单纯光动力疗法(PDT)或单纯玻璃体腔注射抗血管内皮生长因子制剂疗法(VEGF)或PDT联合玻璃体腔注射抗VEGF制剂治疗息肉样脉络膜血管病变(PCV)的有效性。
     方法:全面检索Pubmed、Biosis Preview、Cochrane Library, Embase数据库有关PDT、抗VEGF治疗PCV的文献,按纳入和排除标准确定入选文献并根据设计方法分类。利用比较性研究对抗VEGF与PDT、抗VEGF与联合治疗、PDT与联合治疗进行荟萃分析和两两比较,主要终点为息肉样病灶的消退率,其它终点包括最佳矫正视力(BCVA)、黄斑中心凹视网膜厚度(CRT)、治疗次数等指标。
     结果:共得到比较性临床试验13项,其中随机对照试验(RCT)1项,回顾性比较研究(RCS)12项,对上述3个治疗方案进行了两两比较;有4项研究对单纯抗VEGF和单纯PDT进行了比较,7项研究对单纯PDT和联合治疗进行了比较,4项研究对单纯抗VEGF和联合治疗进行了比较。综合考虑RCT及RCS结果:单纯PDT与单纯抗VEGF相比,6个月时病灶消退率更高(P=0.0037),而BCVA、CRT在12个月随访范围内差异无统计学意义;单纯PDT和联合治疗相比,虽然12个月时病灶消退率、BCVA、CRT的差异无统计学意义,但在24个月时联合治疗组BCVA倾向于具有更好的视力(P=0.05),且联合治疗组所需PDT次数有所减少;联合治疗和单纯抗VEGF相比,12个月时病灶消退率显著增高,所需眼内注射次数较少,而BCVA、CRT的差异无统计学意义。
     结论:单纯玻璃体腔注射抗VEGF制剂治疗在促进病灶消退方面不及单纯PDT或PDT联合玻璃体腔注射抗VEGF制剂治疗,联合治疗的远期(2年)视力可能优于单纯PDT。
     第四部分光动力疗法治疗息肉状脉络膜血管病变随访三年效果观察
     目的:观察光动力疗法(PDT)治疗息肉状脉络膜血管病变(PCV)随访3年的治疗效果。
     方法:回顾性、非对照性病例系列研究。临床确诊为PCV的29例患者32只眼纳入研究。所有患者首次均行常规PDT治疗。对治疗后6个月有活动性息肉状病灶、病灶残留及渗出性改变者,行PDT联合玻璃体注射抗血管内皮生长因子(VEGF)制剂治疗或单纯玻璃体注射抗VEGF制剂治疗。所有患者均随访3年以上,平均随访时间(43.64+10.84)个月。观察统计患者首次PDT治疗后1、3、6、12、24、36个月的最佳矫正视力(BCVA)以及随访期间的PCV复发率和治疗次数。BCVA转换为最小分辨角对数(logMAR)视力记录和分析。
     结果:首次PDT治疗后1、3、6、12个月,患者平均BCVA均较治疗前明显提高,差异有统计学意义(t=2.27、4.57、3.77、2.37,P<0.05)。首次PDT治疗后24、36个月,患者平均BCVA较治疗)前有所下降,但差异无统计学意义(t=-1.29、-0.81,P>0.05)。首次PDT治疗后36个月,视力提高6只眼,占所有患眼的18.75%;视力稳定14只眼,占所有患眼的43.75%;视力下降12只眼,占所有患眼的37.50%。随访期间,PCV复发24只眼,占所有患眼的75.00%;未复发8只眼,占所有患眼的25.00%。PCV复发的24只眼中,1次复发12只眼,占复发患眼的50.00%;2次复发9只眼,古复发患眼的37.50%;3次复发3只眼,占复发患眼的12.50%。首次PDT治疗后12个月内复发4只眼,占复发患眼的16.67%;治疗后13~24个月复发11只眼,占复发患眼的45.83%;治疗后25~36个月复发9只眼,占复发患眼的37.50%。所有患者PDT治疗、抗VEGF治疗平均次数分别为(1.86±1.04)、(4.95±3.92)次。
     结论:PDT治疗PCV随访3年的治疗效果较差,其视力提高率较低,PCV复发率较高。
Part I A preliminary study on single nucleotide polymorphisms of polypoidal choroidal vasculopathy patients
     Purpose:To investigate whether polymorphisms in the LOC387715/HTRA1, PEDF, ELN, TIMP3, LIPC and CETP genes are associated with polypoidal choroidal vasculopathy(PCV)in a Chinese population.
     Methods:A case-control association study of153unrelated Chinese patients with PCV and221control subjects matched in ethnicity and gender was undertaken. Genomic DNA was prepared from peripheral blood. All SNPs were genotyped using the MassArray platform and MALDI-TOF analysis. Genotypic distribution was tested for Hardy-Weinberg equilibrium. Statistical analyses were performed on computer using the SPSS (version170:SPSS Science, Chicago, IL) software. The genotype and allele frequencies were evaluated using the x2tests. Bonferroni corrections for multiple comparisons were performed. The significance of the differences in the estimated haplotype frequencies between case and control groups were examined on Haploview4.2using the x2tests.
