基于声发射参数的材料疲劳断裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对材料疲劳断裂过程进行动态在线无损检测是一项十分必要的研究课题,它涉及到工程结构运行的稳定性和安全性等方面。声发射技术因具有动态监测和使用简便等优点而被广泛应用,它可用于结构材料的完整性评价。声发射活动规律的研究在声发射技术检测中占有非常重要的地位,充分了解声发射规律已成为声发射技术应用于材料疲劳断裂过程监测的一个重要目标。在工程结构服役阶段就需要考虑到是否存在与变形和断裂有关的声发射行为,对声发射源进行分析,根据声发射现象和行为了解和掌握声发射活动规律,及时评价结构的损伤程度,提出安全预报,有效预防结构失效和避免灾难性事故。本课题正是围绕这一出发点展开理论和数值研究。
     介绍了声发射技术及检测原理,概述了声发射源的产生机制。就目前国内外基于声发射参数在材料的疲劳断裂监测等方面的研究情况进行了系统的总结,包括声发射参数与断裂力学参数的关系研究,基于损伤力学的声发射参数研究和基于分形理论的声发射参数研究。
     断裂性能参数是描述断裂特性重要的断裂力学参数。针对断裂性能参数中没有考虑材料内部缺陷损伤产生的宏观效应以及断面具有分形特征的问题,本文应用分形理论并计及损伤效应,根据断裂力学中的能量释放率G和Griffith能量失效准则,从理论上分别对含I型裂纹材料的断裂性能参数进行了分析和修正。由于计及损伤效应,将声发射参数引入断裂性能参数的表达式中,从而在理论上改进了声发射参数与断裂性能参数之间的关系。
     裂纹尖端应力状态参数是描述裂纹尖端应力和应变状态关系的断裂力学参数。本文基于损伤效应分别对延展性材料和应变硬化材料在模式Ⅰ加载条件下的光滑裂纹和分形裂纹的裂尖应力状态参数进行修正,推导得出应力比与无量纲塑性区尺寸之间的关系。然后考虑损伤效应分别修正了光滑裂纹和分形裂纹的裂尖应力状态参数与声发射参数的表达式,从而改进了应力强度因子与声发射参数之间的关系。提出形如Paris公式的半经验声发射表达式,该公式的指数t不仅与材料类型有关,也与描述材料不规则程度的参数Df有关。
     采用以声发射参数定义的损伤变量和以循环次数以及分形维数定义的新损伤变量,通过损伤变量和损伤演化方程考虑损伤效应分别推导了光滑裂纹和分形裂纹的声发射参数与裂纹扩展率之间的关系,并对损伤变量表达式进行了修正。将以统计学方法表述的声发射参数引入到本构关系中,基于损伤特征和分形损伤特征修正了材料本构方程和载荷表达式,并对声发射统计模型和尖点突变统计模型进行修正。
     从理论角度对声发射参数与材料疲劳断裂过程的关系进行研究。针对材料内部缺陷损伤产生的宏观效应以及断面的分形特征对力学参数的影响,通过考虑损伤效应和分形特征表示力学参数,改进了力学参数与声发射参数之间的关系,从而扩展了声发射参数在疲劳断裂过程中的研究,为疲劳断裂的研究提供了新思路。
On-line monitoring of materials during fatigue and fracture process using nondestructive testing is an essential issue, which involves in structural stability and security aspects. Acoustic emission technology is used to make integrity assessment for structural material. It has been widely used with the advantages of dynamic monitoring and easy to use.Research of the laws of acoustic emission (AE) activities plays an important role in AE detection. Effectively identification of AE rules has become an important target for application to use AE technique monitoring on fatigue and fracture. The existences of deformation and fracture behaviors of AE activities for engineering structures in service stage should be considered. To make analysis of AE sources and study of AE activities rules from AE behaviors, timely evaluate the damage degree of structure and make safety prediction, which can prevent structural failure effectively and avoid catastrophic accident. This dissertation is focus on the starting point to carry out theoretical and numerical studies.
