不同尺度黑洞系统的天体物理现象的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X射线双星和活动星系核中的黑洞在质量上跨越6个量级以上,但近来的一些观测表明它们的许多高能辐射特征存在相似性,例如喷流、X射线准周期震荡(QPO)、高发射率指数、铁Kα线等。对它们的相似性以及各现象之间的相关性研究有利于我们更进一步地认识黑洞的本质。本文主要在包含Blandford-Znajek(BZ)和磁耦合(MC)两种磁场位形的BZMC共存模型的基础上,探讨两种尺度黑洞系统的3:2 QPO与喷流、谱态转变的相关性。本文的工作主要集中于以下几个方面:
     首先,我们介绍了磁场提取黑洞旋转能量的两种机制:BZ过程和MC过程,用改进的等效电路方法推导出BZ过程和MC过程功率和力矩的统一表达式,建立了黑洞视界面角坐标与盘上的径向坐标之间的磁场映射关系,并在此基础上讨论了BZMC的共存条件。另外我们还讨论了磁场的螺旋不稳定性,发现BZMC共存总是伴随着螺旋不稳定性。
     其次,我们介绍了以共存模型为基础的双热斑模型,黑洞视界面上非轴对称磁场通过MC过程在吸积盘内区形成的内热斑和螺旋不稳定性在盘外区形成的外热斑,利用内外热斑的开普勒运动频率解释不同尺度黑洞系统的3:2 QPO频率比。拟合了几个黑洞X射线双星和银河系中心黑洞的3:2 QPO对,并解释了它们的3:2 QPO对与喷流的相关性,还提出了用BZMC共存临界线作为黑洞X射线双星谱态转变的喷流线的新想法,定性讨论了来自伴星的吸积等离子体数密度涨落导致的高软态和低硬态之间的转变。
     最后,我们简要介绍了活动星系核中心黑洞和恒星级黑洞的高发射率指数、铁Kα线、X射线QPO以及各现象之间的相关性。尽管两种尺度的黑洞在质量上相差甚远,但是它们的这些现象十分相似,表明它们有相同的物理起源——吸积黑洞。
Recently, some observations indicate that lots of high-energy radiation properties of black holes (BHs) in X-ray binaries and active galactic nuclei (AGN) are similar, such as jets, X-ray quasi-periodic oscillations (QPOs), the high emissivity index, Fe Kαlines, etc, though the masses in these objects span, at least, six orders of magnitude. Studying the similarities and correlations among the different phenomena benefits us to understand the essential of these BH systems of different scales. Correlation between 3:2 QPO pairs and jets of two scales of BH systems is discussed in this thesis based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) process model (CEBZMC). The main results are summarized as follows.
     Firstly, we introduce two mechanisms of extracting BH rotating energy through magnetic field: BZ and MC process. The unified analytical expressions for the BZ and MC powers and torques are derived based on an improved equivalent circuit. A mapping relation between the angular coordinate on the BH horizon and the radial coordinate on the accretion disc is established and then the condition for coexistence of BZ and MC process is discussed. In addition, we discuss the screw instability of magnetic field, and find that the state of CEBZMC always accompanies the screw instability.
     Secondly, a double-hotspots-model for 3:2 QPO pairs is introduced based on CEBZMC. The hotspot in the inner region of the disc is produced by energy transferred from a spinning BH with non-axisymmetric magnetic field. The outer hotspot is produced due to the screw instability of the magnetic field on the disc. The Keplerian orbit frequency of inner and outer hotspot correspond to the upper and lower frequency of QPO pairs respectively. We fit the 3:2 QPO pairs of several BH X-ray binaries and the galactic center BH, and explain the correlation between their 3:2 QPO pair and the jet. A new idea for interpreting the critical line of CEBZMC as the jet line in the state transition of BH X-ray binaries is proposed. And we discuss the state transition due to the fluctuations of the number densities of the accreting plasma from a companion star.
     Finally, we briefly discuss the high emissivity index, Fe Kαlines and X-ray QPOs in BHs of AGN and stellar-mass BHs and the correlations among them. The similar phenomena in the BH systems of masses varying in a large scales imply that they arise from the same physical origin, accreting BHs.