     Results:Three SNPs for LOC387715/HTRA1, rs10490924, rs3793917and rs11200638, showed significant differences in allele frequencies between PCV and control groups (P=3.46×10-10,3.40×10-9,8.31×10-11, respectively). The significant differences remained after Bonferroni correction. The genotype frequencies of rs10490924, rs3793917and rs11200638in LOC387715/HTRA1were also found to be significantly different between PCV and control groups(P=8.926X10-9,3.408X10-8,1.099X10-9, respectively). The differences for rs10490924, rs3793917and rs11200638were still significant among the PCV cases after adjustment for age. Three SNPs for LOC387715/HTRA1, rs10490924, rs3793917and rs11200638, showed high linkage (r2=0.95,0.89,0.85, respectively). The haplotypes TC A and GGG of rs10490924, rs3793917and rs11200638were also associated with PCV (P=1.80X10-9,1.92X10-10, respectively). No significant association was noted with PEDF (rs1136287), ELN (rs2301995), TIMP3(rs8136803, rs2283883, rs242089, rs1962223, rs242082, rs80272,rs135025,rs715572,rs242076),LIPC(rs6078,rs6083,rs1800588,rs3829462, rs1077834), CETP (rs4783961, rs1800775, rs17245715, rs1801706, rs5882) among the PCV cases(P>0.05). Evaluation of common haplotypes across TIMP3, LIPC and CETP did not reveal any association with PCV(P>0.05).
     Conclusions:We found no evidence to support the polymorphisms of PEDF、ELN、 TIMP3、LIPC and CETP in the susceptibility to PCV in a Chinese population. The SNPs rs10490924, rs3793917and rs11200638of LOC387715/HTRA1are significantly associated with the risk of PCV.
     Part II Clinical characteristics of polypoidal choroidal vasculopathy
     Objective:To observe the clinical characteristics of polypoidal choroidal vasculopathy (PCV) and to explore the possible risk factors associated with the development and progression of PCV.
     Methods:This is a retrospective, uncontrolled case series study. One hundreds fifty-three PCV patients(185eyes)were enrolled in this study. All the patients were underwent stardard questionnaire survey by one trained person. Uniform questionnaires were administered to obtain information such as gender, age, occupation, hypertension, diabetes, hyperlipemia, coronary heart disease, smoking, diet, height, and weight etc. All the patients were examined for best corrected visual acuity(BCVA)testing, slit—lamp microscope, indirect ophthalmoscopy, fundus photography, fluorescein angiography, indocyanine green angiography and optic coherence tomography.
     Results:The patients included82males(53.59%)and71females(46.41%); the age was from44to84years, with a mean age of(64.94±9.49)years. The body mass index(BMI) was from15.82to32.19, with a mean BMI of (24.74±2.37). There were fifty-one patients with a history of hypertension(33.33%), seventy-three patients with a history of hyperlipemia (47.71%), and fourty-eight patients with a history of smoking (31.37%). Bilateral lesions were observed in32patients(20.92%)and unilateral lesions were observed in121patients(79.08%). In121patients with unilateral PCV lesions, drusen can be observed in the contralateral eyes of39patients(32.23%), Vitreous hemorrhage was observed in30eyes(16.22%).There were five patients with a histoty of central serous chorioretinopathy(3.27%). PCV lesions located at macula area in123eyes(66.49%), under the temporal retinal vascular arcade in23eyes(12.43%), and peripapillary in8eyes(4.32%). PCV lesion formation was single in72eyes(38.91%), cluster in96eyes (51.89%), string in2eyes(1.08%), branch in3eyes(1.62%), and both single and cluster polyps in12eyes(6.49%). There were108eyes(58.38%)with sub-neuroretinal fluid,94eyes(50.81%)with hemorrhagic pigment epithelium detachment, and22eyes(11.89%)with serous pigment epithelium detachment.
     Conclusion:PCV patients have higher bilateral incidence and female prevalence, higher serous or hemorrhagic PED incidence, and higher rate of macula area lesions. Age and race factor may be the most important risk factor for PCV, smoking, hypertension, and hyperlipemia may have some contact with PCV.
     Part Ⅲ Efficacy evaluation of photodynamic therapy and intravitreal anti-vegf injection for polypoidal choroidal vasculopathy:systematic review
     Objectives:To compare the efficacy of photodynamic therapy (PDT) alone, intravitreal anti-vascular endothelial growth factor (VEGF) therapy alone, and the combination of the two therapies for polypoid choroidal vasculopathy (PCV).
     Methods:A computerized search was conducted in Pubmed, Biosis Preview, Cochrane Library, and Embase. Studies comparing any two of the above three treatment strategies were enrolled in the study. Meta-analysis of pairwise comparisons of the three approaches were conducted. The primary endpoint was the proportion of patients with complete regression of polyps. Other endpoints included best corrected visual acuity(BCVA), central retinal thickness(CRT), number of treatments.
     Results:A total of13comparative studies were obtained, including1randomized controlled trials (RCT) and12retrospective comparative study (RCS). Four studies compared anti-VEGF monotherapy with PDT monotherapy. Seven studies compared PDT monotherapy with combination therapy. Four studies compared anti-VEGF monotherapy with combination therapy. Considering the RCT and RCS results:PDT was superior to anti-VEGF in achieving complete regression of polyps at month6(P=0.0037), although BCVA and CRT showed no significant difference at12-month follow-up. There was no significant difference in BCVA, CRT, and the proportion of patients with complete regression of polyps between PDT and combination group at12months follow-up. However, combination therapy showed more promising result in improving visual acuity at24months (P=0.05), with fewer PDT needed than in PDT monotherapy.Combination therapy was superior to anti-VEGF in achieving complete regression of polyps and the number of injections needed tended to be fewer.BCVA improvement and CRT reduction showed no significant difference at12-month follow-up.
