免耕和秸秆覆盖旱作稻田甲烷排放及甲烷产生菌群落结构和数量的变化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国南方主要的粮食作物。传统的淹水栽培水稻存在着两个重要的问题:水资源的大量消耗和甲烷的大量排放。因此,如何在保持水稻产量的同时减少水资源的消耗和甲烷的排放是研究者长期关注的热点问题。秸秆覆盖旱作可以有效减少水分的利用量,并可保持水稻的产量。然而,淹水条件下秸秆还田会显著增加甲烷排放,目前对秸秆覆盖旱作稻田甲烷排放规律的报道较少。免耕作为一种保护性耕作措施逐渐被广泛采用,最近有报道指出:免耕可以显著减少稻田甲烷的排放,但是对其中的机理研究尚在起步阶段。稻田甲烷排放是一个复杂的生理生化过程,甲烷产生菌是甲烷产生过程中必须的微生物类群,它在甲烷的产生和排放中起着重要作用,因此研究其群落结构和数量在水稻不同生育期及不同耕作模式下的变化特征可以更深入的了解甲烷的排放机理。
     本试验利用2003年在江西省余江县建立的田间试验小区主要研究免耕和秸秆覆盖旱作稻田的甲烷排放规律及影响因素,并采用PCR-DGGE和荧光原位杂交(FISH)的方法对免耕及覆盖旱作稻田水稻不同生育期土壤中甲烷产生菌的群落结构和数量的变化特征进行研究,试图通过分析揭示甲烷产生菌群落结构和数量与稻田甲烷排放的关联性。
     主要结果如下:
     1、双季稻晚稻免耕稻田甲烷排放规律及其影响因子的研究
     (1)在早稻生育期内,常耕处理的甲烷排放量为9.28g·m-2,免耕耕翻稻田的甲烷排放量为9.51g·m-2,二者之间没有显著差异;在晚稻生育期内,常耕处理的甲烷排放量为7.78g·m-2,免耕处理的甲烷排放量为3.04g·m-2,二者存在显著差异。这表明:免耕可以显著降低甲烷的排放量,免耕稻田耕翻后没有显著增加甲烷的排放。
     (2)造成免耕稻田甲烷排放量减少的主要因素可能是免耕稻田表层土壤紧实度增加、土壤中可溶性有机碳含量降低、土壤甲烷产生菌数量减少和植株根系发育受到一定的限制等。
     (3)在本研究中,晚稻的甲烷排放量低于早稻,与早稻相比常耕和免耕处理分别减少16%和68%。
     2、秸秆覆盖旱作稻田的甲烷排放规律及覆盖旱作栽培模式的生产实践意义
     (1)秸秆覆盖旱作、常规水作和无秸秆覆盖旱作稻田的在晚稻生育期内甲烷排放总量分别为:11.12g·m-2,7.78g·m-2和4.23g·m-2。与常规水作相比,覆盖旱作处理显著增加了甲烷排放,而无秸秆覆盖旱作稻田甲烷排放量显著减少。
     (2)与传统水作相比,秸秆覆盖旱作可以显著降低水分的损失,有效提高水分的利用效率、显著降低表层土壤的温度。秸秆覆盖旱作可以显著提高土壤有机质、维持和提高土壤养分含量。秸秆覆盖旱作对水稻的产量没有明显影响,同时还可以大幅度提高水稻干物质累积量。因此,在水资源缺乏的地区,秸秆覆盖旱作是一种值得考虑的替代传统水作的水稻栽培模式。
     3、不同管理措施稻田甲烷产生菌的群落结构和数量季节变化特征及其与甲烷排放的关系
     Ⅰ、传统栽培模式双季稻稻田甲烷产生菌的群落结构和数量季节变化特征
     (1)在传统栽培模式的双季稻稻田土壤中,甲烷产生菌的群落结构在早稻和晚稻生育期内均有一定的季节变化,其中有一部分主要的类群在整个生育期持续存在。早稻甲烷产生菌的丰富度,Shannon-Wiener多样性指数和均匀度分别为22,2.86和0.934,而晚稻的对应指标分别为19,2.66和0.916。
     (2)在传统栽培模式的双季稻稻田土壤中,不同属甲烷产生菌的数量在水稻的不同生育期土壤中变化剧烈,不同时期的优势种也不相同。无论早稻还是晚稻,甲烷产生菌的总数均在水稻移栽20天左右达到最大,分别为1.15×107个/克干土和7.75×106个/克干土,并显著高于水稻的其它生长时期,其它生长时期甲烷产生菌的总数没有显著的差异。与早稻相比,晚稻甲烷产生菌的数量相对较少。
     (3)无论是早稻还是晚稻,利用H2/CO2和甲酸盐的甲烷产生菌在营养类群上占优势,其次是利用醋酸盐的甲烷产生菌,再次是利用混合碳源的甲烷产生菌。Ⅱ、双季稻晚稻免耕处理稻田甲烷产生菌的群落结构和数量季节变化特征
     (1)在双季稻晚稻免耕处理稻田中,早晚稻生育期内甲烷产生菌的群落结构也存在一定的季节变化,其中也有一部分主要的类群在整个生育期内持续存在;免耕处理早稻甲烷产生菌的丰富度,Shannon-Wiener多样性指数和均匀度分别为19,2.58和0.887,而晚稻的对应指标分别为21,2.78和0.884。
     (2)在双季稻晚稻免耕处理稻田中,早稻和晚稻生育期内不同类群甲烷产生菌的数量也存在明显的季节变化。无论早稻还是晚稻,甲烷产生菌的总数也均在水稻移栽20天左右的分蘖旺盛期达到最大分别为1.14×107个/克干土和6.72×106个/克干。早稻分蘖期的甲烷产生菌数量显著高于其它采样时间的数量。而晚稻分蘖期甲烷产生菌数量仅显著高于晚稻移栽前和收获时,与其它两个生育期在数量上没有显著性差异。同样其它采样时期其数量没有显著差异。这种单季免耕的双季稻晚稻的甲烷产生菌数量也少于早稻。
     (3)与传统栽培模式相比,单季免耕模式双季稻早稻甲烷产生菌群落结构和数量均偏低,而晚稻生长季土壤中甲烷产生菌的群落结构多样性则较高,但是数量仍低于常耕处理。
     (4)免耕处理的早稻和晚稻的甲烷产生菌主要营养类型也为利用H2/CO2和甲酸盐的类群,这类甲烷产生菌显著多于其它营养类型,而利用醋酸盐和混合碳源的甲烷产生菌较少,而这二者之间没有显著性的差别。Ⅲ、秸秆覆盖旱作稻田甲烷产生茵的群落结构和数量季节变化特征
     (1)覆盖旱作稻田和无覆盖旱作稻田甲烷产生菌的群落结构也有一定的季节变化,其中也有一部分主要的类群在整个生育期持续存在。覆盖旱作稻田甲烷产生菌的群落结构比无秸秆覆盖旱作稻田的多样性,丰富度高。
     (2)覆盖旱作稻田和无覆盖旱作稻田甲烷产生菌的总数也均在水稻移栽后21天时达到最大,此时秸秆覆盖旱作稻田的甲烷产生菌数量显著高于无秸秆覆盖旱作稻田,而其它时期两个处理之间没有显著性差异。
     (3)无论是秸秆覆盖旱作稻田还是无秸秆覆盖旱作稻田,在营养类群上利用H2/CO2和甲酸盐的甲烷产生菌数量显著高于其它营养类型的数量,其次是利用混合碳源的甲烷产生菌,再次是利用醋酸盐的甲烷产生菌。
     (4)与常规淹水稻田相比,秸秆覆盖旱作稻田和无秸秆覆盖旱作稻田的甲烷产生菌的群落结构多样性和数量均偏小。但是三个处理甲烷产生菌的数量均在水稻移栽后21天达到最大,分别为7.75×106个/克干土、3.45×106个/克干土和4.21×106个/克干土。而群落结构Shannon-Wiener多样性指数的最大值出现的时间却有明显的差异。Ⅳ稻田甲烷排放与甲烷产生菌群落结构和数量的关系
     稻田甲烷排放速率与稻田土壤甲烷产生菌的数量存在显著的正相关关系,而与土壤中甲烷产生菌群落结构的丰富度和Shannon-Wiener多样性指数的相关性较小
Rice (Oryza sativa L) is the main foodstuffs in south China. However, conventional rice cultivation consumes plentiful of water and flooded paddy field is a main methane emission source. It is important to seek an alternative rice cultivation style which could keep high rice yield but lower water consumption and methane emission. Thus, many experiments were conducted to investigate the relationship between the water management and rice yield and try to explore new rice cultivation style which could keep high rice yield but low water consumption in rice cultivation. The results suggested that non-flooded with straw mulching could reduce the water consumption, and keep high crop yield or even improve the crop yield. Unfortunately, straw application could increase CH4emission largely in paddy field in previous studies. However, mid-season drainage or intermittent drainage management in paddy field could reduce the methane emission significantly. So the methane emission from non-flooded with straw mulching paddy field may much less than the flooded with straw mulching paddy field. However, there was no information about the methane emission from non-flooded with straw mulching paddy field.
