可见光响应的光催化K_2La_2Ti_3O_(10)纳米复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将太阳能转换为氢能是解决未来能源问题的理想方法之一,光催化技术是实现其转换过程最有希望的途径。具有层状结构的半导体光催化剂因其特有的空间结构优势已成为目前光催化研究领域最为活跃的方向之一。
     本论文主要研究了超细层状K_2La_2Ti_3O_(10)光催化剂的制备,并通过金属离子和非金属离子的掺杂、柱撑、氧化物插层等方式对其进行改性,提高其光催化性能。通过理论计算,X射线衍射光谱、热谱、扫描电子显微镜、紫外-可见-红外光谱和荧光光谱表征,研究K_2La_2Ti_3O_(10)光催化剂的组成—结构—合成—性质之间的关系,探讨其反应机理和光催化活性,主要内容如下:
     结合能带计算方法,如赝势法的第一原理计算方法,计算了K_2La_2Ti_3O_(10)的电子密度分布和能带结构等基态物理性质,其价带主要由O的2p轨道构成,导带主要由Ti的3d轨道构成,理论带隙ΔE≥3.2eV。
     在温和的水热条件下,通过控制反应摩尔比、晶化温度和时间以及体系矿化剂浓度等重要因素,以Ti(O-iPr)_4、La_2O_3和KOH为原料合成了亚微米级的K_2La_2Ti_3O_(10)。水热法合成的K_2La_2Ti_3O_(10)粒径小、纯度高、比表面积大、能隙为3.72 eV,光催化活性是固相合成法的2倍多,其生长机理为基元模型。
     采用硬脂酸法在1000℃下烧结2小时可生成纯的K_2La_2Ti_3O_(10)粒子,该法所制备的K_2La_2Ti_3O_(10)比表面积大,能隙为3.71 eV,其光催化活性接近固相合成法的3倍,通过表征,初步提出了反应历程。
     将适量的过渡金属V、Nb、Ta掺杂于K_2La_2Ti_3O_(10)中,获得K_(2–x)La_2Ti_(3–x)M_xO_(10) (M = V, Nb, Ta; x = 0.0 ~ 1.0)系列的光催化剂。当掺杂浓度增加至一定值时,K_(2–x)La_2Ti_(3–x)M_xO_(10) (M = V, Ta; x = 0.8 ~ 1.0)体系由Ruddlesden-Popper (RP)相转变为Dion-Jacobson (DJ),而K_(2–x)La_2Ti_(3–x)Nb_xO_(10)体系由于Nb~(5+)的半径与Ti~(4+)相近,没有发生相转变。
     研究了过渡金属M5+浓度对K_(2–x)La_2Ti_(3–x)M_xO_(10)能隙和催化活性的影响,当掺杂量为x = 0.1时获得最佳光催化效果。
     通过湿化学法有效的N将掺杂到K_2La_2Ti_3O_(10)中,K_2La_2Ti_3O_(10)–xNx样品的吸收边向可见光方向发生红移,能隙降至3.44 eV,并对其形成机理做了初步的探讨。在紫外光辐照下K_2La_2Ti_3O_(10–x)N_x的产H2活性大于K_2La_2Ti_3O_(10)和TiO_2(P25),可见光照射下K_2La_2Ti_3O_(10–x)N_x的降解染料的催化活性要高于K_2La_2Ti_3O_(10)和TiO_2(P25)。
     不同有机胺的预柱撑对层状H_2La_2Ti_3O_(10)的层间距有着较大的影响,采用分子链较长的有机胺柱撑对增大H_2La_2Ti_3O_(10)层间距和半导体的插入更有利。n-C_3H_7NH_2、n-C_4H_9NH_2、n-C_6H_(13)NH_2和n-C_9H_(19)NH_2柱撑后的H_2La_2Ti_3O_(10),其层间距分别可达到2.15纳米、2.53纳米、2.68纳米和3.15纳米。
     通过酸交换和预柱撑的方法,将Pt、TiO_2、Fe_2O_3和CdS等客体有效地插入到H_2La_2Ti_3O_(10)的层间,且以粒径小于1纳米的状态存在于H_2La_2Ti_3O_(10)的层状空间,构建光催化纳米插层材料,光催化性能得到进一步提高。实验结果表明,以CH3OH作为空穴清除剂,每克H_2La_2Ti_3O_(10)/(Pt, TiO_2)在紫外光辐照下5小时光解水产H2达404微摩尔;Fe_2O_3和CdS插入到H_2La_2Ti_3O_(10)层间后所形成的层状纳米复合材料不仅在紫外光辐照下有较强的光催化活性,并且在可见光辐照下也有一定的光催化水活性,每克H_2La_2Ti_3O_(10)/(Pt, Fe_2O_3)在可见光照射下5小时光解水产H2达12微摩尔;CdS插入到H_2La_2Ti_3O_(10)的层间能有效地提高其抗光腐蚀的性能;光催化剂在光解水反应中存在一个最佳使用浓度,本实验条件下,当催化剂的用量为1克时,产H2量达到最大,当用量超过这一浓度时,产H2效率又会随着用量的增加而减小。
Photo-catalytic reactions of semiconductors such as splitting of water have received much attention from researchers because of their possible application to the conversion of solar energy into chemical energy. Especially, more and more layered compounds have been used as catalysts owing to their unique structural feature and excellent photo catalytic activities.
     In this Ph.D. dissertation, the ultrafine layered K_2La_2Ti_3O_(10) photo-catalyst was fabricated, and the photo-catalytic activity of K_2La_2Ti_3O_(10) was improved by doping metal ion and nonmetal, pillaring, intercalating oxide. Then the samples obtained were characterized by theoretical calculation, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo-gravity - differential scanning calorimeters analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR), ultra violet-visible spectroscopy (UV-vis), specific surface area (BET), fluorescence spectrophotometer, etc, experiments. The performance of K_2La_2Ti_3O_(10) such as structure, reaction mechanism, photo catalytic activity, was studied. The dissertation was mainly discussed as follows:
     The density of states and electronic structures of K_2La_2Ti_3O_(10) perovskites were calculated by first-principles calculations with ultrasoft pseudopotentials plane-wave method based on the density functional theory. It is shown that the valance band has the contributions from the 2p orbital of O atom, and the conduction band has the contributions from the 3d orbital of Ti. From the observed parameters, it appears that K_2La_2Ti_3O_(10) hasΔE≥3.2 eV.
     The micrometer-sized K_2La_2Ti_3O_(10) was hydrothermally synthesized in the titanium (IV) isopropoxide, lanthanum trioxide and potassium hydroxide system under mild conditions. The results show that the products are dependent on some factors, such as Ti/ La molar ratio, crystallization temperature and time, pH value in reaction mixture. It was showed that it has a high purity, larger surface area than the solid state reaction sample. The hydrothermal sample has higher photo catalytic comparison the samples synthesized by the solid state reaction. The band gap of product is 3.72 eV. The growth unit mechanism may be used to explain the synthesis process.
     Ultrafine layered K_2La_2Ti_3O_(10) was successfully fabricated by stearic acid method under relatively lower temperature and shorter reaction time, which were usually used for the preparation of nanoparticles. The possible mechanism was primarily brought forward with the assistant of XRD, TG-DSC, FT-IR, etc. It was showed that it has a high purity, larger surface area than the solid state reaction sample. The hydrothermal sample has higher photo catalytic activity comparison the samples synthesized by the solid state reaction. The band gap of product is 3.71 eV.