     Conclusions:PDT with or without anti-VEGF therapy is superior to anti-VEGF monotherapy in achieving complete polyp regression, and combination therapy appeared toresult in better visual outcome than PDT monotherapy in the long term(2years).
     PartⅣ Three-year follow-up results of photodynamic therapy for polypoidal choroidal vasculopathy
     Objective:To evaluate the3-year efficacy of photodynamic therapy (PDT) in patients with polypoidal choroidal vasculopathy (PCV).
     Method:This is a retrospective, uncontrolled case series study. Thirty-two eyes of29patients wih PCV were enrolled. All patients were primarily treated with the first conventional PDT. For the eye with active polypoida, residual or exudative lesions in6month after PDT, PDT combined with intravitreal anti vascular endothelial growth factor (VEGF) or simple vitreous injection of anti VEGF therapy were used. All the patients were followed up for at least3years with the mean follow-up duration of43.64±10.84months. The best-corrected visual acuity (BCVA) in1,3,6,12,24and36months after the primary PDT, PCV recurrence rates and number of treatments were followed and analyed. The BCVA was converted into a logarithm of the minimal angle of resolution (logMAR) for statistical analysis.
     Results:During the1,3,6,12months after the primary PDT, the mean BCVA were all improved with statistically significant difference (t=2.27,4.57,3.77,2.37; P<0.05). During the24and36months after PDT, the mean BCVA was decreased without statistically significant difference (t=-1.29,-0.81;P>0.05). On the final evaluation at36months, the mean BCVA was improved in6eyes (18.75%), stable in14eyes (43.75%), and decreased in12eyes (37.50%). During the follow-up time, recurrence of PCV in24eyes (75.00%), no recurrence in8eyes (25.00%). There was1recurrence in12eyes(50.00%),2recurrences in9eyes(37.50%),3recurrences in3eyes(12.50%). Initial recurrences were noted in4eyes (16.67%) within12months of baseline PDT treatment; in11eyes (45.83%) between13and24months; in9eyes (37.50%) between25and36months. The mean number of PDT and anti-VEGF was1.86±1.04and4.95±3.92in all patients, respectively.
     Conclusions:The3-year efficacy of PDT in patients with PCV was poor with low improvement of visual acuity and high recurrence rate of PCV.
引文
[1]Yannuzzi LA, Ciardella A, Spaide RF, et al. The expanding clinical spectrum of idiopathic polypoidal choroidal vasculopathy[J]. Arch Ophthalmol,1997,115(4): 478-485.
    [2]Yannuzzi LA, Sorenson J, Spaide RF, et al. Idiopathic polypoidal choroidal vasculopathy(IPCV)[J]. Retina,1990,10(1):1-8.
    [3]Ciardella AP, Donsoff IM, Huang SJ, et al. Polypoidal choroidal vasculopathy[J]. Surv Ophthalmol,2004,49(1):25-37.
    [4]Yannuzzi LA, Wong DW, Sforzolini BS, et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration[J]. Arch Ophthalmol,1999, 117(11):1503-1510.
    [5]Lafaut BA, Leys AM, Snyers B, et al. Polypoidal choroidal vasculopathy in Caucasians[J]. Graefes Arch Clin Exp Ophthalmol,2000,238(9):752-759.
    [6]Scassellati-Sforzolini B, Mariotti C, Bryan R, et al. Polypoidal choroidal vasculopathy in Italy [J]. Retina,2001,21(2):121-125.
    [7]Sho K, Takahashi K, Yamada H, et al. Polypoidal choroidal vasculopathy:incidence, demographic features, and clinical characteristics[J]. Arch Ophthalmol,2003, 121(10):1392-1396.
    [8]Maruko I, lida T, Saito M, et al. Clinical characteristics of exudative age-related macular degeneration in Japanese patients[J]. Am J Ophthalmol,2007,144(1): 15-22.
    [9]Byeon SH, Lee SC, Oh HS, et al. Incidence and clinical patterns of polypoidal choroidal vasculopathy in Korean patients[J]. Jpn J Ophthalmol,2008,52(1):57-62.
    [10]Kwok, Lai TY, Chan CW, et al. Polypoidal choroidal vasculopathy in Chinese patients[J]. Br J Ophthalmol,2002,86(8):892-897.
    [11]Wen F, Chen C, Wu D, et al. Polypoidal choroidal vasculopathy in elderly Chinese patients[J]. Graefes Arch Clin Exp Ophthalmol,2004,242(8):625-629.
    [12]陶勇,侯婧,黎晓新,等.254例息肉样脉络膜血管病变的临床特征分析[J].中华眼底病杂志,2012,28(5):441-444.
    [13]Uyama M, Matsubara T, Fukushimal, et al. Idiopathic polypoidal choroidal vasculopathy in Japanese patients[J]. Arch Ophthalmol,1999,117(8):1035-1042.