     No-till is widely used as conservation tillage practice in dry land farming systems, but there were fewer reports in paddy field. The recent studies showed that no-till could reduce methane emission significantly, but the mechanism was not clearly.
     Methanogens, which belong to the Euruarchaeota in archaeal, catalyze the last step in the anoxic degradation of organic matter for the formation of CH4. So, it is important to reveal the ecology of methanogenic archaeal in paddy field soil.
     Thus, a water management field experiment was conducted in Yujiang County, Jiangxi Province in the southeast of China (N28°15, E116°55). The treatments included conventional flooded cultivation (F), non-flooded cultivation without straw mulching (NF-ZM) and with straw mulching (NF-M). We investigated the methane emission pattern in non-flooded with and without rice straw mulching paddy field. We also discussed the integrated effects of non-flooded with straw mulching rice cultivation style by investigating the rice yield, biomass accumulation, water use efficiency and soil nutrient balance.
     A tillage practice field experiment with late rice no-till was conducted in a rice-rice crop system. We investigated the methane emission pattern in a double-rice cropping system under the contrasting tillage systems. Meanwhile, we investigated the soil organic carbon and dissolved organic carbon content and soil bulk density in order to validate whether the dissolved organic carbon content reduced under no-tillage as speculated in previous studies.
     We also studied the methanogens community structure by PCR-DGGE and the population dynamic of specific species methanogens by fluorescence in situ hybridization (FISH) in different rice growing period under double rice cropping system and different field managements'paddy field.
     The main results were followed:
     First, the methane emission pattern and mechanisms in double rice cropping system under conventional and low tillage
     1. The seasonal amount methane emission in the early rice growing period of T-T and T-NT was9.28g-m-2and9.51g·m-2, respectively. The T-NT didn't increase methane emission significantly after tillage in no-tillage field. The maximum emission rate of T-T and T-NT was18.52mg·m-2·h-1and7.32mg·m-2·h-1, respectively in late rice. The methane emission rate of T-NT was significant lower than T-T in the late rice growing period analysis by paired-sample T test. The seasonal amount methane emission of T-T and T-NT was7.78g·m-2and3.04g·m-2, respectively in late rice. The T-NT leads to a61%reduction of the total methane emission compared to the T-T treatment in late rice.
     2. The no-till increased the surface soil organic matter content, but not significantly. But the increased soil organic matter reduced with the tillage and rice growth. No-till reduced soil active organic carbon content, especially the dissolved organic carbon (DOC). No-till significantly also increased the surface soil (0-10cm) bulk density. Meanwhile, the root parameters under no-till were lower than conventional tillage, and the differences were significant in last half rice growing period. The lower methane emission flux under no-till may due to the increased soil bulk density, lower dissolved organic carbon content, the lower number of methanogens and the restriction of root growth.
     3. Compared to early rice growing period, the seasonal amount methane emission in late rice of T-T and T-NT reduced16%and68%, respectively. This may be due to the five months'fallow after last season late rice and long time rain before early rice transplanting.
     Second, the methane emission pattern in non-flooded with straw mulching paddy field and the perspective of non-flooded with straw mulching rice cultivation
     1. The peak methane flux appeared approximately2-3weeks after transplanting in all the treatments. The seasonal amount methane emission of the conventional flooded cultivation (F), non-flooded cultivation without straw mulching (NF-ZM) and with straw mulching (NF-M) was7.78g·m-2,4.23g·m-2and11.12g·m-2, respectively. In comparison with F, NF-M increased seasonal CH4emissions by43%, but NF-ZM reduced seasonal CH4emissions by46%. For the non-flooded treatments, the seasonal amount methane emissions of NF-M were2.62times higher than that of NF-ZM in this study.
     2. The water content of10cm depth soil of NF-M was significant higher than that of NF-ZM in this study. Straw mulching can debase the surface soil temperature, which can reduce the damage of hot temperature on plant growth in summer. In comparison with F, the NF-M increased the soil organic matter content, soil total N and available K content significantly. The soil AH-N and Olsen-P of NF-M were also higher than F, but not significantly. All the soil nutrients investigated in this study of NF-M were significant higher than that of NF-ZM. These indicated that straw mulching could maintain and improve soil quality.
     3. The yield of the NF-M, F and NF-ZM was9.60t·ha-1,9.75t-ha'and8.15t·ha-1respectively. This indicated that straw mulching could improve rice growth and maintain rice yield under non-flooded condition. The straw mulching could mitigate the water stress under non-flooded paddy field, there were no significant differences in rice growth character compared to F. The biomasses of NF-M were significantly higher than NF-ZM and F.
     4. The straw mulching non-flooded cultivation increased the methane emission, but this cultivation style could get an almost equivalent yield with the conventional flooded cultivation style besides reducing water consumption significantly, improving soil quality and maintaining soil productivity. Furthermore, it avoided the greenhouse gas emission and atmosphere pollution during the straw management by other methods. Though non-flooded without straw mulching reduced methane emission significantly, it also reduced rice yield significantly. Thus, non-flooded with straw mulching rice cultivation style may be an alternative cultivation style in water shortage area.
     Third, The dynamic of the community structure and population of methanogens under different field management paddy fields
     I The dynamic of the community structure and population of methanogens in the double rice cropping system of south China
     1. It is proper to use primer1106F-gc-1378R for PCR amplification of16S rRNA gene fragments of methanogenic archaeal for community structure analysis. The denaturant gradient range of the gel was from32to62%. The fluorescence in situ hybridization (FISH) is a feasible method to investigate the population of methanogens.
     2. The community structure of methanogens changed greatly in different rice growing period in both early and late rice. There were several main species in all the growing period. The methanogens richness, diversity index and evenness of early rice were21.8,2.86and0.934respectively, and the parameters of late rice were18.5,2.66and0.916respectively. The community diversity of methanogens in early rice was higher than late rice.
     3. The number of different methanogens species changed greatly in different rice growing period, the key methanogens varied in different rice growing period. The peak number of methanogens of early rice was1.15×10/In/g dry soil, and the lowest number was6.28×106In/g dry soil. The peak number of methanogens of late rice was7.75×106In/g dry soil. The peak number all appeared20days after transplanting. The total number of methanogens reached highest in tillering period in both early and late rice, and significantly higher than other rice growing period. There was no significantly difference in different rice growing period except tillering period.
     4. The key physiological group of methanogens genera was using H2/CO2and formate, the followed was using acetate and then mixture substrate.
     II the dynamic of the community structure and population of methanogens in a double rice cropping system under conventional and low tillage
     1. The community structure of methanogens changed greatly in different rice growing period under no-till in both early and late rice. There were several main species in all the growing period under no-till. The methanogens richness, diversity index and evenness under no-till in early rice were19,2.58and0.887respectively, and the parameters of late rice were21,2.78and0.884respectively. These indicated that the community structure diversity of early rice was lower than that of late rice under no-till.
