新型光催化及抗菌材料的湿化学法制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球性环境污染日趋严重的今天,利用光催化技术治理环境污染引起了世界各国的广泛关注。具有高催化活性、能充分利用太阳光的光催化剂的制备与应用,已成为材料科学、化学、环境科学和能源科学等领域广泛关注和研究的热点课题。TiO_2光催化剂价廉,无毒,化学稳定性强,光催化活性较高,且具有一定的抗菌能力,在环境净化领域表现出良好的应用前景。但是TiO_2禁带宽度大,光吸收范围窄;光生电子和空穴复合几率高,量子效率低。研究证明,通过改性可以提高TiO_2的光催化效率。因此,研究TiO_2光催化材料的制备与改性,并配合研究具有可见光催化活性的半导体光催化剂,具有十分重要的意义。
     本文选择TiO_2纳米管,介孔TiO_2,混合晶型TiO_2,及具有可见光催化活性的BiVO_4为研究对象,利用湿化学法,对其进行改性或者物相、形貌控制合成来提高这些材料的光催化活性,并利用Ag沉积来增强TiO_2-NTs的抗菌性能。为高活性的半导体光催化剂和无机抗菌剂的制备与应用,提供了实验与理论支持。通过大量实验工作,取得了一些创新性成果。
     建立了化学沉积-光还原法,以水热法制备的TiO_2纳米管为基体,制备了新型Ag/TiO_2纳米管复合材料。实验结果表明,Ag含量和沉淀剂NaOH溶液的浓度对TiO_2纳米管表面银沉积都有影响。当Ag含量为2.50 at.%,NaOH溶液的浓度为0.30 mol·L~(-1)时,可以获得牢固附着在TiO_2纳米管表面,粒径约3-5nm,高度分散的银纳米粒子。适量Ag沉积显著提高了TiO_2-NTs的光催化性能,银含量为2.5 at.%的Ag/TiO_2-NTs复合体系具有最高光催化活性。Ag沉积还显著提高了TiO_2-NTs的抗菌性能。自然光照下,Ag/TiO_2-NTs复合材料对大肠杆菌和金黄色葡萄球菌显示出优良的抗菌性能。研究了Ag沉积增强TiO_2-NTs光催化活性的机制:Ag以金属银(Ag~0)的形式沉积于TiO_2-NTs表面,当受到紫外光照时,Ag~0与TiO_2纳米管之间形成Schottky能垒,抑制了电子和空穴的复合,提高了TiO_2纳米管的量子效率和光催化活性。
     采用表面化学反应法,利用TiO_2纳米管表面的羟基基团与Cu(en)_2(OH)_2之间的化学反应制备了尚未见报道的Cu离子表面掺杂TiO_2纳米管。研究了Cu离子掺杂浓度,煅烧温度等对样品的结晶状态和形貌的影响。适量的Cu离子表面掺杂显著提高了TiO_2纳米管对罗丹明B的光催化活性。含Cu 0.3 at.%纳米管具有最高的光催化活性。研究了Cu离子掺杂增强TiO_2-NTs光催化活性的机制:表面掺杂的Cu离子以Cu~(2+)和Cu~+两种形式存在,抑制了TiO_2-NTs光生电子和空穴的复合,提高了TiO_2的量子效率;Cu离子表面掺杂使得TiO_2-NTs禁带宽度变窄,提高了TiO_2-NTs对可见光的吸收。
     建立了一种简便的超声-水热合成方法,制备了同时具有规则形貌、大的比表面积和良好晶化程度的新型Fe掺杂TiO_2介孔微球。系统地考察了超声处理,水热温度,水热时间,Fe掺杂浓度,煅烧温度等反应参数对样品形貌和介孔结构的影响。铁掺杂浓度0.50 at.%,水热温度150℃,水热反应时间20h,煅烧温度450℃条件下所制备的Fe掺杂介孔微球具有最大比表面积。其比表面积为182.75m~2·g~(-1),平均孔径为4.64nm,孔容积为0.196cm~3 g~(-1)。适量Fe掺杂可以可显著提高TiO_2介孔微球的光催化活性。研究了Fe掺杂增强TiO_2光催化活性的机制:Fe掺杂促进了TiO_2光生电子和空穴的分离,提高了TiO_2的量子效率;Fe掺杂可以减小TiO_2的禁带宽度,增强TiO_2在可见光区的吸收。
     采用水热法制备了混合结晶相态TiO_2,系统地考察了Ti源浓度,盐酸浓度,水热温度,水热时间等反应参数对水热产物的结晶相态和形貌的影响。通过控制反应参数,获得了具有枫球状、叶片状等新颖规则形貌的纳米粒子。研究了混合结晶相态TiO_2光催化活性与其结晶相态和形貌之间的关系。光催化实验结果表明,锐钛矿占37.4%,金红石占35.8%,板钛矿占26.8%的混合结晶相态TiO_2具有最高的光催化活性,其光降解反应速率常数比锐钛矿TiO_2纳米管更大。通过表面沉积适量Ag可以显著提高混合结晶相态TiO_2的光催化性能。沉积2.0 at.%的Ag可以使混晶TiO_2对甲基橙的光降解反应速率常数提高1.5倍。
     建立了一种简便的水热合成方法,制备了具有规则形貌的单斜相BiVO_4微晶,获得了具有可见光催化活性的半导体光催化剂。系统地探讨了溶液pH和表面活性剂对BiVO_4微晶的晶体结构和形貌的影响。获得了棒状,长方体形,立方片状,及花状等不同新颖形貌的BiVO_4微晶。并从化学反应动力学的角度探讨了不同形貌BiVO_4微晶的生长机理。BiVO_4微晶的禁带宽度约为2.40eV。太阳光照下,BiVO_4显示出良好的光催化活性,花状BiVO_4对甲基橙的光降解反应速率常数是TiO_2-NTs的10倍。
The application of photo catalytic technology for pollution treatment has attracted a lot of attention in all countries.The preparation and application of the photocatalysts with high activity and effective under the sunlight have become hot topics in the areas of materials science,chemistry,environmental science and energy science.TiO_2 photocatalyst is widely regarded as a promising material for photocatalytic application due to its low cost,non-toxicity,chemically stability,high photocatalytic activity,and antibacterial property.However,TiO_2 is flawed from its wide bandgap and high recombination of photo-generated electrons and holes,which make it only effective under ultraviolet irradiation and decrease its photocatalytic efficiency.Therefore,it is meaningful to fabricate with high photocatalytic efficiency and synthesize photocatalysts effective under visible light irradiation.
     The synthesis and modification of TiO_2 nanotubes,mesoporous TiO_2,TiO_2 with multiple phases,and BiVO_4 were discussed in the present dissertation.And the antibacterial properties of Ag/TiO_2 composites were also discussed.Some new and interesting results were achieved and listed as follows.