     K_(2-x)La_2Ti_(3-x)M_xO_(10) (M=V, Nb, Ta; x=0.0~1.0) photo catalyst were fabricated by doping transition metals V, Nb, Ta in K_2La_2Ti_3O_(10). The phase of K_(2-x)La_2Ti_(3-x)M_xO_(10) (M=V, Ta) were changed from Ruddlesden-Popper (K_(2–x)La_2Ti_(3–x)M_xO_(10), x = 0.8; K_(2-x)La_2Ti_(3-x)Ta_xO_(10), x = 0.7) to Dion-Jacobson except for K2-xLa2Ti3-xNbxO10. The influence of doping with M on the photo catalytic property and band gap of photo catalyst were studied. The results reveal that the photo catalytic property of K_(1.9)La_2Ti_(2.9)M_(0.1)O_(10) is higher than other samples owing to the appropriately doping with M ion.
     Nitrogen-doped K_2La_2Ti_3O_(10-x)N_x was successfully prepared by wet chemical method. The absorption threshold was transferred to long wavelength. Because the nitrogen element was introduced in the crystal lattice of K_2La_2Ti_3O_(10-x)N_x, so the energy gap declined. The photo activity of K_2La_2Ti_3O_(10-x)N_x has higher photo catalytic activity comparison K_2La_2Ti_3O_(10) and TiO_2(P25). The possible mechanism was primarily brought forward with the assistant of XRD, UV-vis, FT-IR, etc.
     Intercalation behavior of n-alkylamines into a protonated from of a layered perovskite, H_2La_2Ti_3O_(10) has been investigated. The interlayer distance increase to 2.15 (n = 3), 2.53 (n = 4), 2.68 (n = 6) and3.15 (n = 9) nm. A linear relationship is observed between the interlayer distance and the number of carbon atoms in n-alkyl chains.
     TiO_2, CdS-ZnS, Fe_2O_3 and Pt into the interlayer of H_2La_2Ti_3O_(10)has been investigated. A serial of layered nanocomposites were synthesized by lots of reaction processes. The gallery height of interlayer was less than 1.0 nm.Photo catalytic activities of H_2La_2Ti_3O_(10)/TiO_2, H_2La_2Ti_3O_(10)/CdS and H_2La_2Ti_3O_(10)/Fe_2O_3 were superior to those of unsupported H_2La_2Ti_3O_(10), TiO_2 and Fe_2O_3 and were greatly enhanced by co-incorporation of Pt. Especially H_2La_2Ti_3O_(10)/CdS and H_2La_2Ti_3O_(10)/Fe_2O_3 showed photo catalytic activity under visible light irradiation. Under irradiation withλ> 290 nm from a Hg lamp of 450 W for 5 h, about 404μmol hydrogen was produced form 1250 ml methanol solution 10 vol. % containing 1g of dispersed H_2La_2Ti_3O_(10)/(Pt, TiO_2). Furthermore,12μmol hydrogen was produced by 1g of dispersed H_2La_2Ti_3O_(10)/(Pt, Fe_2O_3) under irradiation withλ> 400 nm light for 5 h, and the photocorrosion of CdS was suppressed effectively when it was incorporated in the interlayer of H_2La_2Ti_3O_(10). Finally, the concentration of the photocatalysts and productivities of hydrogen were discussed. The results showed that the productivities of hydrogen decreased with the concentration of the photocatalysts’increasing when them were beyond the optimal concentration, which might be due to the particle’s dispersion was strengthened when the concentration of the photocatalysts increased.
引文
[1] Fujishima A, Honda K. Electrochemical photalysis of water at a semiconductor electrode [J].Nature (London), 1972, 238(07): 37–38
    [2] Marye A F, Maria T D. Heterogeneous photocatalysis [J].Chem. Rev., 1993, 93(1): 341–357
    [3]鲍德佑.氢能-有效利用太阳能的新能源系统[J].太阳能, 1994, 4: 8–9
    [4]朱亚杰,李锦堂.太阳能与可再生能源[J].太阳能, 1995, 4: 2–6
    [5] Akihiko K. Photocatalyst materials for water splitting Catal. [J].Sur. from Asia, 2003, 7(1): 31–38
    [6] Linsebigler A L, Lu G, Yates J T J. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected Results [J]. Chem. Rev., 1995, 95(3): 735–758
    [7] Maruska P, Ghosh A K. Photocatalytic decomposition of water at semiconductor electrodes [J].Sol. Energy, 1978, 20(6): 443–458
    [8] Mills A, Lehunte S L. An overview of semiconductor photocatalysis [J]. Photochem. Photobiol. A: Chem., 1997, 108(1): 1–35
    [9] Fujishima A, Rao T N, Tryk D. Titanium dioxide photocatalysis [J]. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1(1): 1–21
    [10] Bulatov A V, Khidekel M L. Decomposition of water under the effect of UV irradiation in the presence of platinized titanium dioxide [J].Izv. Akad. Nauk SSSR , Ser. Khim., 1976: 1902–1903
    [11] Sato S, White J M. Reactions of water with carbon and ethylene over illuminated pt/TiO2 [J].Chem. Phys. Lett., 1980, 70(1): 131–134
    [12] Sato S, White J M. Photocatalytic water decomposition and water-gas shift reactions over NaOH-coated, platinized TiO2 [J].J. Catal., 1981, 69(1): 128–129
    [13] Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process [J].Nature, 1980, 286(31): 474–476
    [14] Duonghong D, Borgarello E, Gratzel M. Dynamics of Light Induced Water Cleavage in Colloidal Systems [J]. J. Am. Chem. Soc., 1981, 103(16): 4685–4690
    [15] Choi W, Termin A, Hoffmann M R. The Role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J].J. Phys. Chem., 1994, 98(51): 13669–13679
    [16]栾勇,傅平丰,戴学刚,杜竹玮.金属离子掺杂对TiO2光催化性能的影响[J].化学进展, 2004, 16(5): 738–746
    [17] Rahman M M, Krishna K M, Soga T, Jimbo T, Umeno M. Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films [J]. J. Phys. Chem. Solids, 1999, 60(2): 201–210
    [18] Xu A W, Gao Y, Liu H Q. The preparation characterization their photocatalytic activities of rare earth-doped TiO2 nanoparticles [J]. J Cat.,2002, 207(2): 151–157
    [19] Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air [J]. J. Photochem. Photobiol. A. Chem., 1998, 116(5): 63–67
    [20] Becker W G, Truong M M, Ai C C. Interfacial factors that affect the photoefficiency of semiconductor-sensitized oxidations in nonaqueous media [J]. J. phys. Chem., 1989, 93(12): 4882–4886
    [21] Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, IkedaS,Ohtani, B. Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol [J]. J. Phys. Chem., 2002, 163 (3): 637–645
    [22] Sheng J, Shivalingappa L, Karasawa J, Fukami T. Preparation and photocatalysis evaluation of anatase film on Pt-buffered polyimide [J].Vacuum. 1998, 51(4): 623–627