    [14]Uyama M, Wada M, Nagai Y, et al. Polypoidal choroidal vasculopathy:natural history[J]. Am J Ophthalmol,2002,133(5):639-648.
    [15]Klein R J, Zeiss C, Chew E Y, et al. Complement factor H polymorphism in age-related macular degeneration. Science,2005,308(5720):385-389.
    [16]Kondo N, Honda S, Ishibashi K, et al. LOC387715/HTRA1 variants inpolypoidal choroidal vasculopathy and age-related macular degeneration in a Japanese population[J]. Am JOphthalmol,2007,144(4):608-612.
    [17]Sakurada Y, Kubota T, Mabuchi F, et al. Association of LOC387715 A69S with vitreous hemorrhage in polypoidal choroidal vasculopathy[J]. Am J Ophthalmol, 2008,145(6):1058-1062.
    [18]Lee KY, Vithana EN, MathurR, et al. Association analysis of CFH, C2, BF, and HTRA1 gene polymorphisms in Chinese patients with polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis Sei,2008,49(6):2613-2619.
    [19]Kondo N, Honda S, Kuno S, et al. Coding variant 162V in the complement factor H gene is strongly associated with polypoidal choroidal vasculopathy[J]. Ophthalmology,2009(2),116:304-310.
    [20]Hayashi H, Yamashiro K, Gotoh N. CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation[J]. Invest Ophthalmol Vis Sci,2010,51(11):5914-5919.
    [21]Tsuchiya D, Yamamoto T, Kawasaki R, et al. Two-year visual outcomes after photodynamic therapy in age-related macular degeneration patients with or without polypoidal choroidal vasculopathy lesions[J]. Retina,2009,29(7):960-965.
    [22]Akaza E, Mori R, Yuzawa M. Long-term results of photodynamic therapy of polypoidal choroidal vasculopathy[J]. Retina,2008,28(5):717-722.
    [23]Gomi F, Ohji M, Sayanagi K, et al. One-year outcomes of photodynamic therapy in age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients[J]. Ophthalmology,2008,115(1):141-146.
    [24]Hirami Y, Tsujikawa A, Otani A, et al. Hemorrhagic complications after photodynamic therapy for polypoidal choroidal vasculopathy [J]. Retina,2007, 27(3):335-341.
    [25]金陈进,张燕,田臻,等.光动力疗法治疗息肉状脉络膜血管病变[J].中华眼科杂志,2007,43(7):642-645.
    [26]Silva RM, Figueira J, Cachulo ML, et al. Polypoidal choroidal vasculopathy and photodynamic therapy with verteporfin[J]. Graefe's Arch Clin Exp Ophthalmol, 2005,243(10):973-979.
    [27]Chan WM, Lam DSC, Lai TY, et al. Photodynamic therapy with verteporfin for symptomatic polypoidal choroidal vasculopathy: one-year results of a prospective case series[J]. Ophthalmology,2004,111(8):1576-1584.
    [28]Quaranta M, Mauget-Faysse M, Coscas G. Exudative idiopathic polypoidal choroidal vasculopathy and photodynamic therapy with verteporfin[J]. Am J Ophthalmol,2002,134(2):277-280.
    [29]Spaide RF, Donsoff I, Lam DL, et al. Treatment of polypoidal choroidal vasculopathy with photodynamic therapy[J]. Retina,2002,22(5):529-535.
    [30]Koh A, Lee WK, Chen LJ, et al. Efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy [J]. Retina, 2012,32(8):1453-1464.
    [31]Leal S, Silva R, Figueira J, et al. Photodynamic therapy with verteporfin in polypoidal choroidal vasculopathy:results after 3 years of follow-up[J]. Retina, 2010,30(8):1197-1205.
    [32]Kondo N, Honda S, Ishibashi K, et al. Elastin gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis Sci,2008,49(3):1101-1105.
    [33]Pertile KK, Schache M, Islam FM, et al. Assessment of TGIF as a candidate gene for myopia[J]. Invest Ophthalmol Vis Sci,2008,49(1):49-54.
    [34]Fritsche LG, Loenhardt T, Janssen A, et al. Age-related macular degeneration is associated with an unstable ARMS2(LOC387715) mRNA[J]. Nature Genetics, 2008,40(7):892-896.
    [35]Oka C, Tsujimoto R, Kajikawa M, et al. HtrAl serine protease inhibits signaling mediated by Tgf β family proteins[J]. Development,2004,131(3):1041-1053.
    [36]Grau S, Richards PJ, Kerr B, et al. The role of human HtrAl in arthritic disease[J]. J Biol Chem,2006,281(3):6124-6129.
    [37]Park DH, Kim IT. Association of ARMS2/HTRA1 variants with polypoidal choroidal vasculopathy phenotype in a Korean population[J]. Jpn J Ophthalmol, 2012,56(1):60-67.
    [38]Lima LH, Schubert C, Ferrara DC, et al. Three major loci involved in age-related macular degeneration are also associated with polypoidal choroidal vasculopathy [J]. Ophthalmology,2010,117(8):1567-1570.
    [39]Nielsen DM, Ehm MG, Weir BS. Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus[J]. Am J Hum Gnet,1998, 63(5):1531-40.
    [40]Cheng Y, Huang LZ, Li XX, et al. Genetic and Functional Dissection of ARMS2 in age-related macular degeneration and polypoidal choroidal vasculopathy[J]. PloS one,2013,8(1):e53665.
