窗用透明隔热材料第一原理性能预测及纳米LaB_6分散液的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:节能减排已成为时代的主旋律。开发高性能窗用透明隔热材料备受人们的青睐。窗用透明隔热材料必须具有可见光高透明和近红外强吸收/反射屏蔽的光学特性。从理论和实验方面设计并研发新型窗用透明隔热节能材料已成为当今世界的重要研究课题。目前,研究者大都注重高透明隔热材料的制备和性能应用与开发的实验研究,而理论研究较少,非常有必要将理论和实验结合起来加快研究进程。本论文在理论方面采用基于密度泛函理论的第一原理方法计算了几种窗用透明隔热材料的电子结构,并预测了它们不同类型薄膜的光学性能。实验方面成功制备了稳定性较好的纳米LaB6/乙醇分散液,并探讨了其光学性能。研究内容和成果主要包括以下几点:
     1)采用第一原理方法研究了稀土六硼化物RB6(R=Sc、Y和La)的几何、电子结构和光学性质。电子结构分析表明,这三种化合物均属于金属性导体材料,价带顶和导带底分别主要由B-2p态和金属原子R-nd(n=3,4,5)态构成,并随着金属R的原子半径和电子层数的增大,导带朝远离Fermi能级的方向移动。通过对三种稀土六硼化物RB6(R=Sc, Y和La)的介电函数、吸收光谱、反射率和能量损失光谱等光学常数的计算和分析,研究了三者的光学性质并对不同类型光学薄膜的光学性能进行了比较。结果表明:不同于ScB6,YB6和LaB6可用作高性能窗用透明隔热材料。发现LaB6的可见光高透明可归因于载流子电子集体振荡,也就是体等离子激元,而其近红外强吸收特性则可归因于等离子振荡的偶极子模式。该研究结果对这三种稀土六硼化物目前的应用开发和扩大其应用领域可提供很好的理论指导。
     2)通过对稀土六硼化物RB6(R=Ce, Pr, Nd, Sm, Eu, Gd, Er, Tm, Yb和Lu)电子结构及磁学和光学性质的计算,发现RB6(R=Ce, Pr, Nd, Sm, Eu, Gd, Er和Tm)属于铁磁材料,而YbB6和LuB6不具有磁性。电子结构分析表明,这十种稀土RB6的电子性能主要由稀土金属R决定。光学性质计算表明,它们均在低能红外区具有较强的反射性,并显示微弱的体等离子激元;除GdB6和LuB6外,稀土六硼化物RB6(R=Ce, Pr, Nd, Sm, Eu, Er, Tm和Yb)均不适合用作窗用透明隔热材料。
     3)对TiN的电子结构和光学性质的计算,发现TiN属于导体材料,其价带和导带分别主要由N-2p态构成和Ti-3d态构成。对其不同类型薄膜光学性能的计算结果表明:TiN薄膜具有可见光高透明和近红外强吸收/反射隔热节能的光学特性。
     4)采用第一原理方法对单斜相和金红石相VO2电子结构和介电函数、反射率、吸收光谱、能量损失光谱等光学常数进行了研究,结果表明:单斜相VO2不具有屏蔽近红外辐射的性能,而金红石相VO2适合用作窗用高透明隔热材料。
     5)以无水乙醇为分散介质,经过对纳米LaB6改性和分散,成功地制备了稳定性较好的纳米LaB6/乙醇分散液,进而研究了改性剂种类及用量、分散条件等对分散液稳定性的影响,并通过透射电子显微镜(TEM)、傅立叶红外光谱(FTIR)和激光散射粒度分析等表征方法调查了在无水乙醇中阴离子表面处理剂改性LaB6纳米粒子的机理,同时研究了纳米LaB6/乙醇分散液的光学性能。证实LaB6纳米粒子具有可见光高透明和近红外强吸收隔热的光学特性。
Abstract:Energy-saving and emission reduction have become the theme of the Times. Transparent heat-insulating materials for windows with high performance are welcomed greatly. They must be characterized by high visible light transpancy and strong near-infrared rays absorption/reflection. Research on novel high transparent and heat-insulating materials for windows on theoretical and experimental basis has become an important research topic in today's world. So far, most of researchers focus on the preparation and application of them, but there is very few theoretical study. It is necessary for researchers to accelerate the research process by combining theoretical studies and experimental designs. In this thesis, on the theoretical side, the electronic structure of several transparent and heat-insulating materials for windows were investigated using the first-principles method, and optical performance of different kinds of films made of these materials had been predicted in theory. Experimentally, nano-LaB6ethnol dispersion with excellent stability and dispersion was prepared, and its optical performance had been examined. The main research contents and achievements are listed as following:
     Firstly, the geometry, electronic structures and optical properties of rare earth hexaborides RB6(R=Sc, Y and La) were studied using the first-principle density function theory. The electronic structures of three compounds demonstrate that these compounds are all metallic conductor materials. The upmost valence bands and the bottommost conduction bands of RB6(R=Sc, Y and La) are mainly composed of B-2p states and metal R-nd(n=3,4,5) states, respectively. And as atomic radius and e-layer of metal R increase, conduction bands move away from the Fermi energy level. The optical properties of RB6(R=Sc, Y and La) were also investigated by calculating and analyzing their dielectric functions, absorption spectra, reflectivity and energy-loss spectra in details, and optical performance of their different films was analyzed theoretically. The results show that YB6and LaB6can be used as high transparent and heat-insulating materials with high performance for windows, but ScB6is not. That LaB6can be transparent to the visible light may be ascribed to a collective oscillation (volume plasmon) of carrier electrons and strong optical absorption for the near infrared (NIR) wavelength may be attributed to dipole mode of plasma oscillation. These findings provide theoretical data for the application of three rare earth hexaborides, and it is greatly important to extend their potential field of application.
     Secondly, the electronic structures, magnetic and optical properties of RB6(R=Ce, Pr, Nd, Sm, Eu, Gd, Er, Tm, Yb and Lu) had been investigated. The results show that RB6(R=Ce, Pr, Nd, Sm, Eu, Gd, Er and Tm) are all ferromagnetic materials, but YbB6and LuB6are non-ferromagnetic materials. The electronic properties of ten compounds RB6are determined mainly by metal R. Optical properties of them show that they all have high reflectivity in the low-energy infrared region and have weak volume plasmon. GdB6and LuB6are suitable for transparent and heat-insulating materials for windows, but RB6(R=Ce, Pr, Nd, Sm, Eu, Er, Tm and Yb) are not.