     2. The population of different methanogens also changed greatly in different rice growing period under no-till in both early and late rice. In early rice, the total number of methanogens increased after rice transplanting and reached highest20days after rice transplanting at the density of1.14×107Ind·g-1dry soil. Thereafter, the number decreased slowly and reached lowest at the harvest time at the density of4.93×106Ind·g-1dry soil. In late rice, the the total number of methanogens also increased after rice transplanting and reached highest20days after rice transplanting at the density of6.72×106Ind·g-1dry soil. The total number of methanogens in early rice was higher than that of late rice. The peak number all appeared20days after transplanting as conventional tillage paddy field. There were no significant differences between the different rice growing periods except tillering period (about20days after transplanting).
     3. The community strcture diversity and population under no-till was lower than conventional tillage paddy field in early rice. The community strcture diversity under no-till was higher than that of conventional tillage paddy field in late rice, but the number was also lower than conventional tillage paddy field.
     4. The key physiological group of methanogens genera was using H2/CO2and formate under no-till in both early and late rice. The followed was using acetate and mixture substrate, and there was no significant difference between them.
     HI the dynamic of the community structure and population of methanogens under non-flooded with and without straw mulching paddy field
     1. The community structure of methanogens changed greatly in different rice growing period under non-flooded with straw mulching or without straw mulching. There were also several main species in all the growing period under non-flooded condition. The methanogens richness, diversity index and evenness under NF-M were25,2.89and0.950respectively, and the parameters under NF-ZM were21,2.79and0.916respectively. These indicated that the community structure diversity under NF-ZM was lower than that of NF-M.
     2. The significant difference of the number of methanogens under NF-ZM and NF-M only appeared21days after transplanting. The total number of methanogens under NF-M was significantly higher than that under NF-ZM according the whole rice growing season.
     3. In comparison with conventional flooded paddy field, the community structure diverisity and population under non-flooded with or without straw mulching were much lower. But the peak number of the three treatments all appeared21days after rice transplanting. The maximum values of diversity index of non-flooded fields were significantly late than conventional flooded one.
     4. The key physiological group of methanogens genera was using H2/CO2and formate under both of NF-ZM and NF-M, the followed was using mixture substrate and then acetate.
     IV the relationship between methane emission and the community structure and population of methanogens in paddy field
     The methane emission rate was significant positive correation with the number of methanogens under different field managements' paddy fields, but the methane emission rate was negative correlation with the community structure of methanogens. This indicated that methane emission rate was mainly affected by the number of methanogens rather than the community structure of methanogens in paddy field.
引文
1. Abu-Hamdeh, N. H. Soil compaction and root distribution for okra as affected by tillage and vehicle parameters [J]. Soil & Tillage Research,2003,74,25-35
    2. Adhya, T.K., Bharati, K., Mohanty, S.R., et al. Methane emission from rice fields at Cuttack, India [J]. Nutr. Cycl. Agroecosys,2000,58,95-105.
    3. Ahl, C., Joergensen, R.G., Kandeler, E., et al. Microbial biomass and activity in silt and sand loams after long-term shallow tillage in central Germany [J]. Soil Till. Res.,1998,49,93-104.
    4. Ahmad, S., Li, C.,Dai, G., et al. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China [J]. Soil Till. Res.,2009,106,54-61.
    5. Ali, M.A., Lee, C.H., Lee, Y.B., et al. Silicate fertilization in no-tillage rice farming for mitigation of methane emission and increasing rice productivity [J]. Agric. Ecosyst. Environ.,2009,132, 16-22
    6. Alvarez, C.R. and Alvarez, R. Short-term effects of tillage systems on active soil microbial biomass [J]. Biol. Fertil. Soils,2000,31,157-161.
    7. Amann R I, Krumholz L, Stahl D A. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology [J]. J Bacteriol,1990,172: 762-770
    8. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol Rev,1995,59:143-169
    9. Andreae, M.O. and Merlet, P. Emission of trace gases and aerosols from biomass burning [J]. Global Biogeochem. Cycles,2001,15(4),955-966.
    10. Andreas, B., Kaiser, K., Guggenberger, G. Crop residue management effects on organic matter in paddy soils-The lignin component [J]. Geoderma,2008,146,48-57.
    11. Anthony, W., Graeme, B., Yothin, K., et al. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia [J]. Agric. Ecosyst. Environ.,2003,100,251-263.
    12. Asakawa, S., Akagawa-Matsushita, M., Koga, Y., et al. Communities of methanogenic bacteria in paddy field soils with long-term application of organic matter [J]. Soil Biology & Biochemistry, 1998,30,299-303.
    13. Asakawa, S., Hayano, K. Populations of methanogenic bacteria in paddy field soil under double cropping conditions (rice-wheat) [J]. Biol. Fertil. Soils,1995,20,113-117.
    14. Asakawa,S., Akagawa-Matsusita, M., Morii.H., et al. Characterization of Methanosarcina mazeii TMA isolated from a paddy field soil [J]. Current Microbiology,1995,31,34-38.
    15. Aulakh, M.S., Wassmann, R., Rennenberg, H. Methane emissions from rice fields—quantification, mechanisms, role of management, and mitigation options [J]. Adv. Agron.,2001,70,193-260.
    16. Bach, H.J., Hartmann, A., Schloter, M.J., et al. PCR primers and functional probes for amplification and detection of bacterial genes for extracellular peptidases in single strains and in soil [J]. J. Microbiol. Methods,2001,44,1919-1925.
    17. Balesdent, J., Chenu, C., Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage [J]. Soil Till.Res.,2000,53,215-230.
    18. Belder, P., Bouman, B.A.M., Cabangon, R., et al. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia [J]. Agric. Water Manage.,2004,65,193-210.
    19. Blevins, R.L., Frye, W. Conservation tillage:an ecological approach to soil management [J]. Adv. Agron.,1993,51,33-76.
    20. Bochner, B. "Breathprints" at the microbial level [J]. ASM News,1989,55:536-539
    21. Borneman J, Skroch P W, O.Sullivan K M, et al. Molecular microbial diversity of an agricultural soil in Wisconsin [J]. Appl Environ Microbiol,1996,62:1935-1943
    22. Bouman, B.A.M., Humphreys, E., Tuong, T.P., et al. Rice and water [J]. Adv.Agron.,2007,92, 187-237.
    23. Bouman, B.A.M., Toung, T.P. Field water management to save water and increase its productivity in irrigated lowland rice [J]. Agric. Water Manage.,2001,49,11-30.
    24. Bouman, B.A.M., Yang, X.G., Wang, H.Q., et al. Performance of aerobic rice varieties under irrigated conditions in North China [J]. Field Crops Res.,2006,97,53-65.
    25. Bouman, B.A.M. A conceptual framework for the improvement of crop water productivity at different spatial scales [J]. Agric. Syst.,2007,93,43-60.
    26. Cabangon, R.J., Toung, T.P., Abdullah, N.B. Comparing water input and water productivity of transplanted and direct-seeded rice production systems [J]. Agric.Water Manage.,2002,57,11-31.
    27. Chatzinotas A, Sandaa R A, Schnhuber W, et al. Analysis of broadscale differences in microbial community composition of two pristine forest soils [J]. Syst Appl Microbiol,1998,21:579-587
    28. Chen, H., Hou, R., Gong, Y., et al. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China [J]. Soil Till. Res.,2009,106:85-94
    29. Chidthaisong, A., Inubushi, K., Muramatsu, Y., et al. Production potential and emission of methane in flooded rice soil microcosms after continuous application of straws [J]. Microbes Environ.,1996, 11,73-78.
    30. Christensen, H., Hansen, M., Sorensen, J. Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe [J]. Appl. Environ. Microbiol,1999,65,1753-1761.
    31. Cicerone, R.J. and Oremland, R.S. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochem. Cycles2.,1988,299-327.
    32. Clegg C D, Ritz K, Griffiths B S.%G+C profiling and cross Hybridization of microbial DNA reveals great variation in belowground community structure in UK upland grasslands [J]. Appl Soil Ecol,2000,14:125-134
    33. Conant, R.T., Easter, M., Paustian, K., et al. Impacts of periodic tillage on soil C stocks:a synthesis [J]. Soil Till. Res.,2007,95,1-10.