    [41]Chen CY, Stankovieh J, Seurrah KJ, et al. Linkage replication of the MYP12 locus in common myopia[J]. Invest Ophthalmol Vis Sci,2007,48(10):4433-4439.
    [42]Onda H, Kasuya H, Yoneyama T, et al. Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chro-mosome 7q11[J]. Am J Hum Genet,2001,69(4):804-819.
    [43]Akagawa H, Tajima A, Sakamoto Y, et al. A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms[J]. Hum Mol Genet,2006,15(10):1722-1734.
    [44]Curran ME, Atkinson DL, Ewart AK, et al. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis[J]. Cell,1993,73(1): 159-168.
    [45]Li DY, Toland AE, Boak BB, et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis[J]. Hum Mol Genet,1997,6(7): 1021-1028.
    [46]Ewart AK, Morris CA, Atkinson D, et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome[J]. Nat Genet,1993,5(1):11-16.
    [47]Kuroiwa S, Tateiwa H, Hisatomi T, et al. Pathological features of surgically excised polypoidal choroidal vasculopathy membrane[J]. Clin Experiment Ophthalmol, 2004,32(3):297-302.
    [48]Yamashiro K, Mori K, Nakata I, et al. Association of elastin gene polymorphism to age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis. Sci,2011,52(12):8780-8784.
    [49]Yamagishi S, Nakamura K, Inoue H, et al. Met72Thr polymorphism of pigment epithelium-derived factor gene andsusceptibility to age-related macular degeneration[J]. Med Hypotheses,2005,64(6):1202-1204.
    [50]Lin JM, Wan L, Tsai YY, et al. Pigment epithelium-derived factor gene Met72Thr polymorphism is associated with increased risk of wet age-related macular degeneration[J]. Am J Ophthalmol,2008,145(4):716-721.
    [51]Bessho H, Kondo N, Honda S, et al. Coding variant Met72Thr in the PEDFgene and risk of neovascular age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Mol Vis,2009,15:1107-1114.
    [52]Wu KF, Wen F, Zuo CG, et al. Lack of association with PEDF Met72Thr variant in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Han Chinese Population[J]. Current Eye Research,2012,37(1): 68-72.
    [53]Weber BH, Vogt G, Pruett RC, et al. Mutations in the tissue inhibitor of metalloproteinase-3 (TIMP3) in patients with Sorsby's fundus dystrophy[J]. Nat Genet,1994,8(4):352-356.
    [54]Della NG, Campochiaro PA, Zack DJ. Localization of TIMP-3 mRNA expression to the retinal pigment epithelium[J]. Invest Ophthalmol Vis Sci,1996,37(9): 1921-1924.
    [55]Ruiz A, Brett P, Bok D. TIMP-3 is expressed in human retinal pigment epithelium[J]. Biochem Biophys Res Commun,1996,226(2):467-474.
    [56]Kamei M, Hollyfield JG. TIMP-3 in Bruch's Membrane: Changes during aging and in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci,1999,40(10): 2367-2375.
    [57]Neale BM, Fagerness J, Reynolds R, et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene(LIPC)[J]. Proc Natl Acad Sci USA,2010,107(16):7395-7400.
    [58]Chen W, Stambolian D, Edwards AO, et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration[J]. Proc Natl Acad Sci USA,2010,107(16):7401-7406.
    [59]Yu Y, Reynolds R, Fagerness J, et al. Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration[J]. Invest Ophthalmol Vis Sci,2011,52(7):4663-4670.
    [60]文峰,吴德正,孙祖华,等.息肉状脉络膜血管病变的分类研究.眼科学报,2006,22:160-165.
    [61]Klein R, Klein BE, Franke T. The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study[J]. Ophthalmology, 1993,100:406-14.
    [62]Hawkins BS, Bird A, Klein R, et al. Epidemiology of age-related macular degeneration[J]. Mol Vis,1999,5:26.
    [63]Friedman DS, Katz J, Bressler NM, et al. Racial differences in the prevalence of age-related macular degeneration:the Baltimore Eye Survey [J]. Ophthalmology, 1999,106:1049-55.
    [64]Bressler SB, Munoz B, Solomon SD, et al. Racial differences in the prevalence of age- related macular degeneration:the Salisbury Eye Evaluation(SEE)Project[J]. Arch Ophthalmol,2008,126:241-5.
    [65]Hyman L, Schachat AP, He Q, et al. Hypertension,cardio vascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group[J]. Arch Ophthalmol,2000,118:351-8.
    [66]Vingerling JR, Dielernans I, Bots ML, et al. Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study[J]. Am J Epidemiol,1995, 142:404-9.
    [67]Mitchell P, Wang JJ, Foran S, el al. Five-year incidence of age-related maculopathy lesions:the Blue Mountains Eye Study[J]. Ophthalmology,2002,109:1092-7.
    [68]Kelly SP, Edwards R, Elton P, el al. Age related macular degeneration:smoking entails major risk of blindness[J]. BMJ,2003,326:1458-9 author reply 1459-60.
    [69]Kikuchi M, Nakamum M, Ishikawa K, et al. Elevated C-reactive protein levels in patients with polypoidal choroidal vasculopathy and patients with neovascular age-related macular degeneration[J]. Ophthalmology,2007,114:1722-7.