     Thirdly, the electronic structures and optical properties of TiN had been investigated. The calculations show that TiN is conductor. The valence bands and the conduction bands of TiN are mainly composed of N-2p states and Ti-3d states, respectively. The results of optical performance of TiN films indicate it has the character of high visible light transparency and strong absorbance/reflectivity in the near-infrared region.
     Fourthly, the electronic structures and optical properties such as dielectric function, absorption spectra, reflectivity and energy-loss spectra of monoclinic phase and rutile phase VO2had been studied. The calculated results indicate that monoclinic phase VO2has not the character of near-infrared radiation shielding. But rutile VO2is suitable for transparent and heat-insulating materials for windows.
     Finally, nano-LaB6/ethanol dispersion was prepared by surface modification and dispersion in ethanol medium. The influence of modifier type and amount, dispersing condition on the stability of nano- dispersion was studied. Nano-LaB6dispersion was characterized by TEM, FTIR and laser particle diameter analyzer, and the modification mechanism of nano-LaB6particles with anionic surfactants was discussed. Optical performance of nano-LaB6dispersion also had been studied. It confirms Nano-LaB6particles have the unique optical behavior of high visible light transparency and strong optical absorption for the NIR wavelength.
引文
[1]干学宏,刘世美,江晨晖.地球危机背景下的建筑节能意义的进一步探究[J].建筑节能,2012,40(252):75-78.
    [2]Kauer E. Optical and electrical properties of LaB6[J]. Physcal Letter,1963,7: 171-173.
    [3]Vanderberg J. M., Matthias B. T., Corenzwit E., et al. Superconductivity of some binary and ternary[J]. Materials Research Bulletin,1975,10:889-894.
    [4]Menth A., Buehler E., Geballe T. H. Magnetic and Semiconducting Properties of SmB6[J]. Physical Review Letters,1969,22,295-297.
    [5]Guy C. N., von Molnar S., Etourneau J., et al. Charge transport and pressure dependence of Tc of single crystal, ferromagnetic EuB6[J]. Solid State Communi-cation,1980,33:1055-1058.
    [6]Matthias B. T., Geballe T. H., Andres K., et al. Superconductivity and Antiferromagnetism in Boron-Rich Lattices[J]. Science,1968,159:530.
    [7]Johanson R. W., Daane A. H. Electron Requirements of Bonds in Metal Borides[J]. The Journal of Chemistry Physical,1963,38:425-432.
    [8]Mercurio J. P., Etourneau J., Naslain R., et al. Electrical and magnetic properties of some rare-earth hexaborides[J]. Journal of the Less Common Metals,1976,47: 175-180.
    [9]Mecurio J. P., Etorneau J., Naslain R., et al. Proprietes electriques et magnetiques des solutions solides LaxEu1-xB6[J]. Journal of Solid State Chemistry,1974,9: 37-47.
    [10]Ali N., Woods S. B. Transport properties of GdB6 and DyB6[J]. Journal of Low Temperature Physics,1984,56:575-584.
    [11]Arko A. J., Crabtree G W., Karim D., et al. de Haas-van Alphen effect and the Fermi surface of LaB6[J]. Physical Review B,1976,13:5240-5247.
    [12]Ishizawa Y, Nozaki H., Tanaka T., et al. Low-Field de Haas-van Alphen Effect in LaB6[J]. Journal of The Physical Society of Japan,1980,48:1439-1442.
    [13]Goodrich R. G, Harrison N., Vuillemin J. J., et al. Fermi surface of ferro-magnetic EuB6[J]. Physical Review B,1998,58:14896-14902.
    [14]Aroson M. C, Sarrao J. L., Fisk Z., et al. Fermi surface of the ferromagnetic semimetal, EuB6[J]. Physical Review B,1999,59:4720-4724.
    [15]Suga S., Imada S., Yamada H., et al.3d-resonance-photoemission study of CeB6 and PrB6[J]. Physical Review B,1995,52:1584-1589.
    [16]van Deursen A. P. J., Pols R. E., de Vroomen A. R., et al. Fermi surfaces and effective masses in LnB6, Ln=La, Ce and Pr[J]. Journal of the Less-Common Metals,1985,111:331-334.
    [17]Onuki Y, Nishihara M., Sato M., et al. Fermi surface and cyclotron mass of PrB6[J]. Journal of Magnetism and Magnetism and Magnetic Materials,1985,52: 317-319.
    [18]Onuki Y., Umezawa A., Kwok W. K., et al. High-field magnetoresistance. and de Haas-van Alphen effect in antiferromagnetic PrB6 and NdB6[J]. Physical Review B,1989,40:11195-11207.
    [19]Shino N., Suga S., Imada S., et al. Photoemission, Inverse Photoemission and Optical Studies of Rare-Earth Hexaborides[J]. Journal of Physical Society of Japan,1995,64:2980-1987.
    [20]Behler B., Winzer K. De Haas-van Alphen effect in rare-earth hexaborides (RE= Pr, Nd, Gd) [J]. Zeitschrift fur Physik B Condensed Matter,1991,82:355-361.
    [21]Goodrich R. G, Harrison N., Fisk Z. Fermi Surface Changes across the Neel Phase Boundary of NdB6[J]. Physical Review Letters,2006,97:146404(1-4).
    [22]Kimura S., Nanba T., Kunii S., et al. Interband Optical Spectra of Rare-earth Hexaborides[J]. Journal of the Physical Society of Japan,1990,59:3388-3392.
    [23]Kimura S., Nanba T., Tomikawa M., et al. Electronic structure of rare-earth hexaborides[J]. Physical Review B,1992,46:12196-12204.
    [24]Kimura S., Nanba T., Kunii S., et al. Low-energy optical excitation in rare-earth hexaborides[J]. Physical Review B,1994,50:1406-1414.
    [25]Kimura S., Harima H., Nanba T., et al. Comparison between Optical Conductivity Spectrum and Band Structure in LaB6[J]. Journal of Physical Society of Japan,1991,60:745-748.
    [26]Langford H. D., Temmerman W. M., Gehring G. A. Enhancements and Fermi surfaces of rare-earth hexaborides [J]. Journal of Physics:Condensed Matter, 1990,2:559-575.
    [27]Min B. I., Jang Y. R. Band folding and Fermi surface in antiferromagnetic NdB6[J]. Physical Review B,1991,44:13270-13276.
    [28]Hasegawa A., Yanase A. Energy bandstructure and Fermi surface of LaB6 by a self-consistent APW method[J]. Journal of Physics F:Metal Physics,1977,7: 1245-1259.
    [29]Hossain F. M., Daniel Riley P. Murch G E. Ab initio calculations of the electronic structure and bonding characteristics of LaB6[J]. Physical Review B, 2005,72:235101(1-5).