引文
[1]徐仁新.天体物理导论.北京:北京大学出版社, 2006
    [2]俞允强.广义相对论引论.北京:北京大学出版社, 1997
    [3]黄克谅.类星体与活动星系核.北京:中国科学技术出版社, 2005
    [4] Abramowicz M. A., Kluzniak W. A precise determination of black hole spin in GRO J1655-40. A&A, 2001, 374: 19-20
    [5] Abramowicz M. A., Kluzniak W., in Kaaret P., Lamb F. K., Swank J. H., eds, AIP Conf. Proceedings, 714, X-ray Timing 2003: Rossi and Beyond, (NY: AIP), 2004: 21-28
    [6] Aschenbach B., Grosso N., Porquet D. et al. X-ray flares reveal mass and angular momentum of the Galactic Center black hole. A&A, 2004, 417: 71-78
    [7] Aschenbach B. Measuring mass and angular momentum of black holes with high-frequency quasi-periodic oscillations. A&A, 2004, 425: 1075-1082
    [8] Aschenbach B. updated version of a talk given at the 2005 Frascati Workshop, Vulcano, Italy, May 23-28, 2006 (preprint astro-ph/0603193)
    [9] Bateman G. MHD instabilities. Cambridge, Mass., MIT Press, 1978: 270
    [10] Belloni T., Mendez M., King A. R., et al. An unstable central disc in the superluminal black hole X-ray binary GRS 1915+105. ApJ, 1997, 479: 145-147
    [11] Belloni T., Klein-Wolt M., Méndez M., et al. A model-independent analysis of the variability of GRS 1915+105. A&A, 2000, 355: 271-290
    [12] Belloni, T. Proceedings of COSPAR Colloquium "Spectra & Timing of Compact X-ray Binaries. Mumbai, India, January 17-20, 2005 (preprint astro-ph/0507556)
    [13] Blandford R. D., Znajek R. L. Electromagnetic extraction of energy from Kerr black holes. MNRAS, 1977, 179: 433-456
    [14] Blandford R. D., Begelman M. C. On the fate of gas accreting at a low rate on to a black hole. MNRAS, 1999, 303: 1-5
    [15] Blandford R., Agol E., Broderick A., et al. Compact objects and accretion discs. in the proceedings of the XII Canary Islands Winter School of Astrophysics, 2002(preprint astro-ph/0107228)
    [16] Bower G. C., Falcke H., Herrnstein R. M. et al. Detection of the intrinsic size of Sagittarius A* through closure amplitude imaging. Science, 2004, 304: 704-708
    [17] Brocksopp C., Fender R. P., Larionov V., et al. Orbital, precessional and flaring variability of Cygnus X-1. MNRAS, 1999, 309: 1063-1073
    [18] Brown G. E., Lee C. H., Wijers R. A. M. J., et al. A theory of gamma-ray bursts. New Astronomy, 2000, 5: 191-210
    [19] Bursa, M. in Hledík S., Stuchlík Z., eds, Proceedings of RAGtime 6/7: Workshops on black holes and neutron stars, 2005, 39
    [20] Chakrabarti S. K., Manickam S. G. Correlation among quasi-periodic oscillation frequencies and quiescent-state duration in black hole candidate GRS 1915+105. ApJ, 2000, 531: 41-44
    [21] Davis S. W., Done C., Blaes O. M. Testing Accretion Disc Theory in Black Hole X-Ray Binaries. ApJ, 2006, 647: 525-538
    [22] Dolan J. F. Dying Pulse Trains in Cygnus XR-1: Evidence for an Event Horizon?. PASP, 2001, 113: 974-982
    [23] Fabian A. C., Kunieda H., Inoue S. et al. ASCA observations of the warm absorber in MCG-6-30-15: the discovery of a change in column density. PASJ, 1994, 46: 59–63
    [24] Fabian A. C., Iwasawa K., Reynolds, C. S., et al. Broad iron lines in Active Galactic Nuclei. PASP, 2000, 112: 1145-1161
    [25] Fender R. P., Belloni T. M., Gallo E. Towards a unified model for black hole X-ray binary jets. MNRAS, 2004, 355: 1105-1118
    [26] George I. M., Fabian A. C. X-ray reflection from cold matter in Active Galactic Nuclei and X-ray binaries. MNRAS, 1991, 249: 352-367