    [70]Spaide RF, Yannuzzi LA, Slakter JS, el al. Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy[J]. Retina,1995,15:100-110.
    [71]Ahuja RM, Stanga PE, Vingcrling JR, et al. Polypoidal choroidal vasculopathy in exudative and haemorrhagic pigment epithelium detachments[J]. Br J Ophthalmol, 2000,84:479-484.
    [72]Ladas ID, Rouvas AA, Moschos MM, et al. Polypoidail choroidal vasculopathy and exudative age related macular degeneration in Greek population[J]. Eye(Lond), 2004,18:455-459.
    [73]Liu Y, Wen F, Huang S, et al. Subtype lesions of neovascular age-related macular degeneration in Chinese patients[J]. Graefes Arch Clin ExpOphthalmol,2007,245: 1441-1445.
    [74]Ahuja RM,Stanga PE,Vingerling JR,et al. Polypoidal choroidal vasculopathy in exudative and haemorrhagic pigment epithelial detachments[J]. Br J Ophthalmol, 2000,84:479-484.
    [75]Otsuji T, Takahashi K, FukusKma I, et al. Optical coherence to mographic findings of idiopathic polypoidal choroidal vasculopathy [J]. Ophthalmic Surg Lasers,2007, 31:210-214.
    [76]Gass JDM, Multifocal idiopathic subRPE neovascularizaion occurring in darkly pigmented indivduals. In:Gass JDM, ed. Stereoscopic Atlas of Macular Diseasas [M]. Vol1.4ed St Louis:Mosby-Year Book inc,2006,250.
    [77]Tong JP, Chan WM, Liu DT, et al. Aqueous humor levels of vascular endothelial growth factor and pigment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization[J]. Am J Ophthalmol,2006,14: 456-462.
    [78]O'Connor D, Green S, Higgins JPT, et al. Defining the review question and developing criteria for including studies//Higgins JP, Green S.Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0.Updated March 2011.The Cochrane Collaboration,2011.Available from www.cochrane-handbook.org.
    [79]Higgins JPT, Altman DG, Sterne JAC.Assessing risk of bias in included studies//Higgins JP, Green S.Cochrane Handbook for Systematic Reviews of Interventions.Version 5.1.0.Updated March 2011.The Cochrane Collaboration, 2011.Available from www.cochrane-handbook.org.
    [80]Deeks JJ, Higgins JPT, Altman DG.Analysing data and undertaking meta-analyses//Higgins JP, Green S.Cochrane Handbook for Systematic Reviews of Interventions.Version 5.1.0.Updated March 201 l.The Cochrane Collaboration, 2011.Available from www.cochrane-handbook.org.
    [81]Song MH, Ryu HW, Roh YJ. One-year results of intravitreal ranibizumab with or without photodynamic therapy for polypoidal choroidal vasculopathy[J]. Ophthalmologica,2011,226:119-126.
    [82]Lee SY, Kim JG, Joe SG, et al. The therapeutic effects of bevacizumab in patients with polypoidal choroidal vasculopathy[J]. Korean J Ophthalmol,2008,22:92-99.
    [83]Gomi F, Sawa M, Wakabayashi T, et al. Efficacy of intravitreal bevacizumab combined with photodynamic therapy for polypoidal choroidal vasculopathy[J]. Am J Ophthalmol,2010,150:48-54.
    [84]Nakata I, Tsujikawa A, Yamashiro K, et al. Two-year outcome of photodynamic therapy combined with intravitreal injection of bevacizumab and triamcinolone acetonide for polypoidal choroidal vasculopathy[J]. Graefes Arch Clin Exp Ophthalmol,2013,251:1073-1080.
    [85]Lai TY, Chan WM, Liu DTL, et al. Intravitreal bevacizumab (A vastin) with or without photodynamic therapy for the treatment of polypoidal choroidal vasculopathy[J]. Br J Ophthalmol,2008,92:661-666.
    [86]Maruko I, Iida T, Sugano Y, et al. Subfoveal retinal and choroidal thickness after verteporfin photodynamic therapy for polypoidal choroidal vasculopathy[J]. Am J Ophthalmol,2011,151:594-603.
    [87]Saito M, Iida T, Kano M. Intravitreal ranibizumab for polypoidal choroidal vasculopathy with recurrent or residual exudation[J]. Retina,2011,31:1589-1597.
    [88]Rouvas AA, Papakostas TD, Ntouraki A, et al. Photodynamic therapy, ranibizumab, and ranibizumab with photodynamic therapy for the treatment of polypoidal choroidal vasculopathy[J]. Retina,2011,31:464-474.
    [89]Lee YA, Yang CH, Yang CM, et al. Photodynamic therapy with or without intravitreal bevacizumab for polypoidal choroidal vasculopathy: two years of follow-up[J]. Am J Ophthalmol,2012,154:872-880.
    [90]Kim SJ, Yu HG.. Efficacy of combined photodynamic therapy and intravitreal bevacizumab injection versus photodynamic therapy alone in polypoidal choroidal vasculopathy[J]. Retina,2011,31:1827-1834.
    [91]Lai TY, Lee GK, Luk FO, et al. Intravitreal ranibizumab with or without photodynamic therapy for the treatment of symptomatic polypoidal choroidal vasculopathy[J]. Retina,2011,31:1581-1588.