    [30]Kitamura M.4f levels ofrare-earth hexaborides:Asimple approach based onamodified orthogonalized-plane-wave method and aself-consistent-field atomic-structure calculation[J]. Physical Review B,1994,49:1564-1573.
    [31]Suvasini M. B., Guo G Y., Temmerman W. M., et al. The Fermi surface of CeB6[J]. Journal of Physics:Condensed Matter,1996,8:7105-7125.
    [32]Kubo Y, Asano S., Harima H., et al. Electronic Structure and the Fermi Surfaces of Anti-ferromagnetic NdBe[J]. Journal of Physical Society of Japan,1993,62: 205-214.
    [33]Massidda S., Continenza A., Pascale T., et al. Electronic structure of divalent hexaborides[J]. Zeitschrift fur Physik B Condensed Matter,1997,102:83-89.
    [34]Kunes J,Pickett W. E. Kondo and anti-Kondo coupling to local moments in EuB6[J]. Physical Review B,2004,69:165111(1-9).
    [35]Antonov V. N., Harmon B. N., Yaresko A. N. Electronic structure of mixed-valence semiconductors in the LSDA+U approximation. II. SmB6 and YbBi2[J]. Physical Review B,2002,66:165209(1-9).
    [36]Ghosh D. B., De M., De S. K. Magneto-optical properties of Europium hexaboride[J].2004 Preprintcond-mat/0406706.
    [37]Saito M. Transparent Heat Ray Shielding Materials by ATO Ultrafine Particles[J]. Convertec,1997,25:7 (1-5). (in Japanese).
    [38]Nishihara A., Hayashi T., Sekiguchi M. Infrared Ray Cutoff Material and Infra-red Cutoff Powder Use for Same. The United States:5518810[P],1996-05-21.
    [39]Muromachi T., Tsujino T., Kamitani K., et al. Application of functional coatings by sol-gel method[J]. Journal of Sol-Gel Science and Technology,2006,40: 267-272.
    [40]Hiroko K., Hiromitsu T., Kenji A. Near infra-red shielding single or multilayer film and a coating liquid for forming the same. European:EP 0943587 B1[P], 2003-08-01.
    [41]Xiao L. H., Su Y. C., Chen H. Y, et al. Solar radiation shielding material for windows TiN studied from first-principles theory [J]. Applied Physical Letters, 2011,99:061906(1-3).
    [42]Celine E., Melanie G. Optical Characterization of VO2 Smart Materials using Spectroscopic Ellipsometry[J]. http://www.horiba.com/.
    [43]Takeda H., Kenji A. Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions[J]. Journal of the American Ceramic Society,2007,90(12):4059-4061.
    [44]Guo C. S., Yin S., Huang Y. F., et al. Synthesis of W18O49 Nanorod via Ammonium Tungsten Oxide and Its Interesting Optical Properties[J]. Langmuir, 2011,27(19):12172-12178.
    [45]Guo C. S., Yin S., Zhang P. L., et al. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process[J]. Journal of Materials Chemistry,2010,20:8227-8229.
    [46]Guo C. S., Yin S., Yan M., et al. Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process[J]. Journal of Materials Chemistry,2011,21:5099-5105.
    [47]Guo C. S., Yin S., Adachi K., et al. Solvothermal Synthesis of Caesium Tungsten Bronze in the Presence of Various Organic Acids and Its NIR Absorption Properties[J]. IOP Conf. Series:Materials Science and Engineering,2011,18: 032014 (1-4).
    [48]Guo C. S., Yin S., Huang L. J., et al. Discovery of an excellent IR absorbent with a broad working waveband:CsxWO3 nanorods[J]. Chemical Communication, 2011,47:8853-8855.
    [49]Guo C. S., Yin S., Huang L. J., et al. Synthesis of one-dimensional potassium tungsten bronze with excellent near infrared absorption property [J]. ACS Applied Materials & Interfaces,2011,3(7):2794-2799.
    [50]Lafferty J. M. Boride Cathodes[J]. Physical Review,1950,79(6),1012-1012.
    [51]Lafferty J. M. Boride Cathodes[J]. Journal of Applied Physics,1951,22(3): 299-309.
    [52]Post B., Moskowitz D., Glaser F. W. Borides of Rare Earth Metals[J]. Journal of the American Ceramic Society,1956,78:1800-1802.
    [53]Wu W. Y., Xu J. Y, Peng K. W., et al. High temperature chemical reaction of La2O3 in H3BO3-C system[J]. Journal of Rare Earths,2007,25(3):282-285.
    [54]Hiebl K., Sienko M. J. Chemical control of superconductivity in the hexaborides[J]. Inorganic Chemistry,1980,19:2179-2180.
    [55]郑树起,闵光辉,邹增大,等.硼热还原法制备LaB6粉末[J].硅酸盐学报,2001,29(2):128-131.
    [56]姜岩,王颖.硼热还原法制备六硼化镧粉末[J].辽宁化工,2010,39:904-905.
    [57]郑树起,闵光辉,邹增大,等.La2O3-B4C系反应合成LaB6粉末[J].金属学,2001,37(4):419-422.
    [58]张粹伟.六硼化镧阴极.光电子技术[J].1989,9(3):35-44.
    [59]徐秀华,肖汉宁,郭文明,等.常压固相反应合成LaB6粉末及其反应机理.无机材料学报[J],2011,26(4):417-421.
    [60]Gurin V. V., Korsukova M. M., Nikanorov S. P., et al. The preparation of single crystals of the rare earth borides by the solution method and a study of their properties[J]. Journal of the Less Common Metals,1979,67:115-123.
    [61]Peshev P. A thermodynamic analysis of lanthanum hexaboride crystal preparation from aluminum flux with the use of compound precursors[J]. Journal of Solid State Chemistry.1997,133(1):237-242.
    [62]Olsen G. H., Cafiero A. V. Single-crystal growth of mixed (La, Eu, Y, Ce, Ba, Cs) hexaborides for thermionic emission[J]. Journal of Crystal Growth,1978, 44:287-290.
    [63]Moshkin S. V., Nardov A. V. Growth kinetics of constant-composition binary crystals from solutions[J]. Journal of Crystal Growth,1981,52:816-819.
    [64]申泮文,龚毅生,周永洽,等.熔盐电解合成稀土六硼化物的研究.无机化学学报[J],1991,7(3):306-310.
    [65]申洋文,龚毅生,周永洽,等.熔盐电解合成稀土六硼化物.中国:034964A[P],1989-08-23.
    [66]Kamaludeen M., Selvaraj I., Visuvasam A., et al. LaB6 crystals from fused salt electrolysis[J]. Journal of Materials Chemistry,1998,8:2205-2207.