    [27] Gierliński M., Macio?ek-Nied?wiecki A., Ebisawa K. Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40. MNRAS, 2001, 325: 1253-1265
    [28] Gilfanov M., Churazov E., Revnivtsev M. Frequency-resolved spectroscopy of Cyg X-1: fast variability of the reflected emission in the soft state. MNRAS, 2000, 316:923-928
    [29] Golenetskii S., Aptekar R., Mazets E., et al. IPN detection and localization of Cygnus X-1 flares. GCN, 2002, 1258: 1
    [30] Gruzinov A. Flares on the Black Holes. ApJ. submitted (preprint astro-ph/9908101), 1999
    [31] Homan J., Klein-Wolt M., Rossi S. et al. High-frequency quasi-periodic oscillations in the black hole X-ray transient XTE J1650-500. ApJ, 2003, 586: 1262-1267
    [32] Homan J., Miller J. M., Wijnands R. et al. High- and low-frequency quasi-periodic oscillations in the X-ray light curves of the black hole transient H1743-322. ApJ, 2005, 623: 383-391
    [33] Iwasawa K., Fabian A. C., Reynolds C. S., et al. The variable iron K emission line in MCG-6-30-15. MNRAS, 1996, 282: 1038-1048
    [34] Kadomtsev B. B. Hydromagnetic stability of a plasma. Rev. Plasma Phys., 1966, 2: 153
    [35] Kalemci E., Tomsick J. A., Rothschild R. E. et al. The galactic black hole transient H1743-322 during outburst decay: connections between timing noise, state transitions, and radio emission. ApJ, 2006, 639: 340-347
    [36] Kato S., Fukue J. Spin of stellar-mass black holes estimated by a model of quasi-periodic oscillations. PASJ, 2006, 58: 909-914
    [37] Klu?niak W., Abramowicz M. A., Lee W. H. High-frequency QPOs as a problem in physics: non-linear resonance. AIPC, 2004, 714: 379-382
    [38] Kluzniak W., Abramowicz M. A. The physics of kHz QPOs---strong gravity's coupled anharmonic oscillators, 2001 (preprint astro-ph/0105057)
    [39] Lachowicz P., Czerny B., Abramowicz M. A. Wavelet analysis of MCG-6-30-15 and NGC 4051: a possible discovery of QPOs in 2:1 and 3:2 resonance. MNRAS, 2006, submitted (preprint astro-ph /0607594)
    [40] Laor A. Line profiles from a disc around a rotating black hole. ApJ, 1991, 376: 90-94
    [41] Lee J. C., Reynolds C. S., Schulz N. S. et al. High resolution Chandra HETG andRXTE observations of GRS 1915+105 : A hot disk atmosphere & cold gas enriched in Iron and Silicon. ApJ, 2001, accepted (preprint astro-ph/0111132)
    [42] Li L. X. Screw Instability and the Blandford-Znajek Mechanism. ApJ, 2000, 531: 111-114
    [43] Li L. X. Accretion disc torqued by a black hole. ApJ, 2002, 567: 463-476
    [44] Livio M., Pringle J. E., King A. R. The disc-jet connection in microquasars and AGN. 2003, ApJ, 593: 184-188
    [45] Macdonald D. A., Thorne K. S. Black-hole electrodynamics - an absolute-space/ universal- time formulation. MNRAS, 1982, 198: 345-382 (MT82)
    [46] Markovic D., Lamb F. K. Lense-Thirring precession and quasi-periodic oscillations in X-ray binaries. ApJ, 1998, 507: 316-326
    [47] Martocchia A., Matt G., Karas V. et al. Evidence for a relativistic iron line in GRS 1915+105. A&A, 2002, 387: 215-221
    [48] McClintock J. E., Remillard R. A.. in Compact Stellar X-ray Sources. Cambridge University Press: W.H.G. Lewin and M. van der Klis, 2006 (preprint astro-ph/ 0306213)
    [49] McClintock J. E., Shafee R., Narayan R. et al. The spin of the near-extreme kerr black hole GRS 1915+105. ApJ, 2006, 652: 518-539
    [50] Middleton M., Done C., Gierlinski M. et al. Black hole spin in GRS 1915+105. 2006, MNRAS, 373: 1004-1012