    34. Conrad R. and Rothfuss F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium [J]. Biology and Fertility of soils,1991,12:28-32.
    35. Corton, T.M., Bajita, F.S., Grospe, R.R., et al. Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines) [J]. Nutr. Cycl. Agroecosys.,2000,58,37-53.
    36. CTIC (Conservation Tillage Information Center), Indiana.2000. What is conservation tillage? http: //www. ctic.purdue.edu/Core4/CT/Definitions.html.
    37. Das, K., Baruah K.K. A comparison of growth and photosynthetic characteristics of two improved rice cultivars on methane emission from rainfed agroecosystem of northeast India [J]. Agric. Ecosyst. Environ.,2008,124,105-113
    38. Dedysh, S.N., Derakshani, M., Liesack, W. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16SrRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris [J]. Appl. Environ. Microbiol.,2001, 67,4850-4857.
    39. Dick, W.A. Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected tillage intensity [J]. Soil Sci Soc Am J,1983,47:102-107.
    40. Dunbar J, Takala S, Barns S M, et al. Levels of bacterial community diversity in four arid soils compared by cultivation andl6srRNA gene cloning [J]. Appl Environ Microbiol,1999,65:1662-1669
    41. Earl G, HallR W, Pickup D A, et al. Analysis of methanogen diversity in a Hypereu trophic Lake Using PCR-RFLP analysis of mcDNA sequences [J]. Microb Ecol,2003,46:270-278
    42. Eickhorst, T. and Tippkotter, R. Lokalisierung und Identifizierung von Mikroorganismen in strukturierten Boden mit Hilfe der FISH-Technik. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft. Im Druck,2003.
    43. Elsas J D van, Duarte G F, Rosado A S, et al. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment [J]. J Mcrobiol Meth, 1998.32:133-154.
    44. Ermier U, Grabarse W, Shima S, et al. Crystal primers is useful methylco enzyme M reductase:the key enzyme of biological methane formation [J]. Science,1997,278:1457-1462
    45. Fan, M. S., Jiang, R. F., Liu, X. J. Interactions between non-flooded mulching cultivation and varying N inputs in rice-wheat rotations [J]. Field Crops Research,2005,91:307-318.
    46. Fetzers S., Conrad R. Effect of redox potential on methaneogenesis by Methanosacina barkeri [J]. Archives of Microbiology,1993,26:247-250.
    47. Fgri A, Torsvik V L, Goksyr J. Bacterial and fungal activities in soil:separation of bacteria and fungi by a rapid fractionated centrifugation technique [J]. Soil Biol Biochem,1977,9:105-112
    48. Finlay, B.J., Fenchel, T. An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material [J]. FEMS Microbiology Ecology,1991,85,169-180.
    49. Garland J L, Mills A. L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization [J]. Appl Environ Microbiol,1991,57:2351-2359
    50. Garland J L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization [J]. Soil Biol Biochem,1996,28:213-221
    51. Glissmann, K. and Conrad, R.. Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil [J]. FEMS Microbiol. Ecol.,1999,31,117-126.
    52. Gloeckner, F.O., Amann, R., Alfreider, A., et al. An in situ hybridization protocol for detection and identification of plank tonic bacteria [J]. Syst. Appl. Microbiol.,1996,19,403-406.
    53. Gomez, K.A., Gomez, A. A. Statistical Procedures for Agricultural Research, second ed. John Wiley and Sons, New York,1984,680 pp.
    54. GroBkopf, R., Janssen, P. H., Liesack, W. Diversity and structure of methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval [J]. Applied and Environmental Microbiology,1998,64,960-969.
    55. Guo, J.P., Zhou, C.D. Greenhouse gas emissions and mitigation measures in Chinese agroecosystems [J]. Agricultural and Forest Meteorology,2007,142,270-277.
    56. Gupta, V. Defining soil quality for a sustainable environment [J]. Soil Sci. Soc. A m., Inc. Wisconsin, USA,1994,193-200.
    57. Haack S K, Garchow H, Klug M J, et al. Analysis of factor affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns [J]. Appl Environ Microbiol,1995,61:1458-1468
    58. Haack S K, Garchow H, Odelson D A, et al. Accuracy, reproducibility, and interpretation of fatty acid methylester profiles of model bacterial communities [J]. Appl Environ Microbiol,1994, 60:2483-2493
    59. Hahn, D., Amann, R. I., Ludwig, W., et al. Detection of microorganisms in soil after in situ hybridization with ribosomal-RNA-targeted, fluorescently labeled oligonucleotides [J]. J. Gen. Microbiol.,1992,138,879-887.
    60. Hamza, M.A., Anderson, W.K. Soil compaction in cropping systems. A review of the nature causes and possible solutions. Soil Till. Res.,2005,82,121-145.
    61. Hanaki, M., Toyoaki, I., Saigysa, M. Effect of no-tillage rice cultivation on methane emission in three paddy fields of different soil types with rice straw application [J]. Jpn. Soc. Soil Sci. Plant Nutr.,2002,73,135-143.
    62. Harada, N., Otsuka, S., Nishiyama, M., et al. Influences of indigenous phototrophs on methane emissions from a straw-amended paddy soil. Biol. Fertil. Soils,2005,41,46-51.
    63. Havlin, J.L., Kissel, D.E., Maddux, L.D., et al. Crop rotation and tillage effects on soil organic carbon and nitrogen [J]. Soil Sci. Soc. Am. J.,1990,54,448-452.
    64. Heard, J., Cavers, C.,Adrian, G. Up in smoke—nutrient loss with straw burning [J]. Better Crops, 2006,90,10-11.
    65. Hesselsoe, M., Brandt, K.K., S(?)rensen, J. Quantification of ammonia oxidizing bacteria in soil using microcolony technique combined with fluorescence in situ hybridization (MCFU-FISH) [J]. FEMS Microbiol. Ecol.,2001,38,87-95.
    66. Heuer H, Smalla K. Evaluation of community level catabolic profiling using Biolog GN microplates to study microbial community changes in potato philosopher [J]. J Microbiol Meth, 1997,30:49-61
    67. Hill G T, Mitkowski N A, Aldrich W L, et al. Methods for assessing the composition and diversity of soil microbial communities [J]. Appl Soil Ecol,2000,15:25-36
    68. Huang Y., Sass R. L., Fisher F. M. Methane emission from Texas rice paddy soils. Seasonal contribution of rice biomass production to CH4 emission [J]. Global Change Biology,1997,3: 491-500.
    69. Huang, X.Y., Xu, Y.C., Shen, Q.R., et al. Water use efficiency of rice crop cultivated under water logged and aerobic soil mulched with different materials [J]. J. Soil Water Conserv.,2003,17, 140-143.
    70. Insam H, Amor K, Renner M, et al. Changes in functional abilities of the microbial community during composing of manure [J]. Microbiol Ecol,1996,31:77-87
    71. Intergovernmental Panel on Climate Change (IPCC). Changes in atmospheric constituents and in radiative forcing. In:Solomon, S., Qin, D., Manning, M.(Eds.), Climate Change 2007:The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA.
    72. Jenkinson, D. S. How straw incorporation affects the nitrogen cycle, In:Hardcastle J. ed. Straw, Soil and Science. AFRC. London, pp.,1985,14-15.
    73. Johnsen K, Nielsen P. Diversity of pseudomonas strains isolated with King's B and Gould'S1 agar determined by repetitive extra genic palindrome-Polymerase chain reaction,16SrDNA sequencing and fourier transform infrared spectroscopy characterization [J]. FEMS Microbiol Lett,1999, 173:155-162
    74. Joulian C, Ollivier B, Patel B K C, et al. Phenotypic and phylogenetic characterization of dominant culturable methanogens isolated from rice field soils [J]. FEMS Microbiology Ecology,1998,25, 135-145
    75. Kato, M.T., Field, J.A., Lettinga, G. High tolerance of methanogens in granular sludge to oxygen [J]. Biotechnology and Bioengineering,1993,42,1360-1366.