    [67]Motojima, S., Takahashi, Y., Sugiyama K. Chemical vapor growth of LaB6 whiskers and crystals having a sharp tip[J]. Journal of Crystal Growth,1978, 44:106-109.
    [68]Givargizov E. I., Obolenskaya L. N. Controlled growth of LaB6 whiskers by the vapor-liquid-solid mechanism[J]. Journal of Crystal Growth,1981,51:190-194.
    [69]Givargizov E. I., Obolenskaya L. N. Regular arrays of LaB6 whiskers grown on single crystal substrates by the vapour-liquid-solid method[J]. Journal of the Less Common Metals,1986,117:97-103.
    [70]Zhang H., Zhang Q., Tang J., Qin L. C. Single-Crystalline LaB6 Nanowires[J]. Journal of the American Chemical Society,2005,127:2862-2863.
    [71]Zhang H., Tang J., Zhang Q., Zhao G, et al. Field emission of electrons from single LaB6 nanowires[J]. Advanced Materials,2006,18:87-91.
    [72]Brewer J. R., Deo N., Wang Y. M., Cheng C. L. Lanthanum Hexaboride Nanoobelisks[J]. Chemistry of Materials,2007,19:6379-6381.
    [73]Brewer J. R., Jacobberger R. M., Diercks D. R. Rare Earth Hexaboride Nanowires:General Synthetic Design and Analysis Using Atom Probe Tomography [J]. Chemistry of Materials,2011,23:2606-2610.
    [74]Otani S., Honma S., Tanaka T., et al. Preparation of neodymium-substituted LaB6 single crystals by the floating zone Method[J]. Journal of Alloys and Compounds, 1992,179(1/2):201-205.
    [75]包黎红,张久兴,周身林,等.悬浮区域熔炼法制备LaB6单晶体与发射性能研究[J].物理学报,2011,60(10):106501(1-7).
    [76]Otani S., Nakagawa H., Nishi Y., et al. Floating Zone Growth and High Temperature Hardness of Rare-Earth Hexaboride Crystals:LaB6, CeB6, PrB6, NdB6, and SmB6[J]. Journal of Solid State Chemistry,2000,154:238-241.
    [77]Curtis B. J., Graffenberger H. The floating zone crystal growth of lanthanum hexaboride[J]. Materials Research Bulletin,1966,1(1):27-30.
    [78]张廷安,豆志河,杨欢.自蔓延高温合成LaB6微粉的制备及表征[J].东北大学学报(自然科学版),2005,26(1):271-273.
    [79]Jiang N., Wang W. M., Fu Z.Y. et al. Influence of Preparation Parameter on the Grain Size of LaB6 Powder Synthesized by SHS with Reduction Process[J]. Advanced Materials Research,2010,105-106:351-354.
    [80]Dou Z. H., Zhang T. A., Zhang Z. Q. et al. Preparation and characterization of LaB6 ultra fine powder by combustion synthesis[J]. The Transactions of Nonferrous Metals Society of China,2011,21:1790-1794.
    [81]Raghunath K., Gabriel R. G, Olivia A. G. Unique Preparation of Hexaboride Nanocubes:A First Example of Boride Formation by Combustion Synthesis[J]. Journal of the American Ceramic Society,2010,93(10):3136-3141.
    [82]金帅,刘丹敏,周身林,等.放电等离子烧结制备亚微米LaB6块体材料[J].稀有金属,2008,32:631-635.
    [83]Zhou S. L., Zhang J. X., Liu D. M., et al. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering[J]. Acta Materialia,2010,58:4978-4985.
    [84]Xu J. Q., Zhao Y. M., Zou C. Y. Self-catalyst growth of LaB6 nanowires and nanotubes[J]. Chemial Physics Letters,2006,423:138-142.
    [85]Chen L. Y, Gu Y L., Qian Y. T., et al. A facile one-step route to nanocrystalline TiB2 powders[J]. Materials Research Bulletin,2004,39,609-613.
    [86]Shi L., Gu Y, Chen L., et al. Low-temperature synthesis of nanocrystalline vanadium diboride[J]. Materials Letters,2004,58:2890-2892.
    [87]Chen L., Gu Y, Shi L., et al. Synthesis and Oxidation of Nanocrystalline HfB2[J]. Journal of Alloys and Compounds,2004,368:353-356.
    [88]Chen L. Y, Gu Y L., Yang Z. H., et al. Preparation and some properties of nanocrystalline ZrB2 powders[J]. Scripta Materialia,2004,50:959-961.
    [89]Shi L., Gu Y L., Chen L. Y, et al. Low Temperature Synthesis and Characterization of Cubic CaB6 Ultrafine Powders[J]. Chemistry Letters,2003, 32:958-959.
    [90]霍德璇,黄春云,赵金涛.一种纳米六硼化物的合成方法.中国:CN 1923686A[P],2007-03-07.
    [91]Yuan Y, Zhang L., Liang L. et al. A solid-state reaction route to prepare LaB6 nanocrystals in vacuum. Ceramics International[J].2011,37:2891-2896.
    [92]Selvan R. K., Genish I., Perelshtein I., et al. Single Step, Low-Temperature Synthesis of Submicron-Sized Rare Earth Hexaborides[J]. The Journal of Physical Chemistry C,2008,112:1795-1802.
    [93]Zhang M. F., Yuan L., Wang X. Q., et al. A low-temperature route for the synthesis of nanocrystalline LaBe[J]. Journal of Solid State Chemistry.2008,181: 294-297.
    [94]Zhang M. F., Wang X. Q., Zhang X. W., et al. Direct low-temperature synthesis of RB6 (R=Ce, Pr, Nd) nanocubes and nanoparticles[J]. Journal of Solid State Chemistry,2009,182:3098-3104.
    [95]钱逸泰,王连成,马小健,徐立强.固相反应低温合成六硼化镧纳米粉体的方法.中国:101503198 B[P],2010-10-06.
    [96]Wang L.C., Xu L. Q., Ju Z. C., et al. A versatile route for the convenient synthesis of rare-earth and alkaline-earth hexaborides at mild temperatures[J]. CrystEngCommunity,2010,12:3923-3928.
    [97]Zhu Y C., Li Q. W., Mei T. Solid state synthesis of nitride, carbide and boride nanocrystals in an autoclave[J]. Journal of Materials Chemistry,2011,21: 13756-13764.
    [98]钱逸泰,王连成,马小健.一种碘辅助镁共还原固相反应合成金属硼化物纳米粉体的方法.中国:101837987A[P],2010-09-22.
    [99]钱逸泰,王连成,徐立强,马小健.一种稀土六硼化物纳米超细粉体的制备方法.中国:101948117 A[P],2011-01-19.