     A chemical deposition-photoreduction approach was proposed to fabricate Ag/TiO_2-NTs composites with TiO_2-NTs prepared via a hydrothermal method as substrates.It was found that Ag nanoparticles with sizes of 3-5nm were highly and tightly dispersed on the surface of TiO_2-NTs when the content of Ag was 2.50 at.% and the concentration of NaOH solution was 0.30 mol·L~(-1).Deposition of Ag could effectively enhance the photocatalytic efficiency of TiO_2-NTs.And the Ag/TiO_2-NTs composites with an Ag/Ti atomic ratio of 2.5 at.%showed the highest photocatalytic efficiency.Ag/TiO_2-NTs composites also showed excellent antibacterial performance to E.coli and S.aureus in the absence of UV irradiation.Ag is located on the surface of TiO_2-NTs in zero oxidation state.Schottky barrier is generated when Ag/TiO_2-NTs composites are irradiated under ultraviolet light.The recombination of electrons and holes is inhibited due to the existence of Schottky barrier,thus the improvement of the photocatalytic efficiency of TiO_2-NTs.
     Copper ions surface-doped TiO_2-NTS were prepared via a surface chemical reaction method.The effects of Cu doping concentration and calcination temperature on the crystal structure and morphology of the samples were investigated.TiO_2-NTs surface doped with a suitable amount of copper ions showed higher efficiency than the undoped TiO_2-NTs for photocatalysis of Rhodamine B.And the doped TiO_2-NTs with a Cu/Ti atomic ratio of 0.3 at.%showed the highest photocatalytic efficiency. Two kinds of copper species of Cu~(2+) and Cu~+ were found on the surface of TiO_2-NTs. Cu~(2+) and Cu~+ play roles as electron trappers facilitating the separation of photo-generated electrons and holes of TiO_2-NTs,improving the photocatalytic efficiency of TiO_2-NTs.The bandgap of TiO_2-NTs is narrowed due to the surface doping of copper ions,which enhances the absorption of TiO_2-NTs in the visible light zone.
     A simple ultrasonic-hydrothermal approach was proposed to fabricate Fe doped mesoporous TiO_2 microspheres with a combination of regular morphology,large specific surface area and high crystallinity.The effects of experimental parameters on the morphology and mesoporous structure of the samples were discussed.When the Fe doping concentration was 0.50 at.%,reaction temperature was 150℃,reaction time was 20h,and calcination temperature was 450℃,the sample possessed the largest specific surface area of 182.75m~2·g~(-1),an average pore diameter of 4.39nm,and a pore volume of 0.196cm~3·g~(-1).Fe~(3+)ions act as electron and hole trappers facilitating the separation of photo-generated electrons and holes of TiO_2,improving the photocatalytic efficiency of the samples.The bandgap of mesoporous TiO_2 microspheres is narrowed due to the doping of Fe ions,which enhances the absorption of samples in the visible light zone.
     TiO_2 with multiple phases were prepared by hydrothermal methods.The effects of experimental parameters on the phase compositions and morphologies of the samples were discussed.Novel maple fruit-like,leaf-like,and flower-like TiO_2 nanoparticles were controlled synthesized.Multiple phased TiO_2 with a phase composition of 37.4%anatase,35.8%rutile,and 26.8%brookite showed the higher reaction rate constant for photodegradation of MO anatase TiO_2-NTs.Deposition of Ag could effectively enhance the photocatalytic efficiency of multiple phased TiO_2. And the Ag/multiple phased TiO_2 composites with an Ag/Ti atomic ratio of 2.0 at.% showed the highest photocatalytic efficiency.
     A simple hydrothermal method was proposed to prepare monoclinic BiVO_4 with regular morphologies.The effects of pH and surfactant on the crystal structure and morphologies of the samples were discussed.BiVO_4 nanorods,cuboids,cubic plates, and flower-like structures were obtained via tailoring the pH of reaction solution and using CTAB.A brief growth mechanism of the samples with various morphologies was proposed.The bandgap of the as-prepared monoclinic BiVO_4 is 2.40 eV.Those BiVO_4 showed much high efficiency for photodegradation of MO under the sunlight than TiO_2-NTs.
引文
[1]A.Fujishima,K.Honda,Electrochemical photolysis of water at a semiconductor electrode,Nature,1972,238:37-8.
    [2]孙剑飞,翟玉春,石照信,等.TiO_2光催化材料掺杂改性的研究进展.应用化工,2006,35(12):966-971.
    [3]邢丽贞,冯雷,陈华东.光催化氧化技术在水处理中的研究进展水科学与工程技术,2008,(1):7-10.
    [4]A.Fujishima,T.N.Rao,D.A.Tryk.Titanium dioxide photocatalysis.Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [5]K.Hashimoto,H.Irie;A.Fujishima.TiO_2 photocatalysis:a historical overview and future prospects.Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review papers,2005,44(12):8269-8285.
    [6]X.B.Chen,S.S.Mao.Titanium dioxide nanomaterials:synthesis,properties,modifications,and applications.Chemical Reviews,2007,107:2891-2959.
    [7]A.L.Linsebigler,G.Q.Lu,J.T.Yates,et al.Photocatalysis on TiO_2 surfaces:principles,mechanisms,and selected results.Chemical Reviews,1995,95:735-758.
    [8]L.W.Zhang,H.B.Fu,C.Zhang,et al.Synthesis,characterization,and photocatalytic properties of InVO_4 nanoparticles.Journal of Solid State Chemistry,2006,179(3):804-811.
    [9]R.Asahi,Y.Taga,W.Mannstadt,et al.Electronic and optical properties of anatase TiO_2.Physical Review B,2000,61(11):7459-7465.
    [10]孙晓君,蔡伟民,井立强,等.二氧化钛半导体光催化技术研究进展.哈尔滨工业大学学报,2001,33(4):534-541.
    [11]沈迅伟,袁春伟.基于二氧化钛多相光催化的环境净化技术研究及进展.东南大学学报,2004,34(6):872-878.
    [12]D.C.Hurum,A.G.Agrios,K.A.Gray,et al.Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO_2 using EPR.Journal of Physical Chemistry B,2003,107(19):4545-4549.
    [13]Y.Y.Li,J.P.Liu,Z.J.Jia.Morphological control and photodegradation behavior of rutile TiO_2 prepared by a low-temperature process.Materials Letters,2006,60(13-14):1753-1757.
    [14]梁家和.低维氧化物纳米结构湿化学法合成、表征及性能研究:[博士学位 论文]北京:清华大学,2005.
    [15]才庆魁,刘昊,张宁,等.湿化学法合成纳米陶瓷粉体的分散性研究进展.中国非金属矿工业导刊,2006,(6):7-11.