     Acoustic emission technology and detection principle are introduced. An overview of the AE mechanisms is explained. The application of AE parameters in materials fatigue and fracture at home and abroad is summarized, including the research of relationships of acoustic emission parameters and fracture mechanics parameters, the research of acoustic emission parameters based on damage mechanics and on fractal geometry theory.
     As the important fracture mechanics parameters, fracture performance parameters are used to describe fracture characteristics. According to the macroscopic damage induced by the internal defect in materials and the fractal characteristics of fracture section, the fracture performance parameters with Mode I crack are modified by fractal theory and damage theory based on energy release rate G and Griffith energy failure criteria. The acoustic emission parameters can be expressed by fracture performance parameters based on damage effect, which improved the relationships between the acoustic emission parameters and fracture performance parameters theoretically.
     Stress status parameters at crack tip are the fracture mechanics parameters to describe the relationship between stress and strain at crack tip. Stress status parameters with damage of smooth/fractal crack under mode I loading conditions for ducile materials and strain hardening materials are modified. The relationships between the stress ratio and dimensionless PZS are investigated. The expressions of stress status parameters and acoustic emission parameters with damage for smooth/fractal crack are modified. And the relationship between stress intensity factor and acoustic parameter is improved. The semi-empirical relationship between fractal AE count and the stress intensity factor (SIF) is studied. The results show that the fractal AE count varied with SIF in the same manner as the Paris law for crack propagation in fatigue. The exponent is a function of the fractal dimension Df.
     Damage variable parameters are defined by acoustic emission parameters and load cycles and fractal dimension. Based on damage effect, the relationships between acoustic emission and crack propagation rate of smooth/fractal crack are derived by damage variables and damage evolution equations. Damage variable expressions are modified. An attempt to introduce acoustic emission parameters which expressed by statistical method into constitutive relationship has been made. The statistical model of acoustic emission and the cusp catastrophe are modified.
     The acoustic emission parameters during fatigue fracture process of material have been studied theoretically. According to the macroscopic damage induced by the internal defect in materials and fractal characteristics of fracture section, the mechanical parameters are modified, which improved the relationships between the acoustic emission parameters and mechanical parameters, expands the research on the acoustic emission parameters during fatigue and fracture process in the of fatigue fracture, provides a new idea for the fatigue fracture research.
引文
[1]王慧晶,林哲,赵德有.声发射技术在工程结构损伤监测中的应用和展望[J].振动与冲击,2007,26(6):157-161.
    [2]Ellyin F, Fakinlede C O A. Crack tip growth rate model for cyclic loading[C]. Proc.10th Canadian Fracture Conf., Waterloo, Ontario, Canada,1983,August 24-26: 229-237.
    [3]Kujawski D, Ellyin F. A cumulative damage theory for fatigue crack initiation and propagation[J]. Int. J. Fatigue,1984,6 (2):83-88.
    [4]Zhao Jun, Zhang Xing. The asymptotic study of fatigue crack growth based on damage mechanics[J]. Eng. Fract. Mech.,1995,50(1):131-141.
    [5]冯西桥,何树延.表面裂纹疲劳扩展的一种损伤力学方法[J].清华大学学报,1997,37(5):78-82.
    [6]Xiulin Zheng. On some basic problems of fatigue research in engineering[J]. Int. J. Fatigue,2001,23:750-766.
    [7]Roberts T M, Davies A W, etc. Structural integrity of welded steel structures[J]. Key Eng. Mater.,1999,167-168:142-151.
    [8]耿荣生,声发射技术发展现状[J].无损检测NDT,1998,6(6):151-158.
    [9]Richards C E, Lindley T C. The influence of stress intensity and microstructure on fatigue crack propagation in ferritic materials[J]. Eng. Fract. Mech.,1972, 14:951-978.
    [10]Fang D, Beerkovits A. Fatigue design model based on damage mechanisms revealed by acoustic emission measurements[J]. Trans. ASME.,1995,117(4):200-208.
    [11]中国无损检测学会声发射专业委员会.全国第八届声发射会议论文集[C].上海,1999.
    [12]Robert C M. Liquid penetrant tests[M]. ed. Metals Park, Ohio:American Society for Nondestructive Testing,1982.