    [100]Niemyski T., Kierzek-Pecold E., Crystallization of lanthanum hexaboride[J]. Journal of Crystal Growth,1968,3(4):162-165.
    [101]Kierzek-Pecold E. Plasma reflection edge in crystalline MB6 compounds[J]. physica status solidi (b),1969,33(2):523-531.
    [102]Peschmann K. R., Calow J. T., Knauff K. G. Diagnosis of the optical properties and structure of lanthanum hexaboride thin films[J]. Journal of Applied Physics, 1973,44(5):2252-2256.
    [103]Gurin V. N., Korsukova M. M., Karin M. G, et al. Optical constants of EuB6 and LaB6[J]. Soviet physics Solid state,1980,22(3):418.
    [104]Shelykh A. I., Sidorin K. K., Karin M. G, et al. Optical constants and electronic structure of LaB6, EuB6 and SmB6 single crystals prepared by the solution method[J]. Journal of the Less Common Metals,1981,82,291-296.
    [105]van der Heide P. A. M., ten Cate H. W., ten Dam L. M., et al. Differences between LaB6 and CeB6 by means of spectroscopic ellipsometry[J]. Journal of Physics F:Metal Physics,1986,16:1617-1622.
    [106]Kimura S., Nanba T., Kunii S., et al. Anomalous Infrared Absorption in Rare-Earth Hexaborides[J]. Solid State Communication.1990,75(9):717-20.
    [107]Sato Y., Terauchi M., Tanaka M., et al. High Energy-resolution EELS Studies on Electronic Excitations of LaB6 and CS0.33WO3 Particles by using a Monochromator Transmission Microscope[J]. Microsc Microanal,2008, 14(Suppl 2):1356-1357.
    [108]Sato Y, M. Terauchi, M. Mukai, et al. HR-EELS study of near infrared absorption of LaB6 nanoparticle[J]. Mater. Japan,2009,48:634.
    [109]Sato Y, Terauchi M., Mukai M., et al. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region[J]. Ultramicroscopy,2011,111(8): 1381-1387.
    [110]Xiao L. H., Su Y. C., Zhou X. Z., et al. Origins of high visible light transparency and solar heat-shielding performance in LaBe[J]. Applied Physics Letters,2012, 101:041913(1-3).
    [111]Xiao L. H., Su Y. C. Chen H. Y., et al. Study on the electronic structure and the optical performance of YB6 by the first-principles calculations [J]. AIP Advances,2011,1:022140 (1-7).
    [112]Fisher W. K., Garrett P. D., Booth H. D., et al. Infrared absorbing compositions and laminates. The United States:6911254 B2[P],2005-06-28.
    [113]Schelm S., Smith G B., Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing[J]. Applied Physics Letters,2003,24:4346-4348.
    [114]Schelm S., Smith G B., Grrett P. D., et al. Tuning the surface-plasmon resonance in nanoparticles for glazing applications[J]. Journal of Applied Physics,2005,97(124314):1-8.
    [115]Smith G. B. Nanoparticle physics forenergy, lighting and environmental control technologies[J]. Materials Forum,2002,26:20-28.
    [116]Fujita K., Adachi K. Master bath containing heat radiation shielding component, and heat radiation shielding transparent resin form and heat radiation shielding transparent laminate for which the master batch has been used. The United States:7666930 B2[P],2010-02-23.
    [117]Takeda H., Kuno H., Adachi K. Solar control dispersions and coatings with rare-earth hexaboride nanoparticles [J]. The American Ceramic Society,2008, 91(9):2897-2902.
    [118]苏玉长,张鹏飞,肖立华,等.微波固相合成纳米LaB6的组织结构及其透光特性[J].中南大学学报(自然科学版),2011,42(10):3015-3019.
    [119]梁丽梅.LaB6纳米粉末及其复合薄膜的制备工艺及性能研究[D].济南:山东大学,2009.
    [120]顾广新,武利民,魏勇,等.一种透明隔热涂敷材料及其制备方法和应用.中国:CN101550307-A[P],2009-05-14.
    [121]王立璞,张琴,陈煜健.纳米稀土隔热透明涂料及其制备方法.中国:CN 101831224-A[P],2010-09-15.
    [122]Schlegel A., Wachter P., Nickl J. J., et al. Optical properties of TiN and ZrN[J]. Journal of Physics C:Solid State Physics,1977,10:4889-4896.
    [123]Pfliiger J., Fink J., Weber W., et al. Dielectric properties of TiCx, TiNx, VCx, and VNX from 1.5 to 40 eV determined by electron-energy-loss spectroscopy[J]. Physical Review B,1984,30:1155-1163.
    [124]Delin A., Eriksson O., Ahuja R., et al. Optical properties of the group-IVB refractory metal compounds[J]. Physical Review B,1996,54:1673-1681.
    [125]Schmid P. E., Sunaga M. S., Levy F. Optical and electronic properties of sputtered TiNx thin films[J]. Journal of Vacuum Science & Technology A,1998, 16:2870-2875.
    [126]Smith G B., Swift P. D. TiNx films with metallic behavior at high N/Ti ratios for better solar control windows[J]. Applied Physics Letters,1999,75:630-632.
    [127]Kang J. H., Kim K. J. Structural, optical, and electronic properties of cubic TiNx compounds[J]. Journal of Chemical Physics,1996,86:346-350.
    [128]Duan G F., Zhao G L., Wu L., et al. Structure, electrical and optical properties of TiNx films by atmospheric pressure chemical vapor deposition[J]. Applied Surface Science,2011,257:2428-2431.
    [129]Morin F. J. Oxide which show a metal to insulator transition at the neel temperature[J]. Physical Review Letters,1959,3:34-36.
    [130]Srivastava R., Chase L. L. Raman spectrum of semiconducting and metallic VO2[J]. Physical Review Letters,1971,27(11):727-730.
    [131]Lappalainen J., Heinilehto S., Jantunen H., et al. Electrical and optical properties of metal-insulator-tra nsition VO2 thi n films [J]. Journal of Electro-ceramics,2009,22:73-77.
    [132]Lopez R., Feldman L. C., Haglund R. F., et al. Size-Dependent Optical Properties of VO2 Nanoparticle Arrays[J]. Physical Review Letters,2004, 93(17):177403(1-4).
    [133]Lee K. W., Kweon J. J., Lee C. E., et al. Infrared-wave number-dependent metal-insulator transition in vanadium dioxide nanoparticles[J]. Applied Physics Letters,2010,96,243111 (1-3).