    [16]刘平安,王慧,税安泽,等.微波加热均匀沉淀法纳米TiO_2的制备研究.材料导报,2007,21(11A):130-137.
    [17]J.Lukac,M.Klementova,P.Bezdicka,et al.Characterization of Zr-doped TiO_2prepared by homogenous co-precipitation without high-temperature treatment.Journal of Materials Science,2007,42(22):9421-9428.
    [18]J.H.Lee,Y.S.Yang.Effect of hydrolysis conditions on morphology and phase content in the crystalline TiO_2 nanoparticles synthesized from aqueous TiCl_4 solution by precipitation.Materials Chemistry and Physics,2005,93(1):237-242.
    [19]J.A.Navio,G.Colon,M.Macias,et al.Iron-doped titania semiconductor powders prepared by a sol-gel method.Part Ⅰ:synthesis and characterization.Applied Catalysis A-General,1999,177(1):111-120.
    [20]C.Su,B.Y.Hong,C.M.Tseng.Sol-gel preparation and photocatalysis of titanium dioxide.Catalysis Today,2004,96(3):119-126.
    [21]X.H.Liu,J.Yang,L.Wang,et al.An improvement on sol-gel method for preparing ultrafine and crystallized titania powder.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2000,289(1-2):241-245.
    [22]吴健松,李海民.水热法制备无机粉体材料进展.海湖盐与化工,2004,33(4):22-25.
    [23]席国喜,姚路,路迈西.水热法在无机粉体材料制备中的研究进展.材料导报,2007,21(Ⅷ):134-136.
    [24]S.Komameni,R.K.Rajha,H.Katsuki.Microwave-hydrothermal processing of titanium dioxide.Materials Chemistry and Physics,1999,61(1):50-54.
    [25]M.M.Wu,G.Lin,D.H.Chen,et al.Sol-hydrothermal synthesis and hydrothernally structural evolution of nanocrystal titanium dioxide.Chemistry of Materials,2002,14:1974-1980.
    [26]G.Li,S.Ciston,Z.V.Saponjic,et al.Synthesizing mixed-phase TiO_2nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications Journal of Catalysis,2008,253(1):105-110.
    [27]Z.Li,W.Shen,W.He.Effect of Fe-doped TiO_2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue.Journal of Hazardous Materials,2008,155(3):590-594.
    [28]C.-H.Lu,W.-H.Wu,R.B.Kale,Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO_2 powders.Journal of Hazardous Materials,2008,154(1-3):649-654.
    [29]J.Wei,J.Yao,X.Zhang.Hydrothermal growth of titania nanostructures with tunable phase and shape.Materials Letters,2007,61(23-24):4610-4613.
    [30]M.Nag,P.Basak,S.V.Manorama.Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals:Time temperature tuning of morphology and photocatalytic activity.Materials Research Bulletin,2007,42(9):1691-1704.
    [31]X.-L.Li,Q.Peng,J.-X.Yi,Near Monodisperse TiO_2 Nanoparticles and Nanorods.Chemistry-A European Journal,2006,12:2383-2391.
    [32]吴忠标,顾卓良,赵伟荣,等.纳米TiO_2的溶剂热制备及光催化降解气相苯.科学通报,2007年13期
    [33]张元广,陈友存.纳米TiO_2微球的制备及光催化性能研究.材料科学与工程2003年01期
    [34]徐海萍,孙彦平,王俊文,等.HF-PCVD法TiO_2纳米晶的粒径与晶型控制.2007,34(7):1089-1093.
    [35]王俊文,孙彦平,梁镇海,等.RF-PCVD法纳米TiO_2的制备及光催化研究.稀有金属材料与工程,2005,34(7):1089-1093.
    [36]Y.N.Xia,P.D.Dong,Y.G.Sun,et al.One-dimensional nanostructures:synthesis,chearacterization,and application.Advanced Materials,2003,15(5):353-389.
    [37]T.Kasuga,M.Hiramatsu,A.Hoson,et al.Titania nanotubes prepared by chemical processing.Advanced Materials,1999,11(15):1307-1311.
    [38]H.-H.Ou,S.-L.Lo.Review of titania nanotubes synthesized via the hydrothermal treatment:Fabrication,modification,and application.Separation and Purification Technology,2007,58:179-191.
    [39]Z.-Y.Yuan,B.-L.Su.Titanium dioxide nanotubes,nanofibers and nanowires.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,241:173-183.
    [40]M.Wei,Y.Konishi,H.Zhou,et al.Formation of nanotubes TiO_2 from layered titanate particles by a soft chemical process.Solid State Communication,2005,133:493-497.
    [41]Y.Zheng,E.Shi,Z.Chen,et al.Influence of solution concentration on the hydrothermal preparation of titaia crystallites.Journal of Materials Chemistry,2001, 11:1547-1551.
    [42]C.-C.Wang,J.Y.Ying,Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals.Chemistry of Materials,1999,11:3113-3120.
    [43]X.Wu,Q.Z.Jiang,Z.F.Ma,et al.Synthesis of titania nanotubes by microwave irradiation.Solid State Communications,2005,136(9-10):513-517.
    [44]C.-C.Chung,T.-W.Chung,C.-K.Thomas,et al.Rapid synthesis of titania nanowires by microwave-assisted hydrothermal treatments.Industrial & Engineering Chemistry Research Search,2008,47(7):2301-2307.
    [45]W.Wang,H.Lin,J.Li,et al.Formation of titania nanoarrays by hydrothermal reaction and their application in photovoltaic cells.Joumal of the American Ceramic Society,2008,91(2):628-631.
    [46]张霞,赵岩,张彩碚,等.低温水热合成异形TiO_2纳米晶及其表征.物理化学学报,2007,23(6):856-860.
    [47]J.Wei,J.Yao,X.Zhang.Hydrothermal growth of titania nanostructures with tunable phase and shape,Materials Letters,2007,61(23-24):4610-4613.
    [48]X.H.Li,W.M.Liu,H.L.Li.Template synthesis of well-aligned titanium dioxide nanotubes.Applied physics A:Materials Science & Processing.
    [49]C.Huang,X.Liu,Y.Liu,et al.Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol-gel template synthesis.Chemical Physics Letters,2006,432:468-472
    [50]H.-C.Liang,X.-Z.Li.Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution.Journal of Hazardous Materials,In Press.
    [51]G.K.Mor,O.K.Varghese,M.Paulose,et al.Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements.Thin Solid Films,2006,496:42-48.
    [52]Y.K.Lai,L.Sun,C.Chen.Optical and electrical characterization of TiO_2nanotube arrays on titanium substrate.Applied Surface Science,2005,252:1101-1106
    [53]X.Quan,X.Ruan,H.Zhao,et al.Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO_2 nanotube film electrode.Environmental Pollution,2007,147:409-414.