    [92]Mitamura Y, Kitahashi M, Kubota-Taniai M, et al. Comparison of intravitreal bevacizumab to photodynamic therapy for polypoidal choroidal vasculopathy: short-term results[J]. Indian J Ophthalmol,2010,58:291-296.
    [93]Nemoto R, Miura M, Iwasaki T, et al. Two-year follow-up of ranibizumab combined with photodynamic therapy for polypoidal choroidal vasculopathy [J]. Clin Ophthalmol,2012,6:1633-1638.
    [94]Tomita K, Tsujikawa A, Yamashiro K, et al. Treatment of polypoidal choroidal vasculopathy with photodynamic therapy combined with intravitreal injections of ranibizumab[J]. Am J Ophthalmol,2012,153:68-80.
    [95]Hikichi T, Higuchi M, Matsushita T, et al. Results of 2 years of treatment with as-needed ranibizumab reinjection for polypoidal choroidal vasculopathy[J]. Br J Ophthalmol,2013; 97:617-621.
    [96]Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials-TAP report[J]. Arch Ophthalmol,1999,117(10):1329-1345.
    [97]Verteporfin in Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization-Verteporfin in Photodynamic Therapy Report 2[J]. Am J Ophthalmol,2001,131(5):541-560.
    [98]Kim M, Kim K, Kim DG, et al. Two-year results of photodynamic therapy combined with intravitreal anti-vascular endothelial growth factor for polypoidal choroidal vasculopathy [J]. Ophthalmologica,2011,226(4):205-213.
    [99]Akaza E, Yuzawa M, Mori R. Three-year follow-up results of photodynamic therapy for polypoidal choroidal vasculopathy[J]. Jpn J Ophthalmol,2011,55(1):39-44.
    [100]Kang HM, Kim YM, Koh HJ. Five-year follow-up results of photodynamic therapy for polypoidal choroidal vasculopathy [J]. Am J Ophthalmol,2013,155(3): 438-447.
    [101]Saito M, Iida T, Kano M, et al. Five-year results of photodynamic therapy with and without supplementary antivascular endothelial growth factor treatment for polypoidal choroidal vasculopathy[J]. Graefes Arch Clin Exp Ophthalmol,2014, 252(2):227-235.
    [102]Akaza E, Yuzawa M, Matsumoto Y, et al. Role of photodynamic therapy in polypoidal choroidal vasculopathy [J]. Jpn J Ophthalmol,2007,51(4):270-277.
    [103]Lee YH, Lee EK, Shin KS, et al. Intravitreal ranibizumab combined with verteporin photodynamic therapy for treating polypoidal choroidal vasculopathy [J]. Rtina,2011,31(7)::1287-1293.
    [104]Kim SJ, Yu HG. Eficacy of combined photodynamic therapy and intravitreal bevacizumab injection versus photodynamic therapy alone in polypoidal choroidal vasculopathy [J]. Retina,2011,31(9):1827-1834.
    [105]Hikichi T, Ohtsuka H, Higuchi M, et al. Factors predictive of visual acuity outcomes 1 year after photodynamic therapy in Japanese patients with polypoidal choroidal vasculopathy [J]. Retina,2011,31(5):857-865.
    [106]Sato T, Kishi S, Matsumoto H, et al. Combined photodynamic therapy with verteporfin and intravitreal bevacizumab for polypoidal choroidal vasculopathy [J]. Am J Ophthalmol,2010,149(6):947-954.
    [107]Kokame GT, Yeung L, Lai JC. Continuous anti-VEGF treatment with ranibizumab for polypoidal choroidal vasculopathy: 6-month results [J]. Br J Ophthalmol,2010,94(3):297-301.
    [1]Spaide RF, Koizμmi H, Pozonni MC, et al. Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography[J]. Am J Ophthalmol,2008,146 (6):496-500.
    [2]Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes[J]. Am J Ophthalmol,2009,147(5): 811-5.
    [3]Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes[J]. Am J Ophthalmol,2009,148(3):445-50.
    [4]Manjunath V, Taha M, Fujimoto JG, et al. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography[J]. Am J Ophthalmol, 2010,150:325-329.
    [5]Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects[J]. Invest Ophthalmol Vis Sci,2010,51(4):2173-2176.
    [6]曾婧,刘冉,张新愉,李加青,陈星,潘间英,等.正常眼后极部脉络膜厚度与性别的关系研究[J].中华眼科杂志,2012,48(12):1093-1096.
    [7]Gass JD. Drusen and disciform macular detachment and degeneration[J]. Trans Am Ophthalmol Soc,1972,70:409-436.
    [8]Bird AC, Marshall J. Retinal pigment epithelial detachment in the elderly [J]. Trans Ophthalmol SocUK,1986,105:674-682.
    [9]Slakter JS, Yannuzzi LA, Schneider U, Sorenson JA, Ciardella A, Guyer DR, et al. Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology,2000,107(4):742-753.
    [10]Yannuzzi LA, Negrao S, Lida T, Carvalho C, Rodriguez-Coleman H, Slakter J, et al. Retinal angiomatous proliferation in age-related macular degeneration[J]. Retina,2001,21(5):416-434.
    [11]Spaide RF. Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration[J]. Am J Ophthalmol,2009,147(4):644-652.