    [132]Gentle A., Maaroof A. I. Smith G B. Nanograin VO2 in the metal phase:a plasmonic system with falling dc resistivity as temperature rises [J]. Nano-technology,2007,18:025202 (1-7).
    [134]Mlyuka N.R., Niklasson G A., Granqvist C. G. Thermochromic multilayer films of VO2 and TiO2 with enhanced Transmittance[J]. Solar Energy Materials and Solar Cells,2009,93,1685-1687.
    [135]Zhang Z. T., Gao Y. F., Chen Z., et al. Thermochromic VO2 Thin Films: Solution-Based Processing, Improved Optical Properties, and Lowered Phase Transformation Temperature[J]. Langmuir.2010,26(13):10738-10744.
    [136]Kang L. T., Gao Y. F., Zhang Z. T., et al. Effects of Annealing Parameters on Optical Properties of Thermochromic VO2 Films Prepared in Aqueous Solution[J]. The Journal of Physical Chemistry C,2010,114:1901-1911.
    [137]Kang L. T., Gao Y.F., Luo H. J., et al. Nanoporous Thermochromic VO2 Films with Low Optical Constants, Enhanced Luminous Transmittance and Thermo-chromic Properties[J]. ACS Applied Materials & Interfaces,2011,3:135-138.
    [138]Li S. Y., Niklasson G. A., Granqvist C. G Nanothermochromics with VO2-based core-shell structures:Calculated luminous and solar optical properties [J]. Journal of Applied Physics,2011,109:113515(1-5).
    [139]Mossanek R. J. O. Abbate M. Optical response of metallic and insulating VO2 calculated with the LDA approach[J]. Journal of Physics:Condensed Matter, 2007,19:346225(1-10).
    [140]Liu G H., Deng X. Y., Wen R. Electronic and optical properties of monoclinic and rutile vanadium dioxide[J]. Journal of Materials Science,2010,45:3270-3275.
    [141]Cai M. Q., Yin Z., Zhang M. S. First-principles study of optical properties of barium titanate[J]. Applied Physics Letters,2003,83,14(2805-2807).
    [142]Sun J., Wang H. T., Ming N. B., et al. Optical properties of heterodiamond B2CN using first-principles calculations [J]. Applied Physics Letters,2004,84, 22(4544-4546).
    [143]Hu J. M., Cheng W. d., Huang S. P., et al. First-principles modeling of nonlinear optical properties of C3N4 polymorphs[J].Applied Physics Letters,2006,89, 261117(1-3).
    [144]Sheetz R. M., Ponomareva I., Richter E., et al. Defect-induced optical absorption in the visible range in ZnO nanowires[J]. Applied Physics Letters, 2009,80,195314(1-3).
    [145]Singh N., Kaloni T. P., Schwingenschlogl U. A first-principles investigation of the optical spectra of oxidized graphene [J]. Applied Physics Letters,2013,102, 023101 (1-4).
    [146]Segall M. D., Shah R., Pickard C. J., et al. Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Physical Review B,1996, 54(23):16317-16320.
    [147]Hossain F. M., Riley D. P., Murch G. E. Ab initio calculations of the electronic structure and bonding characteristics of TiN[J]. Physics Review B,2005,72(23): 235101(1-5).
    [148]沈学础.半导体光谱和光学性质.[M].北京:科学出版社(第二版),2002.
    [149]Cai M. Q., Yin Z., Zhang M. S. First-principles Study of Optical Properties of Barium Titanate[J]. Applied Physics Letters,2003,83(14):2805-2807.
    [150]Zhang M. F., Jia Y., Xu G. G., et al. Mg-Assisted Autoclave Synthesis of RB6 (R =Sm, Eu, Gd, and Tb) Submicron Cubes and SmB6 Submicron Rods[J]. European Journal of Inorganic Chemistry,2010,1289-1294.
    [151]Luca S. E., Amara M., Galera R.M., et al. Neutron diffraction studies on GdB6 and TbB6 powders[J]. Physica B,2004,350:e39-e42.
    [152]Grechnev G. E., Baranovskiy A. E., Fil V. D., et al. Electronic structure and bulk properties of MB6 and MB12 borides[J]. Journal of Low Temperature Physics, 2008,34(11):921-929.
    [153]Sirota N. N., Novikov V. V., Novikov A. V., Identity period and thermal expansion coefficient for rare-earth hexaborides at temperatures of 5-320 K[J]. Physics of the Solid State,2000,42,2093-2096.
    [154]Kunii S., Takeuchi K., Oguro I., et al. Electronic and magnetic properties of GdB6[J]. Journal of Magnetism and Magnetic Materials,1985,52:275-278.
    [155]Bao L. H., Zhang J. X., Zhang N., et al. In situ (LaxGd1-x)B6 cathode materials prepared by the spark plasma sintering technique[J]. Physica Scripta,2012,85: 035710 (1-5).
    [156]Bao L. H., Zhang J. X., Zhou S. L., et al. Synthesis, thermionic emission and magnetic properties of (NdxGd1-x)B6[J]. Chinese Physics B,2011,20(5): 058101 (1-6).
    [157]Otani S., Korsukova M. M., Mitsuhashi T., et al. Floating zone growth and high-temperature hardness of YB4 and YB6 single crystals[J]. Journal of Crystal Growth.2000,217(4):378-382.
    [158]Vanderberg J. M., Matthias B. T., Corenzwit E., et al. Superconductivity of some binary and ternary transition-metal borides[J]. Materials Research Bulletin,1975,10(9):889-894.
    [159]Walch P. F., Ellis D. E., Mueller F. M. Energy bands and bonding in LaB6 and YB6[J]. Physical Review B,1977,15(4):1859-1866.
    [160]Arko A. J., Crabtree G., Karim D., et al. de Haas-van Alyhen effect and the Fermi surface of LaB6[J]. Physical Review B,1976,13(12):5240-5247.
    [161]Schell G., Winter H., Rietschel H., et al. Electronic structure and super-conductivity in metal hexaborides [J]. Physical Review B,1982,25(3): 1589-1599.
    [162]Shein I. R., Okatov S. V., Medvedeva N.I., et al. Electronic band structure of low-temperature YB12, YB6 superconductors and layered YB2, MgB2 diborides[J]. arXiv:cond-mat/,2002,0202015v3 (1-10).
    [163]Jager B., Paluch S., Wolf W., et al. Characterization of the electronic properties of YB4 and YB6 using 11B NMR and first-principles calculations[J]. Journal of Alloys and Compounds,2004,383:232-238.
    [164]Xu Y., Zhang L., Cui T., et al. First-principles study of the lattice dynamics, thermodynamic properties and electron-phonon coupling of YB6[J]. Physical Review B,2007,76(21):214103(1-10).