    [13]Williams J H Jr, Delonga D M, etc. Correlations of acoustic emission with fracture mechanics parameters in structural bridge steels during fatigue[J]. Mater. Eval. 1982,40(10):1184-1189.
    [14]Lee K L. Cyclic AE count rate and crack growth rate under low cycle fatigue fracture loading[J]. Engng. Fract. Mech.,1989,34:1069-1073.
    [15]Kotoul M, Bilek Z. Static Models of acoustic emission in smooth and cracked specimens[J]. Acta Technica CSAV,1990,35(4):479-494.
    [16]Bassim M N. Detection of fatigue crack propagation with acoustic emission monitoring of fatigue crack growth[J]. NonDestr. Test. eval. Int.,1992, 25:287-289.
    [17]Roberts T M, Talebzadeh M. Acoustic emission monitoring of fatigue crack propagation[J]. J. Constrl. Steel Res.,2003,59(6):695-712.
    [18]Bassim M N. Damage assessment using fracture mechanics and NDT approaches [J]. High Perform. Struct. Mater.,2004, II:131-137.
    [19]Hamel F, Bassim M N. Detection of crack propagation in fatigue with acoustic emission[C]. in Proceedings of the 6th International Conference on the Strength of Metals and Alloys, Oxford:Pergamon Press,1982:839-844.
    [20]Palmer I G. Acoustic emission measurement on reactor pressure vessel steel[J]. Mater. Sci. Eng.,1973,11 (4):227-236.
    [21]Gong Z, Nyborg E 0, etc. Acoustic emission monitoring of steel railroad bridges [J]. Mater. Eval.,1992(July):883-887.
    [22]Palmer I G, Heald P T. The application of acoustic emission measurements to fracture mechanics[J]. Mater. Sci. Eng.,1973,11 (4):181-184.
    [23]Sinclair A C E, Connors D C. Acoustic emission analysis during fatigue crack growth in steel[J]. Mater. Sci. Eng.,1977,28(2):263-273.
    [24]Hamel F, Bailon J P, etc. Acoustic emission mechanisms during high-cycle fatigue [J]. Eng. Fract. Mech.,1981,14(4):853-860.
    [25]Blanchette Y, Dickson J I. Detection of general yielding in A516 steel by acoustic emission[J]. Eng. Fract. Mech.,1983,17 (3):227-234.
    [26]Blanchette Y, Dickson J I. The use of acoustic emission to evaluate critical values of K and J in 7075-T651 aluminum alloy [J]. Eng. Fract. Mech.,1984,120(2):359-371.
    [27]Bassim M N, Lawrence S ST, etc. Detection of the onset of fatigue crack growth in rail steel using acoustic emission[J]. Eng. Fract. Mech.,1994,47(2):207-214.
    [28]Bekovits A, Fang D. Study of fatigue crack characteristics by acoustic emission [J]. Eng. Fract. Mech.,1995,51 (3):401-416.
    [29]Harris D 0, Dunegan H L. Continuous monitoring of fatigue-crack growth by acoustic emission techniques[J]. Exp. Mech.,1974,14(2):71-81.
    [30]James C Yeh. Study of acoustic emission characteristics for fracture assessment of structural weldment[J]. Rev. Prog. in Quant. Nondestr. Eval.,1994,13:477-484.
    [31]Rogers L M, etc. Use of acoustic emission methods for crack growth detection in offshore and other structures[J]. Int. Maritine Technol.,1998,110:171-180.
    [32]李光海,刘正义.基于声发射技术的金属高频疲劳监测[J].中国机械工程,2004,15(13):1205-1209.
    [33]Lindley T C, Palmer I G, etc. Acoustic emission monitoring of fatigue crack growth[J]. Mater. Sci. Eng.,1978,32(1):1-15.
    [34]Dunegan H L, Harris D 0. Fracture analysis by use of acoustic emission[J]. Eng. Fra. Mech.,1968,1 (1):105-122.
    [35]Masounave J, Lanteigne J,etc. Acoustic emission and fracture of ductile materials[J]. Eng. Fract. Mech.,1976,8(4):701-709.