    [54]D.Zhang,L.Qi,J.Ma,et al.Formation of crystalline nanosized titania in reverse micelles at room temperature.Journal of Materials Chemistry,2002,12:3677-3680.
    [55]M.Wu,J.Long,A.Huang,et al.Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles.Langmuir,1999,15:8822-8825.
    [56]Y.F.Zhu,L.Zhang,W.Q.Yao,et al.The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-Gel method with TiCl_4 as a precursor.Applied Surface Science,2000,158:32-37.
    [57]Y.F.Zhu,L.Zhang,L.Wang,et al.The preparation and chemical structure of TiO2 film photocatalysts supported on stainless steel substrates via the sol-gel method.Journal of Materieals Chemistry,200l,11:1864-1868.
    [58]Z.C.Wang,H.Ulf,K.Per-Olov.Optical properties of anatase TiO_2 thin films prepared by aqueous sol-gel process at low temperature.Thin solid films,2002,405(2):50-54.
    [59]S.-C.Jung,B.-H.Kim,S.-J.Kim,et al.Characterization of a TiO_2 photocatalyst film deposited by CVD and its photocatalytic activity.Chemical Vapor Deposition,2005,11(3):137-141.
    [60]孙利平,邓辉球,刘晓芝,等.激光化学气相沉积法制备TiO_2薄膜 激光与光电子学进展,2007 44(8):57-61.
    [6l]S.K.Pradhan,P.J.Reucroft.A study of growth and morphological features of TiOxNy thin films prepared by MOCVD.Journal of CrystaL Growth,2003,250(3-4):588-594.
    [62]H.M.Yates,M.G.Nolan,D.W.Sheel,et al.The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO_2 films grown on glass by chemical vapour deposition.Journal of Photochemistry and Photobiology A-Chemistry,2006,179(1-2):213-223.
    [63]K.U.Mudali,T.M.Sridhar,N.Rajendran.Electrophoretic deposition of TiO_2and TiO_2+CeO_2 coatings on type 304L stainless steel.Surface Engineering,2007,23(4):267-272.
    [64]L.Grinis,S.Dor,A.Ofir,et al.Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells.Journal of Photochemistry and Photobiology A-chemistry,2008,198(1):52-59.
    [65]Y.Wan,D.Y.Zhao.On the controllable soft-templating approach to mesoporous silicates.Chemical Reviews,2007,107(7):2821-2860.
    [66]刘秀伍,李静雯,周理,等.介孔分子筛的合成与应用研究进展.材料导报,2006,20(2):86-90.
    [67]李宏宇,李强,孟波.大孔及中空二氧化钛结构材料研究进展.高分子通报,2006,(6):45-5 1.
    [68]P.Kluson,P.Kacer,T.Cajthaml,et al.Preparation of titania mesoporous materials using a surfactantmediated sol-gel method.Journal of Materials Chemistry,2001,11:644-651.
    [69]T.Sreethawong,Y.Suzuki,S.Yoshikawa.Synthesis,characterization,and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process.Journal of Solid State Chemistry,2005,178(1):329-338.
    [70]K.S.Yoo,T.G.Lee,J.Kim.Preparation and characterization ofmesoporous TiO_2 particles by modified sol-gel method using ionic liquids.Microporous and Mesoporous Materials,2005,84(1-3):211-217.
    [71]周明华.介孔二氧化钛光催化剂的制备、表征及性能研究:[博士学位论文]武汉:武汉理工大学,2002.
    [72]Y.-Q.Wang,S.-G.Chen,X.-H.Tang,et al.Mesoporous titanium dioxide:sonochemical synthesis and application in dye-sensitized solar cells.Journal of Materials Chemistry,2001:11(2):521-526.
    [73]J.G.Yu,M.H.Zhou,B Cheng,et al.Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity.Journal of Molecular Catalysis A-Chemical,2005,227(1-2):75-80.
    [74]Y.Liu,Y.Li Y,Y.T.Wang,et al.Sonochemical synthesis and photocatalytic activity of meso-and macro-porous TiO_2 for oxidation of toluene.Journal of Hazardous Materials,2008,150(1):153-157.
    [75]M.H.Zhou,J.G.Yu,B.Cheng.Effects of Fe-doping on the photocatalytic activity of mesoporous TiO_2 powders prepared by an ultrasonic method.Journal of Hazardous Materials,2006,137(3):1838-1847.
    [76]包南,马东,尚贞晓,等.介孔纳米TiO_2的超声化学法合成及其表征.环境化学,2005,24(2):150-152.
    [77]L.Z.Zhang,J.C.Yu.A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity.Chemical Communications,2003(16):2078-2079.
    [78]I.Kartini,D.Menzies,D.Blake,et al.Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells(DSSCs).Journal of Materials Chemistry,2004,14:2917-2922.
    [79]R.Q.Tan,Y.He,Y.F.Yu,et al.Hydrothermal preparation of mesoporous TiO_2powder from Ti(SO4)_2 with poly(ethylene glycol)as template.Journal of Materials Science,2008,38(19):3973-3978.
    [80]D.-S.Kim,S.-Y.Kwak.The hydrothermal synthesis of mesoporous TiO_2 with high crystallinity,thermal stability,large surface area,and enhanced photocatalytic activity.Applied Catalysis A:General,2007,323:110-118.
    [81]C.X.Tian,Z.Zhang,J.Hou,et al.Surfactant/co-polymer template hydrothermal synthesis of thermally stable,mesoporous TiO_2 from TiOSO_4.Materials Letters,2008,62(1):77-80.
    [82]J.Yu,G.Wang.Hydrothermal synthesis and photocatalytic activity of mesoporous titania hollow microspheres.Journal of Physics and Chemistry of Solids,2008,69(5-6):1147-1151.
    [83]S.Pavasupree,J.Jitputti,S.Ngamsinlapasathian,et al.Hydrothermal synthesis,characterization,photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO_2 nanopowders.Materials Research Bulletin,2008,43(1):149-157.
    [84]谢先法,吴平霄,党志,等.过渡金属离子掺杂改性TiO_2研究进展.化工进展,2005,24(12):1358-1362.
    [85]宋绵新,周天亮,王峰.TiO_2光催化剂改性掺杂与负载技术研究进展.材料导报,2006,20(8):16-20.
    [86]唐玉朝,黄显怀,俞汉青,等.非金属掺杂改性TiO_2光催化剂的机理化学进展.化学进展,2007,19(2/3):225-233.
    [87]W.Choi,A.Termin,M.R.Hoffmann.The Role of Metal Ion Dopants in Quantum-Sized TiO_2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics.Journal of Physical Chemistry,1994,98:13669-13679.
    [88]吴树新,马智,秦永宁,等.掺杂纳米TiO_2光催化性能的研究.物理化学学报,2004,20(2):138-143.