    76. Khalil M.A.K., Rasmussen R.A., Shearer M.J., et al, Factors affecting methane emission from rice fields [J]. Journal of Geophysical Research,1998,103:25219-25231.
    77. Kludze H.K., Delanne R.D., Patrick W.H. Aerenchyma formation and methane and oxygen exchange in rice [J]. Soil Sci. Soc.Am.J.,1993,57:386-391.
    78. Koch, H.J., Stockfisch, N. Loss of soil organic matter upon ploughing under a loess Soil after several years of conservation tillage [J]. Soil Till. Res,2006,86:73-83
    79. Konopka A, Oliver L, Turco R F J. The use of carbon substrate utilization patterns in environmental and ecological microbiology [J]. Microbiol Ecol,1998,35:103-115.
    80. Kowalchuk G A, Gerards S, Woldendorp J W. Detection and characterization of fungal infections of Ammophila arenaria (Marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18SrDNA [J]. Appl Environ Microbiol,1997,63:3858-3865.
    81. Kroppenstedt R M. The genus Nocardiopsis. In:Balows A, Trper H G, Dworkin M eds. The Prokaryotes. New York, Berlin, Heidelberg:Springer,1992,1139-1156
    82. Kru'ger, M., Frenzel, P., Kemnitz, D., et al. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field [J]. FEMS Microbiology Ecology,2005,51, 323-331.
    83. Lal, R. Conservation tillage for sustainable agriculture:tropical versus temperate environments [J]. Adv. Agron,1989,42,185-197.
    84. Lechevalier M P. Lipids in bacterial taxonomy. In:O. Leary W Med. Practical Handbook of Microbiology [J]. Boca Raton, Fla:CRC,1989,455-561.
    85. Li, C.L., Zhang, J.D., Hou, Z.Q. Techniques for high yield cultivations of several main crops. (Eds.) China Scientific and Technological Publishing House Beijing (In Chinese),1993.
    86. Li, C.S., Qiu, J., Frolking, S., et al. Reduced methane emissions from large scale changes in water management in China's rice paddies during 1998-2000 [J]. Geophys. Res. Lett,2002,29,53-70.
    87. Lindau C.W., Bollich P.K., Delaune R.D. et al. Effect of urea fertilizer and environmental factors on methane emission from a Louisiana, USA rice field [J]. Plant and Soil,1991,136:195-203.
    88. Liu W T, Marsh T L, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16srRNA [J]. Appl Environ Microbiol,1997,63:4516-4522
    89. Liu, X. J., Wang, J. C., Lu, S. H. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems [J]. Field Crops Research,2003,83: 297-311.
    90. Leadbetter, J.R., Breznak, J.A. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Applied and Environmental Microbiology,1996,62,3620-3631.
    91. Seedorf, H., Dreisbach, A., Hedderich, R., Shima, S., Thauer, R.K. F42oH2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F42o-dependent enzyme involved in O2 detoxification. Archives of Microbiology,2004,182,126-137.
    92. Lopez-Fando C., Dorado, J., Pardo M.T. Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain [J]. Soil Till. Res,2007,95, 266-276.
    93. Lueders, T. and Friedrich, M. Archaeal population dynamics during sequential reduction processes in rice field soil [J]. Appl. Environ. Microbiol.,2000,66,2732-2742.
    94. Ma, J., Li, X.L., Xu, H., et al. Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field [J]. Aust. J. Soil Res.,2007,45,359-367.
    95. Ma, J., Ma, E.D., Xu, H., et al. Wheat straw management affects CH4 and N2O emissions from rice fields [J]. Soil Biol. Biochem.,2009,41,1022-1028.
    96. Ma, J., Xu, H., Yagi, K., et al. Methane emission from paddy soils as affected by wheat straw returning mode [J]. Plant Soil,2008,313,167-174.
    97. Margarita Marti'n, Alicia Gibello, Carmen Lobo, et al. Application of fluorescence in situ hybridization technique to detect simazine-degrading bacteria in soil samples [J]. Chemosphere, 2008,71,703-710.
    98. Martin J K. Comparison of agar media for counts of viable bacteria [J]. Soil Biol Biochem,1975, 7:401-402
    99. Martin Kruger, Peter Frenzel, Dana Kemnitz, et al. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field [J]. FEMS Microbiology Ecology, 2005,51,323-331
    100. McCaig A E, Grayston S J, Prosser J I, et al. Impact of cultivationon characterization of species composition of soil bacterial communities [J]. FEMS Microbiol Ecol,2001,35:37-48
    101. Meyer, K., Joergensen, R.G., Meyer, B. The effects of reduced tillage on microbial biomass C and P in sandy loess soils [J]. Appl. Soil Ecol,1996,5,71-79.
    102. Minami K., Mosier A.R., Sass R.L. (eds.).CH4 and N2O:Global emission and controls from rice fields and other agricultural and industrial sources[C].NIAES Series 2, Tokyo:Yokendo Publishers, 1994,41-53,65-77.
    103. Minamikawa, K., Sakai, N. The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan [J]. Agric. Ecosyst. Environ,2005,100, 397-407.
    104. Miura, Y., Kanno, T. Emissions of trace gases (CO2, CO, CH4 and N2O) resulting from rice straw burning [J]. Soil Sci. Plant Nutr,1997,43,849-854.
    105. Moeseneder M M, Arrieta J M, Muyzer G, et al. Optimization of terminal restriction fragment length Polymorphism analysis for complex marine bacteria plankton communities and comparison with denaturing gradient gel electrophoresis [J]. Appl Environ Microbiol,1999,65:3518-3525.
    106. Muyzer G.DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Current Opinion Microbiol,1999,2:317-322
    107. Nbel U, Engelen B, Felske A, et al. Sequence heterogeneities of genes encoding 16SrRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis [J]. J Bacteriol,1996, 178:5636-5643
    108. Neue, H. U. and Roger, P. A. Rice agriculture:factors controlling emissions. In:Atmospheric Methane. Its Role in the Global Environment (Khalil, M.A.K., Ed.),2000, pp.134-169. Springer, Berlin.
    109. Nohynek L J,Nurmiaho-Lasslla E L, Suhonen E L, et al. Description of chlorophenol-degrading Pseudomonassp. Strains kfl, kf3, and nkfll as a new species of the genus Sphingomonas, SphIngomonas subarctica sp [J]. Nov Int J Syst Bacteriol,1996,46:1042-1055
    110. Ogram A. Soil molecular microbial ecology at age 20:Methodological challenges for the future [J]. Soil Biol Biochem,2000,32:1499-1504
    111. Omonode, R.A., Vyn, T.J., Smith, D.R., et al. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations [J]. Soil Till. Res.,2007, 95,182-195
    112. Ovres L, Torsvik V. Microbial diversity and community structure in two different agricultural soil communities [J]. Microbiol Ecol,1998,36:303-315
    113. Parashar D.C., Gupta P.K., Rai J., et al. Effect of soil temperature on methane emission from paddy fields [J]. Chemosphere,1993,26:247-250.
    114. Parker, D. T., Larson, W. E. Nitrification as affected by temperature and moisture content of mulched soils [J]. Soil Science Socity of America Proceeding,1962,26:238-242.
    115. Peng, S.B., Shen, K.R., Wang, X.C., et al. A new rice cultivation technology:plastic film mulching [J]. Int. Rice Res. Notes,1999,24,9-10.
    116. Pernthaler, A., Pernthaler, J., Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria [J]. Appl. Environ. Microbiol,2002, 68:3094-3101.
    117. Phillips, R. E., Phillips, S.H. No-tillage Agriculture, principles and practices. Published by Van Nostrand Reinhold Company Inc,1983,66-67.