    [23] Ohno T, Saito S, Fujihara K. Photocatalyzed production of hydrogen and iodine from aqueous solutions of iodine using platinum-loaded TiO2 powder [J]. Bull. Chem. Soc. Jpn., 1996, 69(11): 3059–3064
    [24] Ranjit K T, Viswanathan B. Photocatalytic reduction of nitrite and nitrate ions over doped TiO2 catalysts [J].J. Photochem. Photobiol. A: Chem., 1997, 108(1-3): 73–78
    [25] [25] Dvoranova D, Brezova V, Mazur M. Investigations of metal-doped titanium dioxide photocatalysts [J]. Appl. Catal. B: Envrion., 2002, 37(2): 91–105
    [26] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(13): 269–271
    [27] Khan S U M, Al-Shah M, Ingler Jr W B. Efficient Photochemical Water splitting by a Chemically Modified n-TiO2 [J].Science, 2002, 297(27): 2243–2245
    [28] Gomez R, Lopez T, Ortiz-Islas E. Effect of sulfation on the photo activity of TiO2 sol-gel derived catalysts [J]. J. Mol. Catal. A: Chem., 2003, 1939(1-2): 217–226
    [29] Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxidec [J]. Angew. Chem.Int.Ed., 2003, 42(40): 4908–4911
    [30] Maier W F, Lettmamn C, Hidenbrand K, Kisch H, Macyk W. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst [J]. Appl. Catal. B: Envrion., 2001, 32(4): 215–227
    [31] Choi Y, Umebayashi, Yamamoto S, Tanka S. Fabrication of TiO2 photocatalysts by oxidative annealing of TiC [J].J. Mater. Sci. Lett., 2003, 22(17): 1209–1211
    [32] Irie H, Watanabe Y. Hashimoto K. Carbon-doped anatase TiO2 powders as a visible light sensitive photocatalyst [J].Chem. Lett., 2003, 32(8): 772–773
    [33] Hattori A, Yamamoto M, Tada H, Ito S. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films [J].Chem. Lett., 1998, 278(8): 707–708
    [34] Hattori A, Hiroaki T. High photocatalytic activity of F-doped TiO2film on glass [J]. J.Sol-Gel Sci. Tech., 2001, 22(1-2): 47–52
    [35] Yu J C, Yu J, Ho W, Jiang Z, Zhang L. Effects of F- doping on the photocatalytic activity and microsturctures of nanocrystalline TiO2 powders [J]. Chem. Mater., 2002, 14(9): 3808–3816
    [36] Yamaki T, Umebayashi T, Sumita T, Yamamoto S. Fluorine-doping in titanium dioxide by ion implantation technique [J]. Nucl. Instrum. Methods Phys. Res. B, 2003, 206: 254–258
    [37] Yamaki T, Sumita T, Yamamoto S. Formation of TiO2-xFx compounds in fluorine implanted TiO2 [J]. J. Mater. Sci. Lett., 2002, 21(1): 33–35
    [38] Nukumizu K, Nunoshige J, TakataT, Domen K. TiNxOyFz as a stable photocatalyst for water oxidation in visible light (<570nm) [J]. Chem. Lett., 2003, 32(2): 196–197
    [39]刘美英,由万胜,雷志斌,高田冈,堂免一成,李灿.可见光作用下LaTaON2催化剂光催化分解水制氢[J].催化学报, 2006, 27(7): 556–558
    [40] Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S,Takeuchi K. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J].J. Mol. Catal.: Chem., 2000, 161(1-2): 205–212
    [41] Sakatani Y, Ando H, Okusako K. Metal ion and N co-doped TiO2 as a visible-light photocatalyst [J].J.Mater. Res., 2004, 19(7): 2100–2108
    [42] Zhu J, Chen F, Zhang J, Chen H, Anpo M. Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization[J].J. Photochem. Photobiol., A:chem., 2006, 180(1-2): 196–204
    [43] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2- x Nx powders [J]. J. Phys. Chem. B, 2003, 107(23): 5483–5486
    [44] Olea A., Ponce G., Sebastian P. J. Electron transfer via organic dyes for solar conversion [J]. Sol. Energ. Mat. Sol. C., 1999, 59(1): 137–143
    [45] Tennakone K, Kumara G R R A, Wijayantha K G U, Kottegoda I R M, Perera V P S, Aponsu G M L P. A nanoporous solid-state photovoltaic cell sensitized with copper chlorophyllin [J]. J. Photochem. Photobiol., A: Chem., 1997, 108(203): 175–177
    [46] Wang X F, Xiang J F, Wang P, Koyama Y, Yanagida S, Wada Y, Tamiaki H. Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers[J]. Chem. Phy. Lett., 2005, 408(4-6): 409–414
    [47] Urano T, Hino E, Ito H, Shimizu M, Yamaoka T. Study of radical generated from coumarin dye-sensitized photo-initiator systems in high-speed photopolymer coating layers using laser flash photolysis [J]. Polym. Advan. Techn., 1998, 9(12): 825–830
    [48] Hara K, Tachibana Y, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes [J]. Sol. Ener. Mater. Sol. Cells., 2003, 77(1): 89–103
    [49] Wang Z, Huang Y, Huang C, Zheng J, Cheng H, Tian S. Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative [J]. Synthet. Met., 2000, 114(2): 201–207
    [50] Yao Q H, Shan L, Li F Y, Yin D D, Huang C H. The photoelectrochemical properties of four hemicyanine derivatives on nanocrystalline TiO2 electrode [J]. Acta physico-chimica sinica 2003, 19(07): 635–640
    [51] Hen Y S, Li C, Zeng Z H, Wang W B, Wang X. S, Zhang B W. Efficient electron injection due to a special adsorbing group's combination of carboxyl and hydroxyl: dye-sensitizedsolar cells based on new hemicyanine dyes [J]. J. Mater. Chem. 2005, 15(16): 1654–1661
    [52] Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson N A, Ai X, Lian T Q, Yanagida S. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells [J]. Chem. Mater. 2004, 16(9): 1806–1812
    [53] Gurunathan K, Maruthamuthu P, Sastari M V C. Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous metayl viologen solution [J]. Int J. Hydrogen Ener., 1997, 22(1): 57–62
    [54] Bi Z-C, Tien H T. Photoroduction of hydrogen by dye-sensitized systems [J]. Int. J. Hydrogen Ener., 1984, 19(8): 717–722
    [55] Gopisas K R, Bohorguez M, Kamat P V. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer process in colloidal CdS-TiO2 and CdS-AgI system [J]. J. Phys. Chem., 1990, 94(16): 6435–6440
    [56] Idriss Bedja, Kamat P V. Capped semiconductor colloidsSynthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites [J]. J. Phys. Chem., 1995, 99(22): 9182–9188
    [57] Bessekhouad Y, Robert, Webber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic polluntant [J]. J. Photochem. Photobiol. A: Chem., 2004, 16(3): 569–580
    [58] Serpone N, Pelizzetti E. Photocatalysis-Fundamentals and Applications [M]. New York: John Wiley and Sons, 1989
    [59] Khaselev O, Turner J A A. Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting [J]. Science, 1998, 280(5362): 425–427