    [165]Zirngiebl E., S. Blumenr der., Mock R., et al. Relation of phonon anomalies to charge fluctuation rates in intermediate valence compounds[J]. Journal of Magnetism and Magnetic Materials,1986,54-57:359-360.
    [166]Takahashi K., Kunii S. Single Crystal Growth and Properties of Incongruently melting TbB6, DyB6, HoB6, and YB6[J]. Journal of solid state chemistry,1997, 133:198-200.
    [167]Lortz R., Wang Y, Tutsch U., et al. Superconductivity mediated by a soft phonon mode:Specific heat,resistivity, thermal expansion, and magnetization of YB6[J]. Physical Review B,2006,73:024512(1-13).
    [168]Arko A. J., Crabtree G, Ketterson J. B., et al. Large Electron-Phonon Interaction but Low-Temperature Superconductivity in LaBe[J]. International Journal of Quantum Chemistry,1975,9:569-578.
    [169]Harima H., Sakai O., Kasuya T. New interpretation of the de Haas-van Alphen signals of LaB6[J]. Solid State Communications,1988,66(6):603-607.
    [170]Kubo Y, Asano S. Electronic structure and positron annihilation in LaB6 and CeB6[J]. Physical Review B,1989,39(13):8822-8831.
    [171]Tanaka T., Akaha.ne T., Bannai E. Role of polar optical phonon scattering in electrical resistivities of LaB6 and ReO3[J]. Journal of Physics C:Solid State Physics,1976,9:1235-1241.
    [172]Bai L., Ma N., Liu F., Structure and chemical bond characteristics of LaBe[J], Physica B,2009,404:4086-4089.
    [173]Adachi K., Miratsu M., Asahi T. Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters[J]. Journal of Materials Research,2010,25(3):510-521.
    [174]Lany S., Zunger A. Metal-Dimer Atomic Reconstruction Leading to Deep Donor States of the Anion Vacancy in II-VI and Chalcopyrite Semiconductors[J]. Physics Review Letter,2004,93(15):156404-156406.
    [175]Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physics Review Letter,1996,77(18):3865-3868.
    [176]Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Physical Review B,1990,41(11):7892-7895.
    [177]Segall M. D., Shah R., Pickard C. J., et al. Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Physical Review B,1996, 54(23):16317-16320.
    [178]Chen C. H., Aizawa T., Iyi N., et al. Structural refinement and thermal expansion of hexaborides[J]. Journal of Alloys and compounds.2004,366: L6-L8.
    [179]Zhuravlev N. N., Belousova I. A., Manelis R. M., et al. Sov. Phys. Crystallogr 1971,15,723.
    [180]Korsukova M. Proceedings of the 11 International Symposium on Boron, Borides, and Related Compounds [J]. Japanese Journal of Applied Physics, Part 1,1993,10,15.
    [181]Binder F., Radex-Rdsch. Contribution to the Knowledge of Cubic Hexaborides [J].1977,1:52.
    [182]Takahashi Y, Ohshima K., Okamura F. P., et al. Crystallographic Parameters of Atoms in the Single Crystals of the Compounds RB6 (R=Y, La, Ce, Nd, Sm, Eu, Gd) [J]. Journal of the Physical Society of Japan,1999,68:2304-2309.
    [183]Cai Y. Q. Comparative study of the electronic structures of superconductors of boride YB6 and LaB6[J]. Chinese Journal of Low Temperature Physics,2005, 27(5):515-518.
    [184]Storms E., Mueller B. Phase relationship, vaporization, and thermodynamic properties of the lanthanum-boron system[J]. The Journal of Physical Chemistry, 1978,82(1):51-59.
    [185]Yao Kosolapova Ed. T. Properties, Production and Application of Refractory Compounds:Handbook[M]. [in. Russian], Metallurgiya, Moscow 1986.
    [186]Korsukova M. M., Lundstrom T., Gurin V. N., et al. An X-ray diffractometry study of LaB6 single crystals, prepared by high-temperature solution growth[J]. Zeitschrift fur Kristallographie,1984,168:299-306.
    [187]Etuomeau J., Hagenrnuller P. Structure and physical features of the rare-earth borides[J]. Philosophical Magazine B,1985,52(3):589-610.
    [188]Ning G, Flemming R. L. Rietveld refinement of LaB6:data from uXRD[J]. Journal of Applied Crystallography,2005,38:757-759.
    [189]Wyckoff R. W. G, Merwin H. E. The crystal structure of dolomite[J]. American Journal of Science,1924,8:447-461.
    [190]Craciun V., Craciun D. Pulsed laser deposition of crystalline LaB6 thin films[J]. Applied Surface Science,2005,247:384-389.
    [191]Baranovskiy A. E., Grechnev G E., Fil V. D., et al. Electronic structure, bulk and magnetic properties of MB6 and MB12 borides[J]. Journal of Alloys and Compounds,2007,442:228-230.
    [192]Gurel T., Eryigit R. Ab initio lattice dynamics and thermodynamics of rare-earth hexaborides LaB6 and CeB6[J]. Physical Review B,2010,82(10):104302 (1-12).
    [193]Paderno Yu. B., Samsonov G V. The electrical properties of the hexaborides of the alkaline earths, the rare eatehs and thorium[J]. Dokl. Akad. Nauk USSR, 1961,137:646-7.
    [194]Mori Y., Shino N., Imada S., et al. Photoemission and BIS of RB6 (R= rare earth element) [J]. Physica B,1993,86-188:66-69.
    [195]Chazalviel J.-N., Campagna M., Wertheim G. K., et al. Configurational mixing and 4f-photoemission lineshapes in SmB6[J]. Solid State Communication,1976, 19(8):725-728.
    [196]Kontrym-Sznajd G, Samsel-Czekala M., Biasini M. et al. Band structure of LaB6 by an algorithm for filtering reconstructed electron-positron momentum densities[J]. Physical Review B,2004,70(12):125103 (1-10).
    [197]Sandeep M. P., Ghimire D., Rai P., et al. Study of Bulk modulus, Volume, Energy, lattice parameters and magnetic moments in rare earth hexaborides using density functional theory[J]. Journal of Physics:Conference Series,2012 377:012084(1-4).
    [198]褚君浩.窄禁带半导体物理学[M].北京:科学出版社,2005,165.
    [199]Dresselhaus M. S. Solid state physics Part Ⅱ:Optical Properties of Solids[M]. P13.
    [200]Cohen R. L., Eibschiitz M., West K. W., et al. Electronic Configuration of SmB6[J]. Journal of Applied Physics,1970,41(3):898-899.