    118. Ponder F Jr, Tadros M. Phospho lipid fatty acids in forest soil four years after organic matter removal and soil compaction [J]. Appl Soil Ecol,2002,19:173-182
    119. Qin, J., Hu, F., Zhang, B., et al. Role of straw mulching in non-continuously flooded rice cultivation [J]. Agric. Water Manage,2006,83,252-260.
    120. Rao, D. N., Mikkelsen, D. S. Effect of rice straw incorporation on rice plant growth and nutrition [J]. Agronomy Journal,1976,68:752-755.
    121. Raskin, L., Poulsen, L. K., Noguera, D.R., et al. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization [J]. Appl. Environ. Microbiol., 1994,60,1241-1248.
    122. Rasmussem, P. E., Collins, H. P. Long-term impacts of tillage, fertilizer, and crop residues on soil organic matter in temperate semi-arid regions [J]. Advanced Agronomy,1991,45:93-134.
    123. Ratledge C, Wilkinson S G.1988. Microbial Lipids. London:Academic Press.
    124. Roper, M. M., Ladha, J. K. Biological N2 fixation by heterotrophic and phototropic bacteria in association with straw [J]. Plant and Soil,1995,174:211-224.
    125. Sandaa R A, Torsvik V, Enger, et al. Analysis of bacterial communities in heavy metal-contaminated soil at different levels of resolution [J]. FEMS Microbiol Ecol,1999,30:237-251.
    126. Sass, R. L., Fisher, F. M., Wang, Y. B., et al. Methane emission from rice fields:the effect of floodwater management [J]. Global Biogeochem. Cycles,1992,6,249-262.
    127. Sass, R.L., Fisher, F.M. Methane emissions from rice paddies:a process study summary [J]. Nutr. Cycl. Agroecosyst.,1997,49:119-127
    128. Sass, R.L., Fisher, F.M., Tuner, F.T., et al. Methane emission from rice fields as influenced by solar radiation, temperature and straw incorporation [J]. Global Biogeochem. Cycles.,1991,5,335-350.
    129. Schu'tz, H., Seiler, W., Conrad, R. Processes involved information and emission of methane in rice paddies [J]. Biogeochemistry,1989,7,33-53.
    130. Shah H N. The genus Bactericides and related taxa.In:Balows A, Trper H G, Dworkin M eds.The Prokaryotes.New York, Berlin,Heidelberg:Springer,1992,3593-3608
    131. Shannon, C.E. and Weaver, W. The Mathematical Theory of Communication. University of Illinois Press, Urbana, I. L.,1963.
    132. Shima, S., Netrusov, A., Sordel, M., et al. Purification, characterization, and primary structure of a mono functional catalase from Methanosarcina barkeri[J]. Archives of Microbiology,1999,171, 317-323.
    133. Shima.S., Sordel-Klippert, M., Brioukhanov, A., et al. Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus [J]. Applied and Environmental Microbiology,2001, 67,3041-3045.
    134. Smalla K, Wachtendorf U, Heuer H, et al. Analysis of BIOLOG GN substrate utilization patterns by microbial communities [J]. Appl Environ Microbiol,1998,64:1220-1225
    135. Smalla, K., Cresswell, N., Mendonca-Hagler, L.C., et al. Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J. Appl. Bacteriol.,1993,74,78-85.
    136. Smil, V. Crop residues:Agriculture's largest harvest. Bioscience,1999,49,299-308.
    137. Smith, P., Goulding, K.W., Smith, K.A., et al. Enhancing the carbon sink in European agricultural soils:including trace gas fluxes in estimates of carbon mitigation potential [J], Nutr. Cycl. Agroecosys.,2001,60,237-252.
    138. Srheim R, Torsvik V L, Goksyr J. Phonotypical divergences between populations of soil bacteria isolated on different media [J]. Microbiol Ecol,1989,17:181-192
    139. Streets, D.G., Yarber, K.F., Woo, J.H., et al. Biomass burning in Asia:annual and seasonal estimates and atmospheric emissions [J]. Global Biogeochem. Cycles.,2003,17(4), GB1099
    140. Sundh I, Nilsson M, Borg P. Variation in microbial community structure in two boreal peatlands as determined by analysis of phosphor lipid fatty acid profiles [J]. Appl Environ Microbiol,1997,63: 1476-1482
    141. Svensson B. H. Different temperature optima in methane formation when enrichments from acid peat are supplement with acetate or hydrogen [J]. Appled Environmental Microbiology,1984,48: 394-398.
    142. Thauer R K. Biochemistry of methanogensis:attribute to Marjory Stephenson [J]. Microbiology, 1988,144,2377-2406
    143. Torsvik V, Daae F L, Goksoyr J. Extraction, purification, and analysis of DNA from soil bacteria. In: Trevors J T, van Elsas J D eds. Nucleic Acids in the environment:Methods and Applications. New York, Berlin, Heidelberg:Springer,1995,9-48
    144. Torsvik V, Daae F L, Sandaa R A, et al. Novel techniques for analyzing microbial diversity in natural and perturbed environments [J]. J Biotech,1998,64:53-62
    145. Torsvik V, Ovres L. Microbial diversity and function in soil:from genes to ecosystems [J]. Current Opinion Microbiol,2002,5:240-245
    146. Torsvik V, Salte K, Srheim R, et al. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria [J]. Appl Environ Microbiol,1990,56:776-781
    147. Tsai, Y.L., Olson, B. H. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction [J]. Appl. Environ. Microbiol.,1992,58,2292-2295.
    148. Tunlid A, White D C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial community in soil [J]. In:Stotzky G, Bollag J M eds. Soil Biochemistry. New York:Dekker,1991,229-262.
    149. Turley, D.B., Phillips, M.C., Johnson, P., et al. Long-term straw management effects on yield of sequential wheat (Triticum aestivum L.) crops in clay and silty clay loam soils in England [J]. Soil Till. Res.,2003,71,59-69.
    150. Tyagi, L., Kumari, B., Singh, S.N. Water management—A tool for methane mitigation from irrigated paddy fields [J]. Sci. Total. Environ.,2010,408,1085-1090.
    151. Van Gestel, M., Merckx, R., Vlassak, K. Microbial Biomass Responses to Soil drying and rewetting: The Fate of Fast- and Slow-Growing Microorganisms in Soils from differnt Climates [J]. Soil Biol. Biochem.,1993,25:109-123.
    152. Wang M. X., Shangguan X. J., Shen R. X., et al. Methane production, emission and possible control measures in the rice agriculture [J]. Advances in Atmospheric Sciences,1993,10(30):307-314.
    153. Wang Z. Kludze C. R. Patrick W. H. et al. Soil characteristic affecting methane production and emission in flooded rice. In:Peng S. et al. (ed.), Climate Change and Rice[C].Springer-Verlag Berlin Heidelberg,1995,81-90.
    154. Wang Z.P., Delaune R. D., Masscheleyn P.H., et al. Soil redox and pH effects on methane production in a flooded rice soil [J]. Soil Sci. Soc.Am.J.,1993,57:382-385.
    155. Wang, Y., Wang, Y. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem [J]. Adv. Atmos. Sci.,2003,20,842-844.
    156. Wassmann, R., Papen, H., Rennenberg, H. Methane emission from rice paddies and possible mitigation strategies [J]. Chemosphere,1993,26,201-217.
    157. Watanabe Takeshi, Canyani Vita Ratri, Murase Jun, et al. Methanogenic archaeal communities developed in paddy fields in the Kojima Bay polder, estimated by denaturing gradient gel electrophoresis, real-time PCR and sequencing analyses [J]. Soil Science and Plant Nutrition.2009, 55:73-79
    158. Watanabe T, Kimura M, Asakawa S. Community structure of methanogenic archaea in paddy field soil under double cropping (rice-wheat) [J]. Soil Biol. Biochem.,2006,38,1264-1274.
    159. Watanabe T, Kimura M, Asakawa S. Dynamics of methanogenic archaeal communities based on rRNA analysis and their relation to methanogenic activity in Japanese paddy field soils [J]. Soil Biol. Biochem.,2007,39,2877-2887.