    [89]M.H.Zhou,J.G.Yu,B.Cheng.Effects of Fe-doping on the photocatalytic activity of mesoporous TiO_2 powders prepared by an ultrasonic method.Journal of Hazardous Materials,2006,137(3):1838-1847.
    [90]J.C.Colmenares,M.A.Aramendia,A.Marinas,et al.Synthesis,characterization and photocatalytic activity of different metal-doped titania systems.Applied Catalysis A-General,2006,306:120-127.
    [91]赵宗彦,柳清菊,张瑾,等.3d过渡金属掺杂锐钛矿相TiO_2的第一性原理 研究.物理学报, 2007, 56(11): 6592-6599.
    [92] S. Yuan, Q.R. Sheng, J.L. Zhang, et al. Synthesis of thermally stable mesoporous TiO_2 and investigation of its photocatalytic activity. Microporous and Mesoporous Materials, 2008, 110(2-3): 501-507.
    [93] T.Y. Peng, D. Zhao, H.B. Song, et al. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. Journal of Molecular Catalysis A-Chemical, 2005, 238(1-2): 119-126.
    [94] J.R. Xiao, T.Y. Peng, R. Li, et al. Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles. Journal of Solid State Chemistry, 2006, 179(4): 1161-1170.
    [95] D. Zhao, T. Y.Peng, J. R. Xiao, et al. Preparation, characterization and photocatalytic performance of Nd~(3+)-doped titania nanoparticles with mesostructure, Materials Letters, 2007, 61(1): 105-110.
    [96] W. Li, Y. Wang, H. Lin, et al. Band gap tailoring of Nd~(3+)-doped TiO_2 nanoparticles. Applied Physics Letters, 2003, 83(20): 4143-4145.
    [97] W. Li, A.I. Frenkel, J. C. Woicik, et al. Dopant location identification in Nd~(3+)-doped TiO_2 nanoparticles. Physical Review B, 2005, 72(15): 155315
    [98] A.-W. Xu, Y. Gao, H.-Q. Liu. The preparation, characterization, and their photocatalytic activities of rare-earth-doped tio_2 nanoparticles. Journal of Catalysis, 2002,207: 151-157.
    [99] R. Asahi, T. Morikawa. Nitrogen complex species and its chemical nature in TiO_2 for visible-light sensitized photocatalysis. Chemical Physics, 2007, 339(1-3):57-63.
    [100] H. Me, S. Washizuka, Y. Watanabe, et al. Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO_2 films. Journal of the Electrochemical Society, 2005, 152(11): E351-E356.
    [101] T. Ohno, T. Mitsui, M. Matsumura. Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light. Chemistry Letters, 2003, 32(4): 364-365.
    [102] T. Umebayashi, T. Yamaki, S. Tanaka, et al. Visible light-induced degradation of methylene blue on S-doped TiO_2 . Chemistry Letters, 2003, 32(4): 330-331.
    [103] Y. Choi, T. Umebayashi, M. Yoshikawa. Fabrication and characterization of C-doped anatase TiO_2 photocatalysts. Journal of Materials Science, 2004, 39(5):1837-1839.
    [104] J.Y. Lee, J. Park, J.H. Cho. Electronic properties of N- and C-doped TiO_2 . Applied Physics Letters, 2005, 87(1): 011904.
    [105] X. Li, R.C. Xiong, G.T. Wei. S-N co-doped TiO_2 photocatalysts with visible-light activity prepared by sol-gel method. Catalysis Letters, 2004, 25(6):104-109.
    [106] D. Li, N. Ohashi, S. Hishita, et al. Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO_2 powders by means of experimental characterizations and theoretical calculations. Journal of Solid State Chemistry, 2005, 178(11): 3293-3302.
    [107] D. Li, H. Haneda, S. Hishita, et al. Visible-light-driven N-F-codoped TiO_2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chemistry of Materials. 2005, 17(10): 2596-2602.
    [108] J.C. Yu, J.G. Yu, W.K. Ho, et al. Effects of F-doping on the photocatalytic activity and microstrucrures of nanocrystalline TiO_2 powders. Chemistry of Materials, 14(9): 3808-3816.
    [109] C. Ratanatawanate, C.R. Xiong, K.J. Balkus. Fabrication of PbS quantum dot doped TiO_2nanotubes. ACS NANO, 2008, 2(8): 1682-1688.
    [110] Y. Bessekhouad, D. Robert, J. Weber. Bi_2S_3/TiO_2 and CdS/TiO_2heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A-Chemistry, 2004, 163(3): 569-580.
    [111] P.A. Sant, P.V. Kamat. Interparticle electron transfer between size-quantized CdS and TiO_2semiconductor nanoclusters. Physical Chemistry Chemical Physics,2002,4(2): 198-203.
    [112] W.K. Ho, J.C. Yu. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO_2 nanoparticles. Journal of Molecular Catalysis A-Chemical, 2006, 247(1-2): 268-274.
    [113] Q. Shen, D. Arae, T. Toyoda. Photosensitization of nanostructured TiO_2 with CdSe quantum dots: effects of microstructure and electron transport in TiO_2 substrates. Journal of Photochemistry and Photobiology A-Chemistry, 2004, 164(1-3): 75-80.
    [114] L. Yue, X.M. Zhang. Preparation of highly dispersed CeO_2/TiO_2 core-shell nanoparticles. Materials Letters, 2008, 62(21-22): 3764-3766.
    [115] F. Galindo, R. Gomez, M. Aguilar. Photodegradation of the herbicide 2,4-dichlorophenoxyacetic acid on nanocrystalline TiO_2-CeO_2 sol-gel catalysts. Journal of Molecular Catalysis A-Chemical, 2008, 281(1-2): 119-125.
    [116] X.W. Zhang, L.C. Lei. Preparation of photocatalytic Fe_2O_3-TiO_2 coatings in one step by metal organic chemical vapor deposition. Applied Surface Science, 2008, 254(8): 2406-2412.
    [117] C.F. Lin, C.H. Wu, Z.N. Onn. Degradation of 4-chlorophenol in TiO_2, WO_3, SnO_2, TiO_2AVO_3 and TiO_2/SnO_2 systems. Journal of Hazardous Materials, 2008,154(1-3): 1033-1039.
    [118] L.R. Hou, C.Z. Yuan, Y.S. Peng, synthesis and photocatalytic property of SnO_2/TiO_2 nanotubes composites. Journal of Hazardous Materials, 2007, 139(2):310-315.
    [119] S. H. Overbury, L. Ortiz-Soto, H. Zhu, et al. Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions. Catalysis Letters, 2004, 95(3-4): 99-106.
    [120] C. Hippe, M. Wark, E. Lork, et al. Platinum-filled oxidic nanotubes. Microporous and Mesoporous Materials, 1999, 31(3): 235-239.