    [60] So W W, Kim K J, Moon S J. Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4.[J]. Int. J. Hydrogen. Ener., 2004, 29(3): 229–234
    [61] Wang C Y, Shang H M, Tan Y, Yuan T, Zhang G. Properties and morphology of CdS compound TiO2 visible-light photocatalytic nanaofilms coated on glass surface [J]. Sep. Purif. Technol., 2003, 32(1-3): 357–362
    [62] Kumar A, Jain A K. Photophysics and photocatalytic properties of Ag+ activated sandwich Q-CdS-TiO2 [J]. J. Photochem. Photobiol. A: Chem., 2003, 156(1-3): 207–218
    [63] Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors- photocatalytic oxidation of indole [J].J. Molecul. Catal. A: Chem., 2001, 165(1-2): 365–273
    [64] Vinodgopal K, Kamt P V. Enhanced rates of photocatalytic degradation of an azo dye use SnO2/TiO2 coupled semiconductor thin films [J].Environ. Sci. Technol., 1995, 29(3): 841–845
    [65] Kanai N, Nuida T, Ueta K, Hashimoto, Watanabe T, Ohsaki H. Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering [J]. Vacuum, 2004, 74 (3-4): 723–727
    [66] Shang J, Yao Y, Zhu Y Wu N. Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film [J]. Appl. Catal. A: Gener., 2004, 257(1): 25–32
    [67] Irie H, Mori H, Hashimoto K. Interfacial structure dependence of layered TiO2/WO3 thin films on the photoinduced hydrophilic property [J]. Vacuum, 2004, 74(3-4): 625–629
    [68] Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A. Bactericidal effect of an energy storage TiO2-WO3 photocatalyst in dark [J]. Electrochem. Commun., 2003, 5(9): 793–796
    [69] Keller V, Garin F. Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of coupling of semiconductor and oxides in phtoctalytic oxidation of methylethyketone in the gas phase [J]. Catal. Commun., 2003, 4(8): 373–383
    [70] Yang S, Quan X, Li X, Liu Y, Chen S, Chen G. Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite electoreds towards pentachlorophenol degradation [J].Phys. Chem. Chem. Phys., 2004, 6(3): 659–664
    [71] Bandara J, Mielczarski J A, Lopez A, Kiwi J. Sensitized degradation of chlorophenols on iron oxides induced by visible light: Comparison with titianium oxide [J]. Appl. Catal. B: Environ., 2001, 34(4): 321–333
    [72] Pal B, Sharon M, Nogami G. Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties [J]. Mater. Chem. Phys., 1999, 59(3): 254–261
    [73] Comini E, Guidi V, Ferroni M, Sberveglieri G. TiO2:Mo, MoO3:Ti, TiO+WO3 and TiO:W layer for landfill produced gases sensing [J]. Sensors and Actuators B, Chem., 2004, 100(1-2): 41–46
    [74] Dube S, Rao N N. Rate parameter independence on the organic reactant: a study of adsorption and photocatalytic oxidation of surfactants using MO3-TiO2 (MMo or W) catalysts [J].J. Photochem. Photobiol. A: Chem., 1996, 93(1): 71–77
    [75] Long R Q, Yang R T. Selective Catalytic Oxidation of Ammonia to Nitrogen over Fe2O3–TiO2 Prepared with a Sol–Gel Method [J].J. Cat., 2002, 207(2): 158–165
    [76]施利毅,古宏晨,李春忠,房鼎业,张怡,华彬. SnO2-TiO2复合光催化剂的制备和性能[J].催化学报, 1999, 3(20): 340–342
    [77] Satama K, Yoshida R, Kusama H. Photocatalytic decomposition of water into H2 and O2 by a two-step phoatoexitation reaction using a WO3 suspension catalyst and a Fe3+/Fe2+ redox system [J]. Chem. Phys.Lett., 1997, 277(4): 387–391
    [78] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and and its photocatalytic and photophysical properties [J]. J. Am. Chem. Soc., 1999, 121 (49): 11459–11467
    [79] Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis [J]. J. Photochem. Photobiol. A: Chem., 2002, 148(1-3): 71–77
    [80] Kato H, Hori M, Konta R, Shimodaira Y, Kudo A. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation [J].Chem.Lett., 2004, 33(10): 1348–1349
    [81] Abe R, Sayama K, Sugihara H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3?/I? [J]. J. Phys. Chem., 2005, 109(33): 16052–16061
    [82] Higashi M, Abe R,Ishikawa A, Takata T, Ohtani B, Domen K. Z-scheme Overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm) [J].Chem. Lett., 2008, 37(2): 138–139
    [83] Wu J H, Uchida S, Fujishiro Y, Yin S, Sato T. Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites [J]. J. Photochem. Photobiol. A: Chem., 1999, 128(1-3): 129–133
    [84] Kim H G, Hwang D W, Kim J. Highly Donor-doped(110) Layered Perovskite Materials asNovel Photocatalysts for Overall Water Splitting [J].Chem. Commun, 1999, 12(999): 1077–1078
    [85] Kudo A, Hijii S. H2 or O2 Evolution from aqueous solution on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration d0 transiton metal ions [J]. Chem. Lett., 1999, 28(10): 1103–1104
    [86] Machida M, Yabunaka J I, Kijima T. Efficient photocatalytic decompositon of water with the novel layered tantalate RbNdTa2O7 [J]. Chem. Commun., 1999, 19(999): 1939–1940
    [87] Kudo A, Kato H, Nakagawa S. Water splitting into H2 and O2 on new Sr2M2O7(M=Nb and Ta) photocatalyst with layered perovskite structures: factors affecting the photocatalytic activity [J]. J Phys. Chem. B, 2000, 104(3): 571–575
    [88] Yoshimura J, Tanaka A, kondo J. Visible light induced hydrogen evolution on CdS/K4Nb6O17 photocatalyst [J]. Bull. Chem. Soc. Jpn., 1995, 68(8): 2439–2445
    [89] Domen K, Yoshimura J, Sekine T. A novel series of photocatalysts with an ion-exchangeable layered structure of niobate [J]. Catal. Lett, 1990, 4(2): 339–442
    [90] Yoshimura J, Ebina Y, Kondo J. Visible light induced photocatalytic behavior of a layered perovskite type niobate RbPb2Nb3O10 [J]. J Phys. Chem., 1993, 97(9): 1970–1973
    [91] Takata T, Shinohara K, Tanaka A. A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure [J]. J Photochem. Photobiol. A: Chem, 1997, 106(1-3): 45–49
    [92] Takata T, Furumi Y, Shinohara K. Photocatalytic decomposition of water on spontaneously hydrated layered perovskites [J]. Chem Mater, 1997, 9(2): 1063–1064
    [93] Shibata M, Kudo A, Tanaka A. Photocatalytic activities of layered titanium compounds and their derivatives for H2 evolution from aqueous methanol solution [J]. Chem. Lett., 1987, 16(6): 1017–1018