    160. Watanabe, T., Asakawa, S., Nakamura, A., et al. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil [J]. FEMS Microbiol. Lett.,2004,232, 153-163.
    161. Watson, R.T., Meira Filho, L.G., Sanhueza, E. et al. Greenhouse gases:sources and sinks. In: Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment (Houghton, J. T., Callander, B. A. and Varney, S. K., Eds.), pp.25-46. Cambridge University Press, Cambridge.
    162. Weber Sabine, Lueders Tillmann, Friedrich Michael W., et al. Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil [J]. FEMS Microbiology Ecology,2001,38: 11-20.
    163. Weber, S., Stubner, S. and Conrad, R. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil [J]. Appl. Environ. Microbiol,2001,67,1318-1327.
    164. Wells G B, Dickson R C, Lester L R. Isolation and composition of inositol phosphoryl ceramide-type sphingo lipids of hyphal forms of Candida albicans [J]. J Bacteriol,1996,178:6223-6226
    165. Wiese, A. F., Unger, P. Soil water storage and use. Proc. of a Symposium on limited and no-tillage crop production [J]. USDA Southwestern Great Plains Res. Center,1974, pp.17-26.
    166. Wilson, I. G. Inhibition and facilitation of nucleic acid amplification [J]. Appl. Environ. Microbiol, 1997,63,3741-3751.
    167. Witt, C.,Cassman, K.G., Olk, D.C., et al. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems [J]. Plant Soil,2000,225, 263-278.
    168. Xu H., Cai Z. C. and Jia Z.J. Effect of soil water contents in the non-rice growth season on CH4 emission during the following rice-growing period [J]. Nutrient Cycling in Agroecosystems,2002, 64:101-110.
    169. Xu, S.R., Jaffe P, Mauzerall D.L. A process-based model for methane emission from flooded rice paddy systems [J]. Ecol. Model.,2007,205 (3-4),475-491.
    170. Yagi K. Effects of organic matter application on methane emission from some Japanese paddy field [J]. Soil science and plant Nutrition,1990,36(4):599-610.
    171. Yagi K., Tsuruta H., Minami K., et al. Methane emission from Japanese and Thai paddy fields. In: Minami K., Mosier A R, Sass R L (eds.).CH4 and N2O:Global emission and controls from rice fields and other agricultural and Industrial sources[C]. NIAES Series 2, Tokyo:Yokendo Publishers, 1994,41-53.
    172. Yagi, K., Tsurutal, H., Minami, K. Possible options for mitigating methane emission from rice cultivation. Nutr [J]. Cycle Agroecosyst.,1997,49,213-220.
    173. Yang, S. S., Chang, H. L. Effect of environmental conditions on methane production and emission from paddy soil [J]. Agric. Ecosyst. Environ.,1998,69,69-80.
    174. Yang, X., Shang, Q., Wu, P., et al. Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan, China [J]. Agric. Ecosyst. Environ.,2010,137,308-316
    175. Zarda, B., Hahn, D., Chatzinotas, A., et al. Analysis of bacterial community structure in bulk soil by in situ hybridization [J]. Arch. Microbiol.,1997,168,185-192.
    176. Zelles L, Bai Q Y, Rackwitz R, et al. Determination of phospholipid-and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structure in soils [J]. Biol Fert Soils,1995,19:115-123
    177. Zelles L. Fatty acid patterns of phosphor lipids and lipopolysaccharides in the characterization of microbial communities in soil:A review [J]. Biol Fert Soils,1999,29:111-129.
    178. Zou, J.W., Huang, Y., Jiang, J.Y., et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:effects of water regime, crop residue, and fertilizer application [J]. Global Biogeochem. Cycles,2005,19, GB 2021.
    179. Zou, J.W., Liu, S.W., Qin, Y.M., et al. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China [J]. Agric. Ecosyst. Environ.2009,129,516-522.
    180.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    181.蔡祖聪,沈光裕,颜晓元.土壤质地、温度和对稻田甲烷排放的影响[J].土壤学报,1998,35(2): 145-154.
    182.蔡祖聪,谢德体,徐华等.冬灌田影响水稻生长期甲烷排放量的因素分析[J].应用生态学报,2003,14(5):705-709.
    183.蔡祖聪.水分类型对土壤排放的温室气体组成和综合温室效应的影响[J].土壤学报,1999,36(4):484-491.
    184.曹云英,朱庆森,郎有忠,等.水稻品种及栽培措施对稻田甲烷排放的影响[J].江苏农业研究,2000,21(3):22-27.
    185.陈德章,王明星,上官行健,等.我国西南地区的稻田CH4排放[J].地球科学进展,1993,8(5):47-54.
    186.陈美慈,闵航,钱泽澎.水稻田中产甲烷细菌数量和优势种[J].土壤学报,1993,30(4):432-437
    187.陈美慈,闵航,钱泽澎.水稻田中占优势产甲烷细菌的分离和特性[J].浙江农业大学学报,1992,18(3):79-84
    188.陈美慈,闵航,吴伟祥,等.不同类型土壤中甲烷释放特性和产甲烷菌数量的研究[J].植物营养与肥料学报,1996,2(1):79-83.
    189.陈苇卢,婉芳,段彬伍.稻草还田对晚稻稻田甲烷排放的影响[J].土壤学报,2002,39(2):170-176.
    190.陈晓蕾,张忠泽.微生物的ARDRA检测[J].微生物学杂志,1999,9(4):40-43
    191.陈玉泉.稻田甲烷的产生及其与环境的关系[J].江苏农业科学,2003(3):91-93.
    192.陈中云,闵航,吴伟祥.不同离子对水稻田土壤甲烷氧化活性的研究[J].植物营养与肥料,2002,8(2):219-223.
    193.陈中云,闵航,陈美慈,等.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J].生态学报,2001,21(9):1498-1505.
    194.陈宗良,邵可声,李德波,等.控制稻田甲烷排放的农业管理措施研究[J].环境科学研究,1994,7(1):1-10
    195.崔国贤,沈其荣,崔国清,等.水稻旱作及对旱作环境的适应性研究进展[J].作物研究,2001,3:70-76.
    196.丁维新,蔡祖聪.土壤甲烷氧化菌及水分状况对其活性的影响[J].中国生态农业学报,2003,11(1):94-97.
    197.东秀珠,洪俊华.原核微生物的多样性[J].生物多样性,2001,9(1):18-24
    198.杜金泉,方树安.水稻少免耕技术研究Ⅰ,稻作少免耕类型,生产效应及前景的探讨[J].西南农业学报,1990,3:26-32.
    199.杜金泉,帅志希.水稻少免耕技术研究Ⅱ,高产的系列配套技术[J].西南农业学报,1992,5:18-22.
    200.段彬伍,郭望模.种植杂交稻对甲烷排放及土壤产甲烷菌的影响[J].农业环境保护,1999,18(5):203-208
    201.段彬伍,卢婉芳,陈茉,等.种植杂交稻对甲烷排放及土壤产甲烷菌的影响[J].农业环境保护,1999,18(5):203-208.
    202.范明生.水旱轮作系统养分资源综合管理研究[D].博士学位论文,中国农业大学,2005.
    203.高明.稻田长期垄作免耕下土壤肥力及环境效应的研究[D].博士学位论文,西南农业大学,2001
    204.韩琳,史奕,李建东,等.FACE环境下不同秸秆与氮肥管理对稻田土壤产甲烷菌的影响[J].农业环境科学学报,2006,25(2):322-325.
    205.韩鲁佳,闫巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18:87-91.
    206.何代元.水稻地膜覆盖增产原因及主要栽培技术[J].中国稻米,1997,3:21-27.
    207.侯爱新,陈冠雄,吴杰,等.稻田执和排放关系及其微生物学机理和一些影响因子[J].应用生态学报,1997,8(3):270-274.
    208.候光炯.大力推行“自然免耕”技术在经济上和科学上的意义.见:候光炯著.候光炯土壤学论文选集.成都:四川科学技术出版社,1990,333-339.