    [121] N. Perkas, Z. Zhong, L. Chen, et al. Sonochemically prepared high dispersed Ru/TiO_2 mesoporous catalyst for partial oxidation of methane to syngas. Catalysis Letters, 2005, 103(1-2): 9-14.
    [122] Y.Z. Li, Y.N. Fan, H.P. Yang, et al. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO_2. Chemical Physics Letters, 2003, 372(1-2): 160-165.
    [123] H. Einaga, T. Ibusuki, S. Futamura. Improvement of catalyst durability by deposition of Rh on TiO_2 in photooxidation of aromatic compounds. Environmental Science & Technology, 2004, 38(1): 285-289.
    [124] I. Pastoriza-Santos, D.S. Koktysh, A. A. Mamedov, et al. One-pot synthesis of Ag/TiO_2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir, 2000, 16(6): 2731-2735.
    [125] M. Wang, D.J. Guo, H.L. Li. High activity of novel Pd/TiO_2 nanorube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry, 2005, 178(6): 1996-2000.
    [126] J.C. Yu, X.C. Wang, L. Wu, et al. Sono- and photochemical routes for the formation of highly dispersed gold nanoclusters in mesoporous titania films. Advanced Functional Materials, 2004, 14(12): 1178-1183.
    [127] F. X. Liu, M. Tang,; L. Liu. Enhanced optical properties of Ag-TiO_2 (rutile) hybrid nanopowder. Physica Status Solidi (A) Applied Research, 2000, 179 (2):437-443.
    [128]Yuekun Lai,Yicong Chen,Huifang Zhuang,et al.A facile method for synthesis ofAg/TiO_2 nanostructures.Materials Letters,2008,62(21-22):3688-3690
    [129]K.Frey,V.Iablokov,G.Malaet,et al.CO oxidation activity of Ag/TiO_2 catalysts prepared via oxalate co-precipitation.Catalysis Letters,2008,124(1-2):74-79.
    [130]Y.Liu,X.L.Wang,F.Yang et al.Excellent antimicrobial properties of mesoporous anatase TiO_2 and Ag/TiO_2 composite films.Microporous and Mesoporous Materials,2008,114(1-3):431-439
    [13l]P.Fernandez,J.Blanco,C.Sichel,et al.Water disinfection by solar photocatalysis using compound parabolic collectors.Catalysis Today,2005,101:345-352.
    [132]J.M.Macak,H.Tsuchiya,A.Ghicov,et al.Dye-sensitized anodic TiO_2nanotubes.Electrochemistry Communications,2005,7(11):1133-1137.
    [133]马晓敏,王怡中.二氧化钛光催化氧化杀菌的研究及进展.环境污染治理技术与设备,2002,3(5):15-19.
    [134]徐丽丽,綦晓峰,陈玉清.纳米二氧化钛抗菌材料的研究与应用进展.山东陶瓷,2007,30(5):26-29.
    [135]于延芬,郑粟,柴立元,等.二氧化钛载银抗菌剂的研究进展.环境污染治理技术与设备,2004,5(12):16-20.
    [136]Y.Yao,Y.Ohko,Y.Sekiguchi,et al.Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film.Journal of Biomedical Materials Research Part B-Applied Biomaterials,2008,85B(2):453-460.
    [137]H.M.Coleman,K.Chiang,R.Areal.Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water.Chemical Engineering Journal,2005,113(1):65-72.
    [138]M.P.Reddy,A.Venugopal,M.Subrahmanyam.Hydroxyapatite-supported Ag-TiO_2 as Escherichia coli disinfection photocatalyst.Water Research,41(2):379-386.
    [139]T.Yuranova,A.G.Rincon,C.Pulgarin,et al.Performance and characterization of Ag-cotton and Ag/TiO_2 loaded textiles during the abatement of E-coli.Journal of Photochemistry and Photobiology A-Chemistry,2006,181(2-3):363-369.
    [140]施永明,赵高凌,沈 鸽,等.染料敏化纳米薄膜太阳能电池的研究进展.材料科学与工程,2002,20(1):125-127.
    [141]郝三存,林建明,黄昀昉.染料敏化TiO_2纳米晶太阳能电池研究进展.材料导报,2003,17(7):35-38.
    [142] D. Cahen, G. Hodes, M. Gratzel, et al. Nature of photovoltaic action in dye-sensitized solar cells. Journal of Physical Chemistry B, 2000, 104(9): 2053-2059.
    [143] L. Schmidt-Mende, U. Bach, R. Humphry-Baker, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells. Advanced Materials, 2005, 17(7): 813.
    [144] J.H. Ye, Z.G. Zou, M. Oshikiri, et al. A novel hydrogen-evolving photocatalyst InVO_4 active under visible light irradiation. Chemical Physics Letters, 2002, 356(3-4):221-226.
    [145] D.F. Wang, J.W. Tang, Z.G. Zou, et al. Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M_3V_2O_8 (M = Mg, Ni, Zn). Chemistry of Materials, 2005,17(20): 5177-5182.
    [146] M. Shang, W.Z. Wang, S. M. Sun, et al. Bi_2WO_6 nanocrystals with high photocatalytic activities under visible light. Journal of Physical Chemistry C, 2008,112(28): 10407-10411.
    [147] L. Ge. Preparation of novel visible-light-driven In_2O_3-CaIn_2O_4 composite photocatalyst by sol-gel method. Journal of Sol-Gel Science and Technology, 2007,44(3): 263-268.
    [148] S.X. Ouyang, Z.S. Li, Z. Ouyang, et al. Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides: AgAlO_2, AgCrO_2, and Ag2Cr04. Journal of Physical Chemistry C, 2008, 112(8):3134-3141.
    [149] M. Long, W.M. Cai, J. Cai, et al. Efficient photocatalytic degradation of phenol over Co_3O_4/BiVO_4 composite under visible light irradiation. Journal of Physical chemistry B, 2006, 110(41): 20211-20216.
    [150] J.Q. Yu, A. Kudo. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO_4. Advanced Functional Materials,2006, 16:2163-2169.
    [151] J. Q. Yu, A. Kudo. Hydrothermal synthesis of nanofibrous bismuth vanadate. Chemistry Letters, 2005, 34(6): 850-851.
    [152] L. Zhang, D.R. Chen, X.L. Jiao. Monoclinic structured BiVO_4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. Journal of Physical Chemistry B, 2006, 110(6): 2668-2673.
    [153] J.B. Liu, H. Wang, S. Wang, et al. Hydrothermal preparation of BiVO_4 powders. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2003, 104(1-2): 36-39.
    [154] L. Zhou, W.Z. Wang, S.W. Liu, et al. A sonochemical route to visible-light-driven high-activity BiVO_4 photocatalyst. Journal of Molecular Catalysis A-Chemical, 2006, 252(1-2): 120-124.