    [36]Moorthy V, Jayakumar T.,etc. Influence of microstructure on acoustic emission behavior during stage 2 fatigue crack growth in solution annealed, thermally aged and weld specimens of AISI type 316 stainless steel[J]. Mater. Sci. Eng.,1996, A212(2):273-280.
    [37]Morton T M, Harrington R M,etc. Acoustic emissions of fatigue crack growth[J]. Eng. Fract. Mech.,1973,5 (3):693-697.
    [38]Arora A, Tangri K. Acoustic emission:a means of measuring crack growth at elevated temperatures[J]. Exp. Mech.,1981,21(7):261-267.
    [39]Bassim M N, Houssny-Eman M. Acoustic emission during the low cycle fatigue of AISI4340 steel [J]. Mater. Sci. Eng.,1984,68(1):79-83.
    [40]Houssny-Eman M, Bassim M N. Study of the effect of heat treatment on low cycle fatigue in AISI 4340 steel by acoustic emission[J]. Mater. Sci. Eng.,1983, 61(1):79-88.
    [41]Mukhopadhyay C K, Jayakumar T B R. The influence of notch on the acoustic emission generated during tensile testing of nuclear grade AISI type 304 stainless steel [J]. Mater. Sci. Eng.,2000,A276(1-2):83-90.
    [42]Gerberich W W, Hartbower C E. Some observations on stress wave emission as a measure of crack growth[J]. Int. J. Fract. Mech.,1967,3:185-191.
    [43]Tiffany C F, Masters J N. Applied fracture mechanics. Fracture toughness testing and its applications M. ASTM STP381, Philadelphia,1965,249-278.
    [44]Mukhopadhyay C K, Jayakumar T.Correlation of acoustic emission with stress intensity factor and plastic zone size for notched tensile specimens of AISI type 304 stainless steel[J]. Mater. Sci. Technol.,2002,18(10):1133-1141.
    [45]Ono K, Ucisik J. Acoustic emission behavior of aluminum alloys[J]. Mater. Eval. 1976,34(2):32-44.
    [46]Paparo G, Gregori G P, etc. Acoustic emission (AE)as a diagnostic tool in geophysics[J]. Annl. Geophys.,2002,45(2):401-416.
    [47]Kam J C P, Dover W D, etc. The prediction of crack shape development for in-service cracks in offshore welded tubular joints[J]. Marine Struct.,1995,8:37-65.
    [48]Paris P C, Erdogan F. A critical analysis of crack propagation law[J]. J. Basic Eng.,1963,85(12):528-534.
    [49]Davidson D L, Lankford J. Fatigue crack growth in metals and alloys:Mechanisms and micromechanics[J]. Int. Mater. Rev.,1992,37(1):45-76.
    [50]Louat N, Sadananda K, etc. A theoretical evaluation of crack closure[J]. Metall. Trans.,1993, A24(10):2225-2231.
    [51]Suresh S. Fatigue of materials[M].Cambridge:Cambridge University Press,1991.
    [52]Grinberg G M. Stage II fatigue crack growth [J]. Int. J. Fatigue,1984,6(4):229-242.
    [53]Dunegan H L, Tetelman A S. Non-Destructive characterization of hydrogen embrittlement cracking by acoustic emission techniques[J]. Eng. Fract. Mech, 1971,2(4):387-402.
    [54]Harris D 0, Teleman A S, etc. Detection of fiber cracking by acoustic emission, Acoustic Emission[M]. ASTM STP 505,1972,238-249.
    [55]Gong Z, DuQuesnay D L, etc. Measurement and interpretation of fatigue crack growth in 7075 aluminum alloy using acoustic emission monitoring [J]. J. Test. Eval.,1998, 26(6):567-574.
    [56]Ying S P. Effect of crack size on acoustic emission related to moving dislocation [J]. J. Appl. Phys.,1975,46(7):2882-2888.
    [57]Bassim M N. Predictive acoustic emission in fatigue and fatigue[C]. in Progress in acoustic emission III, Proc 8th Acoustic Emission Symp. (eds. Yamaguchi K, Aoki K) Tokyo:JSNDI,1986,276-282.