    [51] Mirabel I. F., Rodriguez L. F. Microquasars in our Galaxy. Nature, 1998, 392: 673-676
    [52] Mirabel I. F., Rodriguez L. F. Sources of relativistic jets in the galaxy. ARA&A, 1999, 37: 409-443
    [53] Miller J. M., Wijnands R., Homan J. et al. High-frequency quasi-periodic oscillations in the 2000 outburst of the galactic microquasar XTE J1550-564. ApJ, 2001, 563: 928-933
    [54] Miller J. M., Fabian A. C., Wijnands R., et al. Evidence for Spin and Energy Extraction in a Galactic Black Hole Candidate: The XMM-Newton/EPIC-pn Spectrum of XTE J1650-500. ApJ, 2002, 570: L69-L73
    [55] Miller J. M., Fabian A. C., Reynolds C. S. et al. Evidence for black hole spin in GX 339-4: XMM-Newton EPIC-PN and RXTE spectroscopy of the very high state. ApJ, 2004, 606: L131-L134
    [56] Miller J. M., Fabian A. C., Nowak M. A. et al. Relativistic iron lines in galactic black holes: recent results and lines in the ASCA archive. In Novello M., Bergliaffa S. P., Ruffini R., eds, Singapore: World Scientific Publishing, 2005, 3: 1296 (preprint astro-ph/0402101)
    [57] Miller J. M., Homan J. Evidence for a link between Fe Kαemission-line strength and quasi-periodic oscillation phase in a black hole. ApJ, 2005, 618: 107-110
    [58] Moderski R., Sikora M., Lasota J. P. On black hole spins and dichotomy of quasars. in Ostrowski M., Sikora M., Madejski G., Belgelman M., eds, Relativistic Jets in AGNs. Uniw. Jagiellonski, Krakow, 1997: 110
    [59] Narayan R., Yi I. Advection-dominated accretion: a self-similar solution. ApJ, 1994, 428: 13-16
    [60] Narayan R., Igumenschchev I. V., Abramowicz M. A. Self-similar accretion flows with convection. ApJ, 2000, 539: 798-808
    [61] Nobili L., Turolla R., Zampieri L. et al. A comptonization model for phase-lag variability in GRS 1915+105. ApJ, 2000, 538: 137-140
    [62] Nowak M., Lehr D. Stable oscillations of black hole accretion discs. In Abramowicz M. A., Bjornsson G., Pringle J. E., eds, Theory of Black Hole Accretion Discs. Cambridge University Press, 1998: 233 (preprint astro-ph/9812004)
    [63] Page D. N., Thorne K. S. Disc-accretion onto a black hole. Time-averaged structure of accretion disc. ApJ, 1974, 191: 499-506
    [64] Pooley G. G., Fender R. P., Brocksopp C. Orbital modulation and longer term variability in the radio emission from Cygnus X-1. MNRAS, 1999, 302: 1-5
    [65] Quataert E., Gruzinov A. Convection-dominated accretion flows. ApJ, 2000, 539: 809-814
    [66] Remillard R. A., Morgan E. H., McClintock J. E. et al. RXTE observations of 0.1-300 Hz quasi-periodic oscillations in the microquasar GRO J1655-40. ApJ,1999, 522: 397-412
    [67] Remillard R. A., Sobczak G. J., Muno M. P. et al. Characterizing the quasi-periodic oscillation behavior of the X-ray nova XTE J1550-564. ApJ, 2002a, 564: 962-973
    [68] Remillard R. A., Muno M. P., McClintock J. E. et al. Evidence for harmonic relationships in the high-frequency quasi-periodic qscillations of XTE J1550-564 and GRO J1655-40. ApJ, 2002b, 580: 1030-1042
    [69] Remillard R. A., McClintock J. E. X-ray properties of black-hole binaries. ARA&A, 2006, 44: 49-92 (RM06)
    [70] Remillard R. A., McClintock J. E., Orosz J. A. et al. The X-ray outburst of H1743-322 in 2003: high-frequency QPOs with a 3:2 frequency ratio. ApJ, 2006, 637: 1002-1009
    [71] Reynolds C. S., X-Ray Emission and Absorption in Active Galaxies. Ph. D. Thesis, University of Cambridge, August 1996.