    [94] Uchida S, Yamamoto Y, Fujishiro Y. Intercalation of titanium oxide in Layered H2Ti4O9 and H4Nb6O17 and photocatalytic water cleavage with H2Ti4O9/(TiO2,Pt) and H4Nb6O17/(TiO2,Pt) nanocomposites [J]. J Chem. Soc. Faraday Trans., 1997, 93(17): 3229–3234
    [95] Bhat V, Gopalakrishnan J. HNbWO6 and HTaWO6: Novel layered oxides related to the rutile structure. Synthesis and investigation of ion-exchange and intercalation behavior [J].Solid State Ionics, 1988, 26(1): 25–32
    [96]于波,陈靖,宋崇立.新型除铯环境材料硅钛酸钠孔道结构化合物(Na4Ti4Si3O10)合成及结构表征[J].无机化学学报, 2003, 19(2): 119–124
    [97]段雪,张法智.插层组装与功能材料[M].北京,化学工业出版社, 2007
    [98] Pastor O, Torres M. Nanostructureal inorganically pillared layered metal (Ⅳ) phosphate [M]. Chem. Mater., 1996, 8(8): 1758–1769
    [99] Li L S, Liu X, Ge Y, Li L Y, Klinowski, Intercalation and pillaring of zirconium bis(monohydrogenphosphat) with NH2(CH2)3Si(OC2H5)3 [J]. J. Phys. Chem., 1991, 95(15): 5910–5914
    [100] Gill A, Gandia L M, Vicente M A. Recent advances in the synthesis and catalytic application of pillared clays [J]. Catal. Rev-Sci. Eng., 2000, 42(1-2):145–212
    [101] Jiao X, Chen D, Pang W. Solvothermal synthesis and characterization of silica-pillared titanium phosphate [J]. J. Mater. Chem., 1998, 8(12): 2831–2834
    [102] Wang W, Tang y, Xiao J. A new method for preparing nickel oxide supported silica pillared with high surface area [J]. Chem. Lett., 2003, 29(3): 282–283
    [103] Hiyoshi N, Yamamoto N, Okuhara T. Novel preparation of vanadyl pyrophosphate for selective oxidation of n-butane utilizing intercalation and exfoliation [J]. Chem. Lett., 2001, 30(6): 484–485
    [104] Liu Y J, Cowen J A, Kaplan T, DeGroot D C. Investigation of the alkali metal vanadium oxide xerogel bronzes: AxV2O5.nH2O (A = K and Cs) [J]. Chem. Mater., 1995, 7(9): 1616–1624
    [105] Shimizu K, Itoh S, Hatamachi T, Kitayama Y, Kodama T. Pillaring of Ruddlesden–Popper perovskite tantalates, H2ATa2O7 (A = Sr or La2/3), with n-alkylamines and oxide nanoparticles [J]. J. Mater. Chem., 2006, 16(8): 773–779
    [106] Shimizu K, Tsuji Y, Hatamachi T, Toda K, Kodama T, Sato M, Kitayama Y. Photocatalytic water splitting on hydrated layered perovskite tantalate A2SrTa2O7·nH2O (A = H, K, and Rb) [J].Phys. Chem. Chem. Phys., 2004, 6(5): 1064–1069
    [107] Lopez M P C, Berre F L, Fourquet J L. The layered perovskite K2SrTa2O7: hydration and K+/H+ ion exchange [J]. J. Mater. Chem., 2001, 11(4): 1146–1151
    [108] Bhuvanesh N S P, Lopez M P C, Duroy H, Fourquet J L. Synthesis, characterization anddehydration study of H2A0.5nBnO3n+1·xH2O (n = 2 and 3, A = Ca, Sr and B = Nb, Ta) compounds obtained by ion-exchange from the layered Li2A0.5nBnO3n+1 perovskite materials [J].J. Mater. Chem., 2000, 10(7): 1685–1692
    [109] Lopez M. P. C, Berre F L, Fourquet J L. Synthesis and crystal structure of two new layered perovskite phases K2La2/3Ta2O7 and Li2La2/3Ta2O7 [J]. Zeitschrift fur anorganische und allgemeine Chemie, 2002, 628(9-10): 2049–2056
    [110] Shimizu K, Tsuji Y, Kawakami M, Toda K, Kodama T, Sato M, Kitayama Y. Photocatalytic Water Splitting over Spontaneously Hydrated Layered Tantalate A2SrTa2O7·nH2O (A=H, K, Rb) [J].Chem. Lett., 2002, 31(11): 1158–1159
    [111] Airoldi C, Nunes L M, Farias R F. The Intercalation of n-alkyldiamines into Crystalline Layered Titanate [J]. Mater. Res. Bull., 2000, 35(13): 2081–2090
    [112] Ogawa M, Takizawa Y. Intercalation of Alkylammoni-um Cations into a Layered Titanate in the Presence of Macrocyclic Compounds [J]. Chem. Mater., 2000, 12(11): 3253–3255
    [113] Uma S, Gopalakrishnan J. Polymerization of aniline in layered perovskites [J]. Mater. Sci. Eng. B, 1995, 34(2-3): 175–179
    [114] Schaak R E, Mallouk T E. Prying apart rudlesden-popper phase: exfoliation into sheets and nanotubes for assembly of perovskite [J]. Chem. Mater., 2000, 12(11): 3427–3433
    [115] Schaak R E, Mallouk T E. Slefassembly of tiled perovskite monolayer and multiplayer thin films [J]. Chem. Mater., 2000, 12(9): 2513–2522
    [116] Sasaki T, Izumi F, Watanabe M. Intercalation of pyridine in layered titanates [J]. Chem. Mater., 1996, 8(3): 777–782
    [117] Schaak R E, Mallouk T E. Perovskites by design: a toolbox of solid-state reactions[J]. Chem. Mater., 2002, 14(44): 1455–1471
    [118] Sasaki T, Izumi F, Watanabe M. Preparation and acid-base properties of a protonated titanate with the lepidocrocite-like layer structure [J]. Chem. Mater., 1996, 8(3): 777–782.
    [119] Kim D W, Blumstein A, Kumar J, Tripathy S K, Layered aluminosilicate/chromophore nanocomposites and their electrostatic layer-by-layer assembly [J].Chem. Mater., 2001, 13(2): 243–246,
    [120] Bujdak J, Hackett E, Giannelis E P. Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: implications on nanocomposite polymerelectrolytes. Computer simulation studies of PEO/Layer silicate nanocomposites. [J].Chem. Mater., 2000, 12(8): 2168–2174
    [121] Leroux F, Besse J P. Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites [J]. Chem. Mater., 2001, 13(10): 3507–3515
    [122] Guo Y, Li D, Hu C, Wang Y, Wang E., Zhou Y, Feng S. Photocatalytic degradation of aqueous organocholorine pesticide on the layered double hydroxide pillared by paratungstate aion, Mg12Al6(OH)36(W7O24)·4H2O [J]. Appl. Catal. B: Envrion., 2001, 30(3-4): 337–349
    [123] Choy J H, Lee H C, Jung H. A novel synthetic route to TiO2 pillared layered titanate with enhanced phototcatalytic activity [J]. Mater. Chem., 2001, 11(9): 2232–2234
    [124] Bissessur R, Schipper D. Exfoliation and reconstruction of SnS2 layers: A synthetic route for the preparation of polymer-SnS2 nanomaterials [J]. Mater. Lett. 2008, 62(10-11): 1638–1641
    [125] Ebina Y, Sasaki T, Watanabe M. Study on exfoliation of layered perovskite-type niobates [J]. Solid State Ionics, 2002, 151(1-4): 177–182