    [58]Wang Z F, Li J, etc. Characteristics of acoustic emissions for A537 structural steel during fatigue crack propagation[J]. Scr. Metall. Mater.,1992,27(5):641-646.
    [59]曹文责,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [60]秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报,2001,20(4):560-562.
    [61]王明.基于声发射参数的岩石材料损伤本构模型研究[J].福建建材,2010,(2):23-25.
    [62]Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories:a survey of the state of the art for homogeneous materials [J]. Int. J. Fatigue,1998,20(1): 9-34.
    [63]Carpinteri A, Lacidogna G, etc. Critical behavior in concrete structures and damage localization by acoustic emission[J]. Key Eng. Mater.,2006,312 (6):305-310.
    [64]Braccini S, Casciano C, etc. Monitoring the acoustic emission of the blades of the mirror suspension for a gravitational wave interferometer[J]. Phys. Lett. A. 2002,301(9):389-397.
    [65]Bouchaud G, Lapasset G, etc. Fractal dimension of fractured surfaces:a universal value?[J] Europhys. Lett.,1990,13(1):73-79.
    [66]Bonamy D, Bouchaud E. Failure of heterogeneous materials:A dynamic phase transition?[J] Phys. Rep.,2011,498(1):1-44.
    [67]Mandelbrot B B. The fractal geometry of nature[M]. ed. W. H. Freeman and Company, New York,1982.
    [68]Falconer K. Fractal geometry:mathematical foundations and applications[M]. ed. Kenneth Falconer. Wiley, Chichester,1990.
    [69]Mandelbrot B B, Passoja D E, etc. Fractal character of fracture surfaces of metals[J]. Nature,1984,308(19):721-722.
    [70]Shi D, Jiang J, etc. Correlation between the scale-dependent fractal dimension of fracture surfaces and the fracture toughness[J]. J. Phys. Rev.B.,1996,54(24): 17355-17358.
    [71]卢春生,断面分形研究中的几个问题[J].力学进展,1996,26(3),Aug:353-361.
    [72]Carpinteri A, Lacidogna G,etc. Time-scale effects during damage evolution:a fractal approach based on acoustic emission[J]. Strength Fract. Complex.,2005,3 (3): 127-135.
    [73]Paparo G, Gregori G P, etc. Multi-frequency acoustic emission (AE)for monitoring the time evolution of micro-processes within solids[C]. in Proc. on reviews of progress in quantitative nondestructive evaluation.22, Melville,New York:AIP, 2003,657:1423-1430.
    [74]Biancolini M E, Brutti C, etc. Fatigue cracks nucleation on steel, acoustic emission and fractal analysis[J]. Int. J. Fatigue.,2006,28(12):1820-1825.
    [75]Rui-fu Yuan, Yuan-hui Li. Fractal analysis on the spatial distribution of acoustic emission in the failure process of rock specimens[J]. Int. J. Miner. Metall. Mater. 2009,16(1):19-24.
    [76]高峰,李建军等.岩石声发射特征的分形分析[J].武汉理工大学学报,2005,27(7):67-69.
    [77]纪洪广,王基才等.混凝土材料声发射过程分形特征及其在断裂分析中的应用[J].岩石力学与工程学报,2001,20(6):801-804.
    [78]Huang Y, Li H, etc. Fractal theory based damage assessing method of acoustic emission test[J].Key Eng. Mater.2009,413-414:335-342.
    [79]雷兴林,马瑾.三轴压缩下粗晶花岗闪长岩声发射三维分布及其分形特征[J],地震地质,1991,13(2):97-114.
    [80]Xie H P, Liu J F, etc. Fractal property of spatial distribution of acoustic emissions during the failure process of bedded rock salt[J]. Int. J. Rock Mech.& Min. Sci.,2011,48:1344-1351.
    [81]黄新民,彭跃社.混凝土损伤的声发射特征分形分析[J].动力学与控制学报,2008,6(3):1672-1683.
    [82]尹贤刚,李庶林等.岩石破坏声发射强度分形特征研究[J].岩石力学与工程学报,2005,24(19):3512-3516.
    [83]Griffith A A. The phenomena of rupture and flow in solids[M]. Phil. Trans. Roy. Soc.A221,1921:163-198.