    [72] Reynolds C. S., Nowak M. S. Fluorescent iron lines as a probe of astrophysical black hole systems. Phys. Rep., 2003, 377: 389-466
    [73] Rezzolla L., Yoshida S'i., Maccarone T. J. et al. A new simple model for high-frequency quasi-periodic oscillations in black hole candidates. MNRAS, 2003, 344: 37-41
    [74] Shafee R., McClintock J. E., Narayan R. et al. Estimating the spin of stellar-mass black holes by spectral fitting of the X-ray continuum. ApJ, 2006, 636: 113-116
    [75] Shakura N. I., Sunyaev R. A. Black holes in binary systems: Observational appearance. A&A, 1973, 24: 337-355
    [76] Shapiro S. L., Lightman A. P., Eardley D. M. A two-temperature accretion disc model for Cygnus X-1 - Structure and spectrum. ApJ, 1976, 204: 187-199
    [77] Sobczak G. J., McClintock J. E., Remillard R. A., et al. Correlations between low-frequency quasi-periodic oscillations and spectral parameters in XTE J1550-564 and GRO J1655-40. ApJ, 2000, 531: 537-545
    [78] Stirling A. M., Spencer R. E., de la Force C. J., et al. A relativistic jet from Cygnus X-1 in the low/hard X-ray state. MNRAS, 2001, 327: 1273-1278
    [79] Strohmayer T. E. Discovery of a 450 Hz quasi-periodic oscillation from themicroquasar GRO J1655-40 with the Rossi X-ray Timing Explorer. ApJ, 2001, 552: 49-53
    [80] Tanaka Y., Nandra K., Fabian A. C. et al. Gravitationally redshifted emission implying an accretion disc and massive black-hole in the active galaxy MCG:-6-30-15. Nature, 1995, 375: 659
    [81] Tananbaum H, Gursky H, Kellogg E, et al. Observation of a correlated X-ray transition in Cygnus X-1. ApJ, 1972, 177: 5-10
    [82] Thorne, K. S. Disc-accretion onto a black hole. II. Evolution of the Hole. ApJ, 1974, 191: 507-520
    [83] Thorne K. S., Price R. H., Macdonald D. A. Black Holes: The Membrane Paradigm, New Haven and London: Yale Univ Press, 1986
    [84] Titarchuk L., Osherovich V. The global normal disc oscillations and the persistent low-frequency quasi-periodic oscillations in X-ray binaries. ApJ, 2000, 542: 111-114
    [85] Torok G. A possible 3:2 orbital epicyclic resonance in QPO frequencies of Sgr A*. A&A, 2005, 440: 1-4
    [86] van der Klis M. in Compact Stellar X-ray Sources. Cambridge University Press: W.H.G. Lewin and M. van der Klis, 2006 (preprint astro-ph/0410551)
    [87] Wagoner R. V., Silbergleit A.S., Ortega-Rodriguez M.“Stable”quasi-periodic oscillations and black hole properties from discoseismology. ApJ, 2001, 559: 25-28
    [88] Wang D. X., Ma R. Y., Lei W. H., et al. Screw instability of the magnetic field connecting a rotating black hole with its surrounding disc. ApJ, 2004, 601: 1031-1037
    [89] Wang D.X., Ma R. Y., Lei W. H., et al. An analytic model of rotating hot spot and kHz QPOs in X-ray binaries. MNRAS, 2003, 344: 473-480
    [90] Wilms J., Reynolds C. S., Begelman M. C., et al. XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole?. MNRAS, 2001, 328: L27-L31
    [91] Zhang S. N., Cui W., Chen W. Black hole spin in X-ray binaries: observational consequences. ApJ, 1997, 482: 155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700