    [155] M.C. Neves, M. Lehocky, R. Soares, et al. Chemical bath deposition of cerium doped BiVO_4. Dyes and Pigments, 2003, 59(2): 181-184.
    [156] A. Galembeck, O.L. Alves. BiVO_4 thin film preparation by metalorganic decomposition. Thin Solid Films, 2000, 365(1): 90-93.
    [157] L. Zhou, W.Z. Wang, L. Zhang, et al. Single-crystalline BiVO_4 microtubes with square cross-sections: Microstructure, growth mechanism, and photocatalytic property.Journal of Physical Chemistry C, 2007, 111(37): 13659-13664.
    [158] S. Kohtani, S. Makino, A. Kudo, et al. Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: Comparison between BiVO_4 and TiO_2 photocatalysts. Chemistry Letters, 2002, (7): 660-661.
    [159] C. Damm, G Israel. Photoelectric properties and photocatalytic activity of silver-coated titanium dioxides. Dyes and Pigments, 2007, 75(3): 612-618.
    [160] L.Z. Zhang, J.C. Yu. A simple approach to reactivate silver-coated titanium dioxide photocatalyst.Catalysis Communications, 2005, 6(10): 684-687.
    [161] V. Vamathevan, R. Amal, D. Beydoun, et al. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. Journal of Photochemistry and Photobiology A-Chemistry, 2002, 148(1-3): 233-245.
    [162] S.X. Liu, Z.P. Qu, X.W. Han, et al. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 2004, 93-5: 877-884.
    [163] I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, et al. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Applied Catalysis B-Environmental, 2003, 42(2): 187-201.
    [164] J.G. Yu, H.G. Yu, B. Cheng, et al. Effects of calcination temperature on the microstructure and photocatalytic activity of titania nanotubes. Journal of Molecular Catalysis A: Chemical, 2006, 249: 135-142.
    [165] M.T. Byrne, J.E. McCarthy, M. Bent, et al. Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. Journal of Materials Chemistry, 2007, 17(22): 2351-2358.
    [166] G. Lassaletta, A.R. Gonzalez-elipe, A. Justo. Thermal and photochemical methods for the preparation of thin films of cermet materials. Journal of Materials Science, 1996, 31(9): 2325-2332.
    [167]I-H.Tseng,W.-C.Chang.Photoreduction of CO_2 using sol-gel derived titania and titania-supported copper catalysts.Applied Catalysis B-Environmental,2002,37(1):37-48.
    [168]Y.-L.Kuo,H.-W.Chen,et al.Analysis of silver particles incorporated on TiO_2coatings for the photodecomposition of o-cresol.Thin Solid Films,2007,515:3461-3468.
    [169]M.Jin,X.Zhang.Light-Stimulated Composition Conversion in TiO_2-Based Nanofibers.Journal of Physical Chemistry C,2007,111:658-665.
    [170]武汉大学.分析化学.北京:高等教育出版社,1998.185-189.
    [171]唐建成,邓意达,李军,等.均匀沉淀法制备ZnS粉末的动力学.中国有色金属学报,2007.17(1):75-79
    [172]傅献彩,沈文霞,姚天扬.物理化学(下册).北京:高等教育出版社,2004.828-832.
    [173]Y.Zhou,C.Y.Wang,H.J.Liu,et al.Preparation and studies of Ag-TiO_2 hybrid nanoparticles of core-shell structure.Materials Science and Engineering B-Solid State Materials for Advanced Technology,1999,67(3):95-98.
    [174]C.X.Song,D.B.Wang,G.H.Gu,et al.Preparation and characterization of silver/TiO_2 composite hollow spheres.Journal of Colloid and Interface Science,2004,272(2):340-344.
    [175]C.Chen,L.Wang,H.J.Yu,et al.Morphology-controlled synthesis of silver nanostructures via a seed catalysis process.Nanotechnology,2007,18(11):115612.
    [176]X.Z.Li,F.B.Lia,C.L.Yang,et al.Photocatalytic activity of WOx-TiO_2 under visible light irradiation.Journal of Photochemistry and Photobiology A:Chemistry,2001,141(2-3):209-217.
    [177]F.B.Lia,X.Z.Li.Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment.Applied Catalysis A:General,2002,228(1-2):15-27.
    [178]F.B.Li,X.Z.Li.The enhancement of photodegradation efficiency using Pt-TiO_2 catalyst.Chemosphere,2002,48(10):1103-1111.
    [179]D.H.Kim,D.-K.Choi,S.-J.Kim,et al.The effect of phase type on photocatalytic activity in transition metal doped TiO_2 nanoparticles.Catalysis Communications,2008,9(5):654-657.
    [180]Y.-L.Kuo,H.-W.Chen,Y.Ku.Analysis of silver particles incorporated on TiO_2coatings for the photodecomposition of o-cresol.Thin Solid Films,2007,515(7-8): 3461-3468.
    [181]B.F.Xin,L.Q.Jing,Z.Y.Ren,et al.Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO_2.Journal of Physical Chemistry B,109(7):2805-2809.
    [182]David R.Lide.CRC handbook on Chemistry and Physics version 2008.United States of America:CRC Press,2008.12-114.
    [183]黄岳元,米 钰,郭人民,等.TiO_2/Ag纳米抗菌材料.西北大学学报(自然科学版),2003,33(5):566-571.
    [184]J.-Z.Xu,W.-B.Zhao,J.-J.Zhu,et al.Fabricating gold nanoparticle-oxide nanotube composite materials by a self-assembly method.Journal of Colloid and Interface Science,2005,290(2):450-454.
    [185]B.L.Zhu,Q.Gao,X.L.Huang,et al.Characterization and catalytic performance of TiO_2 nanotubes-supported gold and copper particles.Journal of Molecular Catalysis A:Chemical,2006,249:211-217.
    [186]M.Wang,D.-J.Guo,H.-L.Li.High activity of novel Pd/TiO_2 nanotubes catalysts for methanol electron-oxidation.Journal of Solide State Chemistry,2005,178:1996-2000.
    [187]J.Arana,C.G.I.Cabo,J.M.Dona-Rodriguez,et al.FTIR study of formic acid interaction with TiO_2 and TiO_2 doped with Pd and Cu in photocatalytic processes.Applied Surface Science,2004,239(1):60-71.
    [188]J.C.Xu,M.Lu,X.Y.Guo,et al.Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water.Journal of Molecular Catalysis A-Chemical,2005,226(1):123-127.
    [189]B.F.Xin,L.Q.Jing,H.G.Fu,et al.Preparation and characterization of Cu doped TiO2 nanoparticles and their photocatalytic activity.Chemical Journal of Chinese Universities-Chinese,2004,25(6):1076-1080.
    [190]L.Yu,X.G.Zhang.Hydrothermal synthesis and characterization of vanadium oxide/titanate composite nanorods.Materials Chemistry and Physics,2004,87(1):168-172.