    209.胡锋,梁永超,李辉信.覆膜旱作稻田土壤肥力演变与土壤管理问题.中国土壤学会编,迈向21世纪的土壤科学(综合卷),南京:河海大学出版社,1999,265.
    210.黄勤,魏朝富,谢德体,等.不同耕作制度对稻田甲烷排放通量的影响[J].西北农业大学学报,1996,18(5):436-439.
    211.黄新宇,徐阳春,沈其荣,等.不同地表覆盖旱作水稻和水作水稻水分利用效率的研究[J].水土保持学报,2003,17:140-143.
    212.黄耀.地气系统碳氮交换——从实验到模型[M].北京:气象出版社,2003.
    213.江泽普,黄绍民,韦广泼,等.2007.广西农业科学.38:65-67.
    214.焦桂枝,马照民.农作物秸秆的综合利用[J].中国资源综合利用,2003,1:19-21
    215.金千瑜,欧阳由南.我国发展节水型稻的若干问题探讨[J].中国稻米,1999,1:9-12.
    216.李道西.控制灌溉稻田甲烷排放规律及其影响机理研究[D].南京:河海大学,2007.
    217.李晶,王明星,陈德章.水稻田甲烷的减排方法研究及评价[J].大气科学,1998,22(3):354-362.
    218.李荣刚,夏源陵,吴安之,等.太湖地区水稻节水灌溉与氮素淋失[J].河海大学学报,2001,29:21-25.
    219.粱永超,胡锋,杨茂成,等.水稻覆膜旱作高产节水机理研究[J].中国农业科学,1999,32:26-32.
    220.林匡飞,项雅玲,姜达炳,等.湖北地区稻田甲烷排放量及控制措施的研究[J].农业环境保护,2000,19(5):267-270
    221.卢维盛,廖宗文,张建国,等.不同水旱轮作方式对稻田甲烷排放影响的研究[J].农业环境保护,1999,18(5):200-202.
    222.卢维盛,张建国,廖宗文,等.不同水分管理及耕作制度对广州地区稻田排放的影响[J].华南农业大学学报,1997,18(3):57-61.
    223.骆世明.农业生态学[M].北京:中国农业出版社,2001,72-96
    224.闵航,陈美慈,钱泽澍.水稻田的甲烷释放及其生物学机理[J].土壤学报,1993;30(2):125-129.
    225.闵航,陈美慈,钱泽澍.水稻田甲烷的排放及其生物学机理[J].土壤学报,1993,30:125-130.
    226.牟洁,孙宝盛,陈谊.利用PCR-DGGE研究膜生物反应器中微生物的群落结构[J].环境科学学报,2010,30(4):729-734.
    227.钱晓晴,沈其荣,王娟娟,等.旱作条件下不同水稻品种的响应特征[J].作物学报,2004,30:555-562.
    228.钱晓晴,沈其荣,徐勇,等.不同水分管理方式下水稻的水分利用效率与产量[J].应用生态学报,2003,14:399-404.
    229.钱泽澍,闵航.沼气发酵微生物学[M].杭州:浙江科学技术出版社,1986:210-230.
    230.秦江涛.水稻不同栽培模式的节水效应、生产力特征及土壤微生物学性状研究[D].南京:南京农业大学,2007.
    231.任丽新,王庚辰,张仁健.成都平原稻田甲烷排放的实验研究[J].大气科学,2002,26(6):731-743.
    232.上官行健,王明星,沈任兴.稻田的排放规律[J].地球科学进展,1993,8(5):23-36.
    233.上官周平,邵明安.21世纪农业高效用水技术展望[J].农业工程学报,1999,15:17-21.
    234.沈康荣,汪晓春,罗显树.水稻地膜覆盖湿润栽培效果初报[J].湖北农业科学,1997,1:6-8.
    235.孙寓姣,左剑恶,李建平,等.厌氧颗粒污泥中微生物种群变化的分子生物学解析[J].中国环境科学,2006,26(2):183-187.
    236.陶战,杜道灯,周毅.不同农作措施对稻田甲烷排放通量的影响[J].农业环境保护,1995,14(3):101-104.
    237.王维,杨建昌,朱庆森.控水条件下水稻旱育秧苗的形态生理特征[J].江苏农业研究,2001,22:16-20.
    238.王栋.覆草旱作条件下稻田土壤肥力性状、碳氮动态及水稻生产力特征研究[D].南京:南京农业大学,2010.
    239.王洪英,王艳丽.水稻秸秆还田技术[J].土壤肥料,2004,168:22-23.
    240.王明权,李效栋,景明.覆盖免耕的节水效应与土壤温度的变化[J].甘肃农业大学学报,2007,42:119-122.
    241.王胜春,刘可星,游植麟.不同母质发育的水稻土中铁、锰对甲烷排放的影响[J].农村生态环境,1998,14(1):52-54.
    242.王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望.微生物学杂志[J].2002,22.1.36-39.
    243.王殳屹,韩琳,史奕,等.FACE对水稻土产甲烷菌和甲烷氧化菌种群及其活性的影响[J].十壤,2006,38(6):768-773.
    244.王英.淹水和旱作稻田土壤中微生物群落多样性的研究[D].南京:南京农业大学,2006.
    245.王增远,徐雨昌,李震,等.稻田甲烷排放及其控制[J].作物杂志,1998,(3):10-11
    246.王增远,徐雨昌,李震,等.水稻品种对稻田甲烷排放的影响[J].作物学报,1999,25(4):441-446.
    247.巫伯舜,谢秀先.水稻的旱种技术[M].农业出版社.1985.
    248.吴良欢,祝增荣,梁永超,等.水稻覆膜旱作节水节肥高产栽培技术[J].浙江大学学报(农业与生命科学版),1999,25:41-42.
    249.吴一才,宋嵩山,王玉山,等.水稻覆膜旱作研究:稻田生产的结构改革与发展[M].北京:知识出版社,1993,149-165.
    250.肖新,赵言文,胡锋,等.南方丘陵典型季节性干旱区水稻节水灌溉的密肥互作效应研究[J].干旱地区农业研究,2005,23:73-79.
    251.谢德体,魏朝富.水田自然免耕技术的研究[J].耕作与栽培,1986,4:1-7.
    252.邢薇,左剑恶,孙寓姣,等.利用FISH和DGGE对产甲烷颗粒污泥中微生物种群的研究[J].环境科学,2006,27(11):2268—2272.
    253.熊效振,沈壬兴,王明星,等.太湖流域单季稻的甲烷排放研究[J].大气科学,1999,23(1):9-18.
    254.徐星凯,周礼恺.CH4土壤源氧化的主要影响因子与减排措施[J].生态农业研究,1999,7(2):18-22.
    255.杨建昌,王志琴,刘立军,等.旱种水稻生育特性与产量形成的研究[J].作物学报,2002,28:1-17.
    256.岳进,梁巍,吴杰,等.黑土稻田与排放及减排措施研究[J].应用生态学报,2003,14(11):2015-2018.
    257.张锡洲,李廷轩,余海英,等.水旱轮作条件下长期自然免耕对土壤理化性质的影响[J].水土保持学报,2001,20:145—147.
    258.赵其良,肖明贤.日本东北地区水稻旱作地膜覆盖栽培技术[J].辽宁农业科学,1982,3:52-56.
    259.赵云江.论水稻节水高产技术[J].垦殖与稻作,2001,4:10-12.
    260.郑聚锋.长期不同施肥下南方代表性水稻土有机碳矿化与CO2、CH4产生研究[D].南京:南京农业大学,2007.
    261.郑循华,干明星,王跃思,等.华东稻田CH4和N20排放[J].大气科学,1997,21(2):231-237.
    262.朱奇宏,黄道友,刘守龙,等.红壤丘陵区农作物秸秆综合利用现状与展望[J].生态学杂志,2005,24:1482-1486.
    263.朱庆森,黄不生.水稻节水栽培研究论文集[M].北京:中国农业科技出版社,1995.
    264.邹建文.稻麦轮作生态系统温室气体(CO2、CH4(?)(?)N2O)排放研究[D].南京:南京农业大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700