    [126] Chevallier V, Nihoul G, Madigou V. Exfoliated nanoplatelets of an Aurivillius phase, Bi3.25La0.75Ti3O12: Characterisation by X-ray diffraction and by high-resolution electron microscopy [J]. J. Solid State Chem., 2008, 181(3): 439–449
    [127] Domen K, EbinaY, Ikeda S, Tanaka A, Kondo J N, Maruya K. Layered niobium oxides pillaring and exfoliation [J]. Catal. Today, 1996, 28(1-2): 167–174
    [128] Choy J H, Paek S M, Oh J M, Jang E S. Intercalative route to heterostructured nanohybrids [J]. Current Appl. Phys., 2002, 2(6): 489–495
    [129] Choy J H. Intercalative route to heterostructured nanohybrid [J]. J. Phys. Chem. Solids, 2004, 65( 2-3): 373–383
    [130] Unal U, Matsumoto Y, Tamoto N, Koinuma M, Machida M, Izawa K. Visible light photoelectrochemical activity of K4Nb6O17 intercalated with photoactive complexes by electrostatic self-assembly deposition [J]. J. Solid State Chem., 2006, 179(1): 33–40
    [131] Wu J H, Satoshi U, Yoshinobu F. Synthesis and photocatalytic properties of HTaWO6/(Pt, TiO2) and HTaWO6/(Pt, Fe2O3) nanocomposites [J]. Intern. J. Inorg. Mater., 1999, 1(3-4): 253–258
    [132] Wang L L, Wu J H, Huang M L. Synthesis and photocatalytic properties of layered intercalated materials HTaWO6/(Pt, Cd0.8Zn0.2S) [J]. Scripta Mater., 2004, 50(4): 465–469
    [133] Wu J H, Shu Y, Yu L. Hydrothermal Synthesis of HNbWO6/MO Series Nanocomposites and Their Photocatalytic Properties [J]. J Mater. Sci., 2001, 36(12): 3055–3059
    [134] Shu Y, Wu J H, Daisuke I, Tatuya O, Tsugio S. Synthesis and photochemical properties of HTaWO6/(Pt,TiO2) nanocomposite under visible light irradiation [J]. Compos. Interface, 2004, 11 (2): 195–204,
    [135] Shu Y, Daisaku M, Masayuki I, Wu J H, Tsugio S. Synthesis of HTaWO6/(Pt,TiO2) Nanocomposites with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction [J]. Solid State Ionics, 2002, 151(1-4): 377–383,
    [136] Inoue Y, Assai Y, Sato K. Photocatalysts with Tunnel Structures for Decomposition of Water. Partl-BaTi4O9, a Pentagonal Prism Tunnel Structure and Its Combination with Various Promoters [J]. J Chem Soc, Faraday Trans, 1994, 90(6): 797–802
    [137] Kohno M, Kaneko T, Ogura S. Dispersion of ruthenium oxide on barium titanates (B6Ti17O40,Ba4Ti3O30, BaTi4O9 and Ba2Ti9O20)and photocatalytic activity for water decomposition [J]. J Chem Soc, Faraday Trans, 1998, 94(1): 89–94
    [138] Kohno M, Ogura S, Sato K, Inoue Y. A tracer study of a radical produced by UV irradiation on BaTi4O9 photocatalyst surface [J].Chem. Phys. Lett., 2000, 319, (5-6): 451–456
    [139] Ogura S, Kohno M, Sato K, Inoue Y. Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13 (M = Na, K, Rb, Cs) [J]. Appl. Surface Sci., 1997, 121-122(2): 521–524
    [140] Kohno M, Ogura S, Sato K, Inoue Y. Properties of photocatalysts with tunnel structures: formation of a surface lattice O?radical by the UV irradiation of BaTi4O9 with a pentagonal-prism tunnel structure [J]. Chem. Phys. Lett., 1997, 267(1-2): 72–76
    [141] Kohno M, Ogura S, Sato K, Inoue Y. Effect of tunnel structures of BaTi4O9 and Na2Ti6O13 on Photocatalytic Activity and Photoexcited charge separation [J]. Stud. Surf. Sci. Catal. 1996, 101: 143–152
    [142] Ahuja S, Kutty T R N. Nanoparticles of SrTiO3 prepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol [J]. J. Photochem. Photobiol. A: Chem., 1996, 97 (1-2): 99–107
    [143] Hwang D W, Kim H G, Kim J. Photocatalytic Water Splitting over Highly Donor-Doped (110) Layered Perovskites [J].J. Catal., 2000, 193, (1): 40–48
    [144] Machida M, Yabunaka J, Kijima T, Matsushima S, Arai M. Electronic structure of layered tantalates photocatalysts, RbLnTa2O7 (Ln=La, Pr, Nd, and Sm) International [J]. J. Inorg. Mater., 2001, 3(6): 545–550
    [145] Omata T, Otsuka-Yao-Matsuo S. Photocatalytic behavior of titanium oxide-perovskite type Sr(Zr1?xYx)O3?δcomposite particlesl [J].J. Photochem. Photobiol. A: Chem., 2003, 156(1-3): 243–248
    [146] Yao W F, Wang H, Xu X H. Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12 [J]. Mater. Lett., 2003, 57(13-14): 1899–1902
    [147] Yao W F, Xu X H , Wang H. Photocatalytic property of perovskite bismuth titanate [J]. Appl. Catal. B: Envir., 2004, 52(2): 109–116
    [148] Fei D Q, Hudaya T, Adesina A A. Visible-light activated titania perovskite photocatalysts: Characterisation and initial activity studies [J]. Catal. Commun., 2005, 6(4): 253–258
    [149] Zhang W F, Tang J W, Ye J H. Photoluminescence and photocatalytic properties of SrSnO3 perovskite [J]. Chem. Phys. Lett., 2006, 418(1-3): 174–178
    [150] Yao W F, Ye J H. Photocatalytic properties of a new photocatalyst K2Sr1.5Ta3O10 [J]. Chem. Phys. Lett., 2007, 435(1-3): 96–99
    [151] Yang Y, Sun Y B, Jiang Y S. Structure and photocatalytic property of perovskite and perovskite-related compounds [J]. Mater. Chem. Phys., 2006, 96(2-3): 234–239
    [152] Li D F, Zheng J, Zou Z G. Band structure and photocatalytic properties of perovskite-type compound Ca2NiWO6 for water splitting [J]. J. Phys. Chem. Solids, 2006, 67(4): 801–806
    [153] Kim H G, Becker O S, Jang J S, Ji S M, Borse, P H, Lee J S. A generic method of visible light sensitization for perovskite-related layered oxides: Substitution effect of lead [J]. J. Solid State Chem., 2006, 179(4): 1214–1218
    [154] Liu J W, Chen G, Li Z H, Zhang Z G. Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A=Na and K) [J]. Int. J. Hydrogen Energ., 2007, 32(13): 2269–2272
    [155] Bi J H, Wu L, Li Z H, Wang X X, Fu X Z. A citrate complex process to prepare nanocrystalline PbBi2Nb2O9 at a low temperature [J]. Mater. Lett., 2008, 62(1): 155–158
    [156] Takata T, Shinohara K, Tanaka A, Hara M, Kondo J N, Domen K. A highly activephotocatalyst for overall water splitting with a hydrated layered perovskite structure [J]. J. Photochem. Photobiol. A: Chem., 1997, 106(1-3): 45–49
    [157] Takata T, Tanaka A, Hara M, Kondo J N, Domen K. Photocatalytic water decomposition by layered perovskites [J]. Stud. Surf. Sci. Catal., 2000, 130(2): 1943–1948