    [84]Michael P W, Yavari A. A correspondence principle for fractal and classical cracks[J]..Eng. Fra. Mech.,2005,72:2744-2757.
    [85]Yavari A. Generalization of Barenblatt's cohesive fracture theory for fractal cracks. Fractals [J],2002,10(2):189-198.
    [86]Michael P W, Yavari A. On estimating stress intensity factors and modulus of cohesion for fractal cracks[J]. Eng. Fract. Mech.,2003,70(13):1659-1674.
    [87]张衡,魏德敏.分形裂纹的断裂参数[J].华南理工大学学报(自然科学版),2010,38(3):12-16.
    [88]Saouma V E, Barton C C. Fractals, fractures and size effects in concrete[J]. J. Eng. Mech., ASCE.1994,120:835-854.
    [89]Borodich F M. Some fractal models of fracture [J]. J. Mech. and Phys. Solids.1997, 45(2):239-259.
    [90]Yavari A, Sarkani S, etc. The mechanics of self-similar and self-affine fractal cracks [J]. Int. J. Fract.,2002,114(1):1-27.
    [91]Higgins D. D., Bailey J. E. Fracture measurements on cement paste [J]. J. Mater. Sci., 1976,11:1995-2003.
    [92]张子新.岩石冲击断裂的损伤与分形效应[J].金属矿山,1995,231(9):13-15.
    [93]Cai H, Evans J T. Acoustic emission analysis of stable and unstable fracture in high strength aluminium alloys[J]. Eng. Fract. Mech.,1992,42:589-600.
    [94]Irwin G R. Plastic zone near a crack and fracture toughness[C].//in Proc.7th Sagamore Ordnance Materials Research Conference on Mechanics & Metals Behavior of Sheet Material, Part IV,USA, New York:Syracuse University.1960, August:463-478.
    [95]Theocaris P S, Gdoutos E E. The modified dugdale-barenblatt model adapted to various fracture configurations in metals [J]. Int. J. Fracture,1974,10(4):549-564.
    [96]Barenblatt G I. The mathematical theory of equilibrium cracks in brittles fracture [J]. Adv. App. Mech.,1962,7:55-129.
    [97]Dugdale D S. Yielding of steel sheets containing slits[J]. J. Mech. Phys. Sol. 1960,8(2):100-104.
    [98]王维娟,赵乃录.裂尖塑性区的分析与测算[J].石油机械,1990,18(10):16-20.
    [99]陈兴周,李建林等.关于分形理论及其在岩石断裂中的应用[J].西北水电,2005.
    [100]鲍雨梅.一种陶瓷材料表面/亚表面损伤表征方法及其在磨削损伤检测中的应用[D].浙江工业大学,2009.
    [101]谢和平,鞠杨.分数维空间中的损伤力学研究初探[J].力学学报,1999,31(3):300-310.
    [102]Francois D. Fracture and Damage. Elastic-plastic fracture mechanics[M]. ed. L. H. Larsson. The Netherlands:Reidel Publishing Co., Kluwer Acad. Publ. Group Dordrecht. 1985,285-302.
    [103]Luo A, Mou Y,etc. A large anisotropic damage theory based on an incremental complementary energy equivalence model[J]. Int. J. Fract.,1995,70(1):19-34.
    [104]Davidson D L, Lankford JR J. Plastic strain distribution at the tips of propagating the cracks[J]. Trans. ASME,1976,98(1):24-29.
    [105]Mou Y H, Han R P S. Damage zones based on Dugdale model for materials[J]. Int. J. Fract.,1994,68(3):245-259.
    [106]Kujawski D, Ellyin F. On the size of plastic zone ahead of crack tip[J]. Eng. Fract. Mech.,1986,25(2):229-236.
    [107]Hoffmann M, Seeger T. Dugdale solutions for strain hardening materials. The crack tip opening displacement in elastic-plastic fracture mechanics[G], eds. Workshop on the CTOD Methodology. Geesthacht, Germany:Springer Berlin.1985, April:57-77.
    [108]Chen X G, Wu X R, etc. Dugdale model for strain hardening materials[J]. Eng. Fract. Mech.,1992,41(6):843-871.