    [12]Sasahara M, Tsujikawa A, Musashi K, Gotoh N, Otani A, Mandai M, et al. Polypoidal choroidal vasculopathy with choroidal vascular hyperpermeability[J]. Am J Ophthalmol,2006,142(4):601-607.
    [13]Shiraga F, Matsuo T, Yokoe S, Takasu I, Okanouchi T, Ohtsuki H, et al. Surgical treatment of submacular hemorrhage associated with idiopathic polypoidal choroidal vasculopathy [J]. Am J Ophthalmol,1999,128(2):147-154.
    [14]Lafaut BA, Aisenbrey S, Van den Broecke C, Bartz-Schmidt KU, Heimann K. Polypoidal choroidal vasculopathy pattern in age-related macular degeneration: a clinicopathologic correlation[J]. Retina,2000,20(6):650-654.
    [15]Okubo A, Sameshima M, Uemura A, Kanda S, Ohba N. Clinicopathologic correlation of polypoidal choroidal vasculopathy revealed by ultrastructural study[J]. Br J Ophthalmol,2002,86(10):1093-1098.
    [16]Chung SE, Kang SW, Lee JH, Kim YT. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration[J]. Opthalmology, 2011,118(5):840-845.
    [17]Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S. Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy [J]. Graefes Arch Clin Exp Opthalmol,2011,249(8): 1123-1128.
    [18]Gass JD. Pathogenesis of disciform detachment of the neuroepitheliμm[J]. Am J Ophthalmol,1967,63 (3):Suppl:1-139.
    [19]Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Central Serous Chorioretinopathy[J]. Retina,2009,29 (10):1469-1473.
    [20]Kim YT, Kang SW, Bai KH. Choroidal thickness in both eyes of patients with unilaterally active central serous chorioretinopathy[J]. Eye (Lond),2011,25(12): 1635-1640.
    [21]Maruko I, Iida T, Sugano Y, Ojima A, Sekiryu T. Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy[J]. Retina,2011, 31(8):1603-1608.
    [22]李略,李东辉,杨治坤,卞爱玲,陈有信,董方田.中心性浆液性脉络膜视网膜病变眼底血管造影及脉络膜厚度分析[J].中华眼科杂志,2012,48(10):878-882.
    [23]杨丽红,田蓓,史雪辉,丁宁,周丹,魏文斌.中心性浆液性脉络膜视网膜病变的脉络膜厚度改变[J].中华眼科杂志,2012,48(10):874-877.
    [24]Laude A, Cackett PD, Vithana EN, et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration:same or different disease?[J] Prog Retin Eye Res,2010 Jan,29(1):19-29.
    [25]Kang SW, Chung SE, Shin WJ, Lee JH.. Polypoidal choroidal vasculopathy and late geographic hyperfluorescence on indocyanine green angiography[J]. Br J Ophthalmol,2009,93(6):759-764.
    [26]Gomi F, Sowa M, Sakaguchi H, Tsujikawa M, Oshima Y, Kamei M, et al. Efficacy of intravitreal bevacizumab for Polypoidal choroidal vasculopathy[J]. Br J Ophthalmol,2008,92:70-73.
    [27]Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography[J]. Invest Ophthalmol Vis Sci,2011,52(8):5536-5540.
    [28]Kim SW, Oh J, Kwon SS, Yoo J, Huh K. Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy[J]. Retina,2011,31(9):1904-1911.
    [29]Ueta T, Obata R, Inoue Y, Iriyama A, Takahashi H, Yamaguchi T, et al. Background comparison of typical age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients[J]. Ophthalmology,2009,116(12):2400-2406.
    [30]Ahuja RM, Downes SM, Stanga PE,Koh AH.C, Vingerling JR, Bird AC. Polypoidal choroidal vasculopathy and central serous chorioretinopathy [J]. Ophthalmology, 2001,108(6):1009-1010.
    [31]邓国华,周建强,周栋,孙倬.新型谱域光学相干断层扫描在中心性浆液性脉络膜视网膜病变的应用[J].中华实用眼科杂志,2010,28(2):170-172.
    [32]Silva RM, Ruiz-Moreno JM, Gomez-Ulla F, Montero JA, Gregprio T, Cachulo ML et al. Photodynamic therapy for chronic central serous chorioretinopathy: a 4-year follow-up study[J]. Retina,2013,33(2):309-315.
    [33]Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy[J]. Ophthalmology,2010,117(9):1792-1799.
    [34]Pryds A, Larsen M. Choroidal thickness following extrafoveal photodynamic treatment with verteporfin in patients with central serous chorioretinopathy [J]. Acta Ophthalmol,2012,90(8):738-743.
    [35]Maruko I, Iida T, Sugano Y, Furuta M, Sekiryu T. One-year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy [J]. Retina, 2011,31(9):1921-1927.
    [36]Maruko I, Iida T, Sugano Y, Saito M, Sekiryu T. Subfoveal retinal and choroidal thickness after verteporfin photodynamic therapy for polypoidal choroidal vasculopathy[J]. Am J Ophthalmol,2011,151(4):594-603.
    [37]Ellabban AA, Tsujikawa A, Ogino K, Ooto S, Yamashiro K, Oishi A, et al. Choroidal thickness after intravitreal ranibizumab injections for choroidal neovascularization[J]. Clin Ophthalmol,2012,6:837-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700