    [191]徐寿昌.有机化学.北京:高等教育出版社,2001.88-91.
    [192]A.M.Ruiz,A.Cornet,et al.Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO_2 used for gas sensors.Sensors and Actuators B-Chemical,2004,100(1-2):256-260.
    [193]C.Ad(?)n,A.Bahamonde,M.Fern(?)ndez-Garc(?)a,et al.Structure and activity of nanosized iron-doped anatase TiO_2 catalysts for phenol photocatalytic degradation.Applied Catalysis B:Environmental,2007,72:11-17.
    [194]L.j.Kundakovic,M.Flytzani-Stephanopoulos.Reduction characteristics of copper oxide in cerium and zirconium oxide systems Reduction characteristics of copper oxide in cerium and zirconium oxide systems.Applied Catalysis A:General,1998,171(1):13-29.
    [195]J.C.Xu,Y.L.Shi,J.E.Huang,et al.Doping metal ions only onto the catalyst surface.Journal of Molecular Catalysis A:Chemical,2004,219(2):351-355.
    [196]J.G.Yu,H.G.Yu,B.Cheng,Enhanced photocatalytic activity of TiO_2 powder (P25)by hydrothermal treatment.Journal of Molecular Catalysis A:Chemical,2006,253:112-118.
    [197]辛柏福,井立强,付宏刚,等.掺杂Cu的TiO_2纳米粒子的制备、表征及其光催化活性.高等学校化学学报,2004,(6):1076-1080.
    [198]Slamet,H.W.Nasution,E.Purnama,et al.Photocatalytic reduction of CO_2 on copper-doped Titania catalysts prepared by improved-impregnation method.Catalysis Communications,2005,6(5):313-319.
    [199]S.X.Wu,Z.Ma,Y.N.Qin,et al.XPS study of copper doping TiO_2 photocatalyst.Acta Physico-Chimica Sinica.2003,19(10):967-969.
    [200]G.Col(?)n,M.Maicu,M.C.Hidalgo,et al.Cu-doped TiO_2 systems with improved photocatalytic activity.Applied Catalysis B:Environmental,2005,67(1-2):41-51.
    [201]D.L.Li,H.S.Zhou,Ⅰ.Honma.Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization.Nature Materials,2004,3(1):65-72.
    [202]J.G.Yu,H.G.Yu,B.Cheng,Enhanced photocatalytic activity of TiO_2 powder (P25)by hydrothermal treatment.Journal of Molecular Catalysis A:Chemical,2006,253:112-118.
    [203]H.Chen,K.Dai,T.Y.Peng,et al.Synthesis of thermally stable mesoporous titania nanoparticles via amine surfactant-mediated templating method.Materials Chemistry and Physics,2006,96(1):176-181.
    [204]T.K.Ghorai,S.K.Biswas,P.Pramanik.Photooxidation of different organic dyes (RB,MO,TB,and BG)using Fe(Ⅲ)-doped TiO_2 nanophotocatalyst prepared by novel chemical method.Applied Surface Science 254(22):7498-7504.
    [205]C.Y.Wang,C.Bottcher,D.W.Bahnemann,et al.A comparative study of nanometer sized Fe(Ⅲ)-doped TiO_2 photocatalysts:synthesis,characterization and activity.Journal of Materials Chemistry,2003,13(9):2322-2329.
    [206]G.Riegel,J.R.Bolton.Photocatalytic Efficiency Variability in TiO_2 Particles.Journal of Physical Chemistry,1995,99:4215-4224.
    [207]A.Sclafani,J.M.Herrmann.Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions.Journal of Physical Chemistry,1996,100:13655-13661.
    [208]N.G.Park,van de Lagemaat J,A.J.Frank.Comparison of dye-sensitized rutileand anatase-based TiO_2 solar cells.Journal of Physical Chemistry B,2000,104(38):8989-8994.
    [209]M.C.Yan,F.Chen,J.L.Zhang,et al.Preparation of controllable crystalline titania and study on the photocatalytic properties,Journal of Physical Chemistry B,2005,109(18):8673-8678.
    [210]C.Y.Wu,Y.H.Yue,X.Y.Deng,et al.Investigation on the synergetic effect between anatase and futile nanoparticles in gas-phase photocatalytic oxidations.Catalysis Today,2004,93-95:863-869.
    [211]H.M.Cheng,J.M.Ma,Z.G.Zhao,et al.Hydrothermal preparation of uniform nanosized futile and anatase particles.Chemistry of Materials,1995,7:663-671.
    [212]B.P.Jiang,H.B.Yin,T.S.Jian,et al.Hydrothermal synthesis of rutile TiO_2nanoparticles using hydroxyl and carboxyl group-containing organics as modifiers.Materials Chemistry and Physics,2005,98(8):231-235.
    [213]J.Ovenstone,K.Yanagisawa.Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination.Chemistry of Materials,1999,11:2770-2774.
    [214]R D.Shannon,J.A.Pask,Kinetics of anatase-rutile transformation,Journal of the American Ceramic Society,1965,48:391-398.
    [215]古映莹,杜作娟.水热法合成锐钛矿型纳米二氧化钛.精细化工间体,2002,32(5):24-25
    [216]余家国,熊建锋,程蓓.高活性二氧化钛光催化剂的低温水热合成.催化学报,2005,26(9):745-749.
    [217]C.Su,C.M.Tseng,L.F.Chen,et al.Sol-hydrothermal preparation and photo catalysis of titanium dioxide.Thin Solid Films,2005,498(3):259-265.
    [218]郑智鸿.量身订做的二氧化钛光触媒之合成及应用:[硕士学位论文]中国 台湾:国立成功大学,2005.
    [219]Y.-W.Jun,J.-S.Choi,J.Cheon.Shape control of semiconductor and metal oxide nanocrystal through nonhydrolytic colloidal routes.Angewandte Chemie International Edition,2006,45:3414-3439.
    [220]B.Sun,A.V.Vorontsov,Panagiotis.et al.Role of platinum deposited on TiO_2 in phenol photocatalytic oxidation.Langmuir,2003,19:3151-3156.
    [221]J.G.Yu,J.F.Xiong,B.Cheng.et al.Fabrication and characterization of Ag-TiO2 mutiphase nanocomposite thin films with enhanced photocatalytic activity.Applied Catalysis B:Environmental,2005,60:211-221.
    [222]L.M.Chen.Hydrothermal synthesis and ethanol sensing properties of CeVO_4and CeVO_4-CeO_2 powders.Materials Letters,2006,60(15):1859-1862.
    [223]M.Gotic,S.Music,M.Ivanda,et al.Synthesis and characterisation of bismuth(Ⅲ)vanadate.Journal of Molecular Structure.2005,744-747:535-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700