    [109]Connell R J 0', Budiansky B. Elastic moduli of a cracked solid[J]. Int. J. Solids Struct.,1976,12:81-97.
    [110]Abramowitz M, Stegun I A. Handbook of mathematical functions with formulas, graphs, and mathematical tables[M]. ed. Dover, New York,1965.
    [111]McClintock F A. Discussion of fracture testing of high strength sheet materials[J]. Materials Res. Standards.1961,1:277-279
    [112]Rice J R. Stress due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear[J]. J. Appl. Mech. Trans. ASME,1967,34(2):287-298.
    [113]Wang Hui-jing, Lin Zhe. Study of damage characteristics for strain hardening material during fatigue by acoustic emission techniques[J]. J. Ship Mech. 2011,15(12):1394-1404.
    [114]Endo T, Morrow J. Cyclic stress-strain and fatigue behavior of representative aircraft metals[J]. J. Mater.,1969,4(1):159-175.
    [115]Hertzberg R W. Deformation and fracture mechanics of engineering materials[M]. New York:Wiley,1976.
    [116]Huang J H, Si Y, etc. A dislocation model of low-cycle fatigue damage and derivation of the Coffin-Manson equation[J]. Mater. Lett.,1992,15:212-216.
    [117]Guerra-Rosa L, Moura Branco C, etc. Monotonic and cyclic crack tip plasticity[J]. Int. J. Fatigue,1984,6(1):17-24.
    [118]Elber W. The significance of fatigue crack closure[M]. ASTM STP 486,1971,230-242.
    [119]Tiffany C F, Masters J N. Fracture toughness testing[M]. Philadelphia, ASTM STP 381.1965,249-278.
    [120]Forsyth P J E. A two stage process of fatigue crack growth[C]. in Crack propagation. Proceedings of Cranfield Symposium. London:Her Majesty's Stationiery Office. 1962,76-94.
    [121]Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate [J]. J. Appl. Mech.,1957,24:361-364.
    [122]Forman R G, Kearney V E, etc. Numerical analysis of crack propagation in cyclic loaded structures[J]. J. Basic Eng.,1967,89:459-464.
    [123]Stephen D A, Saxena A. A model for fatigue crack propagation[J]. Eng. Fract. Mech.,1975,7:649-652.
    [124]Ramsamooj D V, Shugar T A. Model prediction of fatigue crack propagation in metal alloys in laboratory air[J]. Int. J. Fatigue,2001,23:S287-S300.
    [125]XiuLin Zheng, HirtMA. Fatigue crack propagation in steels [J]. Eng. Fract. Mech. 1983,18(5):965-973.
    [126]Wu X J, Akid R. Propagation behaviour of short fatigue cracks in Q2N steel[J]. Fatigue Fra. Engng. Mater. Struct.,1995,18(4):443-454.
    [127]Beevers C J. Micromechanisms of fatigue crack growth at low stress intensities[J]. Metal. Sci.,1980,8-9:418-423.
    [128]Tong J, Yates J R, etc. The influence of precracking techniques on fatigue crack growth thresholds under mixed mode Ⅰ/Ⅱ loading conditions [J]. Fatigue Fra. Engng. Mater. Struct.,1994,17(11):1261-1269.
    [129]Glinka G, A cumulative model of fatigue crack growth[J]. Int. J. Fatigue,1982: 59-67.
    [130]Eerik Peeker, Erkki Niemi. Fatigue crack propagation model based on a local strain approach[J]. J. Constructional Steel Research,1999,49:139-155.
    [131]Pandey K N, Chand S. Fatigue crack growth model for constant amplitude loading[J]. Fatigue Fra. Engng. Mater. Struct.,2003,27:459-472.
    [132]Sampath Purushothaman, John K Tien. Generalized theory of fatigue crack propagation:Part Ⅰ-deviation of thresholds [J]. Mater. Sci. Eng.,1978,34:241-246.
    [133]Vibhor Chaswal, Sasikala G, etc. Fatigue crack growth mechanism in aged 9Cr-1Mo steel:threshold and paris regimes[J]. Mater. Sci. Eng.,2005, A395:251-264.