    [158] Thaminimulla C T K, Takata T, Hara M, Kondo J N, Domen K. Effect of Chromium Addition for Photocatalytic Overall Water Splitting on Ni–K2La2Ti3O10 [J]. J. Catal., 2000, 196(2): 362–365
    [159] Kato H, Kudo A. Energy structure and photocatalytic activity for water splitting of Sr2(Ta1?XNbX)2O7 solid solution [J]. J. Photochem. Photobio1. A: Chem., 2001, 145(1-2): 129–133
    [160] Kato H, Kudo A. Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts [J].Catal. Today, 2003, 78(1-4): 561–569
    [161] Zou Z, Ye J H, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J].Nature, 2001, 414(6): 625–627
    [162] Zou Z, Ye J H, Arakawa H. Role of R in Bi2RNbO7(R= Y, Rare earth): Effect on Band Structure and Photocatalytic Properties [J]. J. Phys. Chem. B., 2002, 106(3): 517–520
    [163] Zou Z, Ye J H, Arakawa H. Surface characterization of nano-particles of NiOx/In0.9Ni0.1TaO4: Effects on photocatalytic activity [J]. J. Phys. and Chem. B.2002, 106(51): 13098–13101
    [164] Ye J H, Zou Z, Arakawa H. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+) [J]. J. Photochem. Photobiol., A: Chem., 2003, 148(1-3): 79–83
    [165] Tang J, Zou Z, Ye J H. Photophysical and photocatalytic properties of AgInW2O8 [J]. J. Phys. Chem. B., 2003, 107(51): 14265–14269
    [166] Xu B, W. Zhang F, Liu X Y, Ye J H. Photophysical properties and electronic structures of the perovskite photocatalysts Ba3NiM2O9 (M=Nb,Ta) [J]. Phys. Rev. B, 2007, 76(12): 125109–125115
    [167] Zou Z, Arakawa H. Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts [J]. J. Photochem. Photobiol., A: Chem., 2003, 158(2-3): 145–162
    [168] Zou Z, Ye J H, Sayama K, Arakawa H. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts [J]. J. Photochem. Photobiol., A: Chem., 2002, 148(1-3): 65–69
    [169] Zou Z, Ye J H, Sayama K, Arakawa H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1?xNbxO4 (0    [170]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社, 2005
    [171]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001
    [172] Kamat P V, Dimitrijevic N M. Colloidal semiconductors as photocatalysts for solar energy conversion [J]. Sol. Energy, 1990, 44(2): 83–98
    [173] Brus L E. Electronic wave functions in semiconductor tor clusters: Experiment and theory [J]. J. Phys. Chem., 1986, 90(12): 2555–2560
    [174] Disdier J, Herrmann J M, Pichapt P. Platinum/titanium dioxidecatalyst [J]. J Chem Soc, Faraday Trans., 1983, 79(4): 651–660
    [175] Pichat P, Mozzanega M N, Disdier J. Platinum content and temperature effects on the photocatalytic hydrogen production from aliphatic alcohols over platinum/titanium dioxide [J]. Nouv. J. Chim., 1982, 6: 559–564
    [176] Ohno T, Sato S, Fujihara K. Photocatalyzed production of hydrogen and iondine from aqueous solutions of iondine using platium-loaded TiO2 powder [J]. Bull. Chem. Soc. Jpn., 1996, 69(11): 3059–3064
    [177] Ohno T, Haga D, Fujihara K. Unique effects of iron(III) ions and photoelectrochemical properties of titanium dioxide [J]. J. Phys. Chem B., 1997, 101(33): 6415–6419
    [178] Ggalinska A, Walendziewski J. Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents [J]. Energy Fuels, 2005, 19(3): 1143–1147
    [179] Bard A J, Fox M A. Artificial photosynthesis: solar Splitting of water to hydrogen and oxygen [J]. Acc. Chem. Res., 1995, 28(3): 141–145
    [180] Kawai T, Sakata T. Photocatalytic hydrogen production fromliquid methanol and water [J]. J Chem Soc, Chem Commun., 1980, 15(7): 694–695
    [181] Sakata T, Kawai T. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water [J]. Chem. Phys. Lett., 1981, 80(2-1): 341–344
    [182] Kawai T, Sakata T. Conversion of carboghydrate into hydrogen fuel by a photocatalytic process [J]. Nature, 1980, 286(31): 474–476
    [183] Hashimoto K, Dakata T. Photocatalytic reactions of hydrocarbons and fossil fuels with water. Hydrogen production and oxidation [J]. J Phys. Chem., 1984, 88(10): 4083–4088
    [184] Sakata T, Kawai T. Photocatalytic hydrogen production from water by the decomposition of polyvinylchloride, protein, algae, dead insects, and excrement [J]. Chem. Lett., 1981, 10(1): 81–84
    [185] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties [J]. Chem. Mater., 2001, 13(12): 4624–4628
    [186] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and potophysical properties [J]. J. Am. Chem. Soc., 1999, 121(49): 11459–11467
    [187] Sayama K, Arakawa H. Significant Effect of Carbonate Addition on Stiochiometric Photodecomposition of Liquid Water into Hydrogen and Oxygen from Platinum-Titanium(IV) Oxide Suspension [J]. Chem. Commun, 1992, 98(1): 150–152
    [188] Sayama K, Arakawa H. Remarkable Effect of Na2CO3 Addition on Photodecomposition of Liquid Water into H2 and O2 from Suspension of Semiconductor Powder Loaded with Various Metals [J]. Chem. Lett., 1992, 21(2): 253–256
    [189] Sayama K, Arakawa H. Photocatalytic Activity and Reaction Mechanism of Pt-intercalated K4Nb6O17 Catalyst on Water Splitting in Carbonate Salt Aqueous Solution [J]. J Photochem. Photobiol. A: Chem, 1998, 114(2): 125–135
    [190] Gopalakrishnan J, Bhat V. A2Ln2Ti3O10 (A=K or Rb; Ln=La or rare earth): a new series of layered perovskites exhibiting ion exchange [J]. Inorg. Chem.., 1987, 26(26):4299–4301
    [191] Uma S, Raju A R, Gopalakrishnan J. Bridging the Ruddlesden-Popper and the Dion-Jacobson series of layered perovskites: synthesis of layered oxides, A2-xLa2Ti3-xNbxO10 (A=K, Rb), exhibiting ion exchange [J]. J. Mater. Chem., 1993, 3(7): 709–713
    [192] Toda K, Watanabe J, Sato M. Crystal structure determination of ion-exchangeable layeredperovskite compounds, K2La2Ti3O10 and Li2La2Ti3O10 [J]. Mater. Res. Bull., 1996, 31(11): 1427–1435
    [193] Thamininulla C T K, Takata T, Hara M, Domen K. Effect of chromium addition for photocatalytic overall water splitting on Ni–K2La2Ti3O10 [J]. J.Catal, 2000, 196(2): 362–356
    [194] Gao G, Rabenberg L K, Nunn C M, Mallouk T E. Formation of quantum-size semiconductor particles in a layered metal phosphonate host lattice [J]. Chem. Mater., 1991, 3(1): 149–156