    [134]Tomkins B. Micromechanisms of fatigue crack growth at high stress[J]. Metal. Sci.,1980:408-417.
    [135]Yokobori T. A critical evaluation of mathematical equations for fatigue crack growth with special reference to ferrite grain size and monotonic yield strength dependence[C]. Fatigue(crack growth) Mech., Proc. ASTM-NBS-NSF symp, Kansas city, (Edited by J. T. Fong),1978 May,675:683-706. ASTM STP 1979.
    [136]Desai J D, Gerberich W W. Analysis of incremental cracking by the stress-wave emission technique[J]. Eng. Fra. Mech.,1975,7:153-165.
    [137]Irwin G R, Kies J A. Fracturing and fracture dynamics [J]. Weld. J. 1962(Feb):95-100.
    [138]张明,李仲奎等.准脆性材料声发射的损伤模型及统计分析[J].岩石力学与工程学报,2006,25:2493-2501.
    [139]Tang C A, Xu X H. Evolution and propagation of material defects and Kaiser effect functional Journal of Seismological Research,1990,13(2):203-213.
    [140]陈忠辉,唐春安等.岩石声发射Kaiser效应的理论和试验研究[J].中国有色金属学报,1997,7(1):9-12.
    [141]陈忠辉,唐春安,傅宇方.岩石失稳破裂的变形突跳研究[J].工程地质学报,1997,5(2):143-149.
    [142]陈忠辉,徐小荷,唐春安.单轴压缩下岩石失稳破裂的突跳[J].东北大学学报,1994,15(5):476-480.
    [143]唐春安,徐小荷.岩石破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,1990,9(2):100-107.
    [144]Kaehanovl M. Time of the ruPture proeess under eree pconditions[J]. TVZAkad. Nauk. S. S. R. Otd. Tech. Nauk.,1958 (8):23-31.
    [145]Robotnov Y N. Creep ruptures, in applied mechanics[C]//. Proceedings of the 12th International Congress of Applied Mechanics. Berlin:Standford-Springer-Verlag. 1969,342-349.
    [146]Broberg H. Creep Damage and Rupture:a phenomenological study[M]. ed. Gothenberg: Dissertation of Chalmers University of Technology.1975.
    [147]Chaboche J L. A differential law for nonlinear cumulative fatigue damage[R]. Materials and Building Research, Paris Institut Technique Du Batiment Et Des Travaus Publies, Annales del'ITBTP, HS,1974,39(99):117-124.
    [148]Lemaitre J. Formulation and identification of damage kinetic constitutive equations[C]. Continuum Damage Mechanics Theory and Applications, ed. D. Krajcinovic, and J. Lemaitre. NewYork:Springer Verlag.1987,37-89.
    [149]王慧晶,林哲.塑性区模型损伤修正及其对声发射活动的影响[J].船舶力学,2011,15(4):389-393.
    [150]Chaboche J L, Kaczmarek H, etc. On the interaction of hardening and fatigue damage in the 316 stainless steel[C], Advances in fracture research, in Proc. the 5th international Conference on Fracture. Cannes, France:United Kingdom.1981, 1381-1393.
    [151]Dunegan H L, Harris D 0, etc. Prediction of fatigue lifetime by combined fracture mechanics and acoustic emission techniques[C]//. in Proc. the Air Force Conference of Fatigue and Fracture of Aircraft Structures and Materials, (eds. A. H. Wood, R. M. Bader, W. J. Trapp, R. F. Hoener, and R. C. Donat, Technical), Air Force Flight Dynamics Laboratory Report AFFDL TR 70-144;1970:459-471, Miami, FL.
    [152]Dunegan H L, Harris D 0, etc. Detection of fatigue crack growth by acoustic emission techniques[J]. Mater. Eval.,1970,28(10):221-227.
    [153]王祖萌.声发射技术基础[M].济南:山东科学技术出版社.1990.
    [154]张明,李仲奎.准脆性材料破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,2006,25:1233-1239.
    [155]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社.1993.
    [156]张捷,骆晓波.灾变理论在金属固态相变中的应用[J].数学的实践与认识,1988,3:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700