    [195]倪军,刘华.计算物理前沿及其与计算技术的交叉[J].物理, 2002, 31(7): 464–465
    [196]熊家炯.材料设计[M].天津:天津大学出版社, 2000
    [197]麦松威,周公度,李伟基.高等无机结构化学[M].北京:北京大学出版社, 2006
    [198] Hohenberg P, Hohn W, Inhomegeneous electro gas [J]. Phys. Rev.,1964,136(3B):864–866
    [199]黄昆.固体物理学[M].北京:高等教育出版社, 1985
    [200]张勇,唐超群,戴君. Rb2TeW3O12电子结构及光学性质的第一性原理研究[J].物理学报, 2005, 54(2): 868–874
    [201]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2003
    [202]张克立.固体无机化[M].武汉:武汉大学出版社, 2005
    [203]施尔畏,陈之战,元如林,郑燕青.水热结晶学[M].北京:科学出版社, 2004
    [204] Zhang C, Zhu Y F. Synthesis of square Bi2WO6 Nanoplates as High-Activity visible-Light–Driven photocatalysts [J]. Chem. Mater., 2005, 17(13): 3537–3545
    [205] Fu H B, Zhang L W, Yao W Q, Zhu Y F. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process [J]. Appl. Catal. B: Envrion., 2006, 66, (1-2): 100–110
    [206]毛雅春,冯守华.纳米晶钛镧酸盐的水热合成和表征[J].高等化学学报, 1998, 19(3): 340–344
    [207]刘晓瑭,张亚兰,石春山. Na0.5La0.5TiO3的水热合成及其表征[J].合成化学,2004, 12: 65–68
    [208] Zhang G K, He F S, Zou X. Hydrothermal synthesis and photocatalytic property of KNb3O8 with nanometer leaf-like network [J]. J. Alloy. Compd., 2007, 427(1-2): 82–86
    [209] Ikeda S, Hara M, Kondo J N, Domen K, Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposititon of water [J]. Chem. Mater. 1998, 10(1): 72–77
    [210] Li D, Yang J, Zhang L L, Wang X, Lu L D, Yang X J. Synthesis and intercalation properties of nanoscale layered tetratitanate [J]. J. Mater. Chem., 2002, 12(6): 1796–1799
    [211]刘冠鹏.层状钛酸盐的制备与改性[D].南京理工大学, 2004
    [212]杨娟.超细层状钛酸盐和复合纳米TiO2的制备及性质研究[D].南京理工大学, 2002
    [213]于洁,王华,马文会.复合掺杂钙钛矿氧化物催化剂的研究进展[J].昆明理工大学学报, 2003, 28(1): 19–27
    [214]桑丽霞,傅希贤.白树林. ABO3钙钛矿型复合氧化物光催化活性与B离子d电子结构的关系[J].感光科学与光化学, 2001, 19(2): 110–115
    [215] Reddy V R, Hwang D W, Lee J S. Effect of Zr substitution for Ti in KLaTiO4 for photocatalytic water splitting [J]. Catal. Lett., 2003, 90(1-2): 39–43
    [216] Yanagisa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu2+ doped layered hydrogen titanate [J]. Int. J. Inorg. Mater., 2000, 2(4): 339–346
    [217] Masato M, Kaori M, Shigenori M, Masao A. Photocatalytic properties of layered perovskite tantalates, MLnTa2O7 (M=Cs, Rb, Na, and H; Ln=La, Pr, Nd, and Sm) [J]. J. Mater. Chem., 2003, 13(6): 1433–1437
    [218] Kudo A., Kato H. Photocatalytic Decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains [J]. Chem. Lett., 1997, 26(9): 867–868
    [219] Kenichi S, Seiichiroh I, Tsuyoshi H, Tatsuya K, Mineo S, Kenji T. Photocatalytic water splitting on Ni-intercalated Ruddlesden-Popper tantalate H2La2/3Ta2O7 [J]. Chem. Mater., 2005, 17(20): 5161–5166
    [220] Sayama K, Arakawa H, Domen K. Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A = K, Rb) [J]. Catal. Today, 1996, 28(1-2): 175–182
    [221] Gao L. Synthesis and characterization of novel visible-light-driven Pd/BiVO4 composite photocatalysts [J]. Mater. Lett., 2008, 62 (6-7): 926–928
    [222]孙晓君,井立强,蔡伟民.掺V的TiO2纳米粒子的制备和表征及其光催化性能[J].硅酸盐学报, 2002, 30: 26–30
    [223]孟凡明,胡素梅,傅刚,周方桥. (Sr2+,Bi3+,Si4+,Ta5+)掺杂的TiO2压敏陶瓷中Ta5+的研究[J].材料科学与工程学报, 2005, 23(1): 96–99
    [224] Pena M A, Fierro J L G. Chemical structures and performance of perovskite oxides [J].Chem. Rev., 2001, 101(7): 1981–2017.
    [225]韩维屏.催化化学导论[M].北京:科学出版社, 2003
    [226]刘尚长.光电催化化学[M].北京:科学出版社, 2005
    [227]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社, 2004
    [228]吴越,氧化物的非化学计量性和催化作用[J].科学通报,1992, 37(2): 97–106
    [229]刘畅,暴宁钟,杨祝红,等.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学, 2001, 22(2): 215–218
    [230] Zhang Z B, Wang C C, Zakria R. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysis [J]. J. Phys. Chem., 1998, 102(52): 10871–10878
    [231] Rhee C H, Bae S W, Lee J S. Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst active under visible light [J]. Chem. Lett. 2005, 24(5): 660–661
    [232] Gole J L, Stout J D. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale [J]. J. Phys. Chem. B, 2004, 108(4): 1230–1240
    [233] Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Appl. Catal. B: Envrion., 2003, 42(4): 403–409
    [234] Kooli F, Sasaki T, Mizukami F. Characterization and Acidic Properties of Silica Pillared Titanates [J]. J Mater. Chem., 2001, 11(3): 841–845.
    [235] Gopalakrishan J, Bhat V, Raveau B A. (I)LaNb2O7: a new of niobate series of layered perovskites exhibiting ion-exchange and intercalation behavior [J]. Mater. Res. Bull., 22(1987): 423–427.
    [236] Choy J H, Lee H C, Jung H, Hwang S J J. A Novel Synthetic Route to TiO2 Pillared Layered Titanate with Enhanced Phototcatalytic Activity [J]. J Mater. Chem., 2001, 11(9): 2232–2234
    [237] Tsuneo M, Tetsuya F, Naosuke M. Effect of water on the acidic properties of layered HLaNb2O7 [J]. Bull. Chem. Soc. Jpn., 1993, 66(5): 1548–1550
    [238]崔文权,刘利,冯良荣,徐成华,李子健,吕绍杰,丘发礼. Pt/K2La2Ti3O10催化剂的合成及其光催化分解甲醇水溶液制氢[J].中国科学, B辑,化学, 2006, 49(2):139–144
    [239] Yamanaka S, DOI T, Sako S, Hattori M. High surface area solids obtained by intercalation of iron oxide pillars in montmorillonite [J]. Mater. Res. Bull., 1984, 19(2): 161–168
    [240] Zhang L L, Zhang W G, LU L D, Yang X J, Wang X. Synthesis, Structure and photocatalytic reactivity of layered CdS/H2La2Ti3O10 nanocomposites [J]. J. Mater. Sci., 2006, 41(12): 3917–3921
    [241] Enea O, Bard A J. Photoredox Reactions at Semiconductor Particles Incorporated into Clays–CdS and ZnS + CdS Mixtures in Colloidal Montmorillonite Suspensions [J]. J. Phys. Chem., 1986, 90 (2): 301–306
    [242] Hiroyuki F, Ohtaki M. Preparation and Photocatalytic Activities of a Semiconductor Composites of CdS Embedded in TiO2 Gel as a Stable Oxide semiconducting Matrix [J]. J. Molecul. Catal. A: Chem., 1998, 129(1): 61–68
    [243] Maruthamuthu P, Gurunathan K. Visible Light–induce Hydrogen Production from Water with Pt/Bi2O3/RuO2 in Presence of Electron Relany and Photosensitizer [J]. Int. J. Hydrogen Ener., 1994, 19(11): 889–893

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700