    [201]Tanaka T., Nishitani R., Oshima C., et al. The preparation and properties of CeB6, SmB6, and GdB6[J]. Journal of Applied Physics,1980,51:3877-3883.
    [202]Mizumaki M., Tsutsui S., Iga F. Temperature dependence of Sm valence in SmB6 studied by X-ray absorption spectroscopy[J]. Journal of Physics: Conference Series,2009,176:012034(1-4).
    [203]Kasuya T., Takegahara K., Aoki Y., et al. in Valence Fluctuations in Solids[M\, edited by L. M. Falicov, W. Hanke, and M. B. Maple (North-Holland, Amsterdam,1981), p.215.
    [204]Alekseev P. A., Mignot J.-M., Rossat-Mignod J., et al. Magnetic excitation spectrum of mixed-valence SmB6 studied by neutron scattering on a single crystal[J]. Journal of Physics:Condensed Matter,1995,7:289-305.
    [205]Degiorgi L., Felder E., Ott H. R., et al. Low-Temperature Anomalies and Ferromagnetism of EuB6[J]. Physical Review Letters.1997,79:5134-5137.
    [206]Sullow S., Prasad I., Aronson M. C., et al. Metallization and magnetic order in EuB6[J]. Physical Review B,2000,62:11626-11632.
    [207]Reiffers M., Sebek J., Santavd E., et al. Thermal hysteresis of the phase-transition temperature of single-crystal GdB6[J]. Physica Status Solidi (b),2006, 243(1):313-316.
    [208]Zaharko O., Fischer P., Schenck A., et al. Zero-field magnetic structure in CeB6 reinvestigated by neutron diffraction and muon spin relaxation[J].2003, Physical Review B,68:214401 (1-11).
    [209]Komatsubara T., Suzuki T., Kawakami M., et al. Magnetic and electronic properties of CeB6[J]. Journal of Magnetism and Magnetic Materials,1980, 15-18:963-964.
    [210]Kwon Y. S., Kimura S., Nanba T., et al. Low energy optical excitation in CeB6[J]. Journal de Physique. Colloques,1988,49:C8-737-738.
    [211]Grushko Y. S., Paderno Y. B., Mishin K. Y, et al. A study of the electronic structure of rare earth hexaborides[J]. Physica Status Solidi (b),1985,128: 591-597.
    [212]Plakhty V. P., Regnault L. P., Goltsev A. V., et al. Itinerant magnetism in the Kondo crystal CeB6 as indicated by polarized neutron scattering[J]. Physical Review B,2005,71:100407(1-4).
    [213]Sugawara H., Kakizaki A., Nagakura I., et al. Extreme Ultraviolet Photo-emission of CeB6 and PrB6[J]. Journal of the Physical Society of Japan,1982, 51:915-921.
    [214]Chazalviel J. N., Campagna M., Wertheim G. K., et al. Electronic Structure and 4f-Hole Lifetime in Rare-Earth Borides. Physical Review Letters.1976,37: 919-922.
    [215]Caldwell T., Reyes A.P., Moulton W.G., et al. High-field suppression of in-gap states in the Kondo insulator SmB6[J]. Physical Review B,2007,75:075106 (1-7).
    [216]Cooley J. C., M. Aronson C., Fisk Z., et al. SmB6:Kondo insulator or Exotie Metal? [J]. Physical Review Letters,1995,74:1629-1632.
    [217]Miyazaki H., Hajiri T., Ito T., et al. Momentum-dependent hybridization gap and dispersive in-gap state of the Kondo semiconductor SmB6[J]. Physical Review B,2012,86:075105 (1-4).
    [218]Wolgast S., Kurdak C., Sun Kai., et al. Discovery of the First Topological Kondo Insulator:Samarium Hexaboride[J]. Mesoscale and Nanoscale Physics (cond-mat.mes-hall),2012, http://arxiv.org/abs/1211.5104.
    [219]Gorshunov B., Sluchanko N., Volkov A., et al. Low-energy electrodynamics of SmB6[J]. Physical Review B,1999,59:1808-1814.
    [220]Flachbart K., Gloos K., Konovalova E., et al. Energy gap of intermediate-valent SmB6 studied by point-contact spectroscopy[J]. Physical Review B,2001,64: 085104(1-8).
    [221]Nozawa S., Tsukamoto T., Kawai K., et al. Ultrahigh-resolution and angle-resolved photoemission study of SmB6[J]. Journal of Physics and Chemistry of Solids,2002,63:1223-1226.
    [222]Denlinger J. D., Clack J. A., Allen J. W., et al. Bulk Band Gaps in Divalent Hexaborides[J]. Physical Review Letters,2002,89:157601(1-4).
    [223]Zhang X., Molnar S., Fisk Z., et al. Spin-Dependent Electronic States of the Ferromagnetic Semimetal EuB6[J]. Physical Review Letters,2008,100(16): 167001 (1-4).
    [224]Bai L., Ma N. GGA+U method investigating structural and chemical bond properties of CeB6 and EuB6[J]. Physica B,2010,405:4634-4637.
    [225]Kubo Y, Asano S. Electronic states in RB6 (R= La, Ce, Pr and Nd) [J]. Journal of Magnetism and Magnetic Materials,1992,104-107:1182-1184.
    [226]Gernhart Z. C., Jacobberger R. M., Wang L., et al. Existence of Erbium Hexaboride Nanowires[J]. Journal of the American Ceramic Society,2012, 95(12):3992-3996.
    [227]姜骏、卞江、黎乐民.EuB6的光电导率和能量损失函数谱的理论指认[J].物理化学学报,2008,24(1):1-7.
    [228]姜骏、卞江、黎乐民.EuB6的能带结构与成键及其光学常数的计算[J].高等学校化学学报,2007,28(11):2167-2170.
    [229]Givord F., BoucherleJ. X., Burlet P., et al. Non-anomalous magnetization density distribution in CeB6[J]. Journal of Physics:Condensed Matter,2003,15: 3095-3106.
    [230]Sato S., Aspherical charge distribution in a crystal of CeB6[J]. Journal of Magnetism and Magnetic Materials,1985,52,310-312.
    [231]Pickard C. J., Winkler B., Chen R. K., et al. Structural Properties of Lanthanide and Actinide Compounds within the Plane Wave Pseudopotential Approach[J]. Physical Review Letters,2000,25(84):5122-5125.
    [232]Xu J. Q., Chen X. L., Zhao Y. M., et al. Single-crystalline PrB6 nanowires and their field-emission properties [J]. Nanotechnology,2007,18:115621(1-5).
    [233]Wang G. H., Brewer J. R., Chan J. Y., et al. Morphological Evolution of Neodymium Boride Nanostructure Growth by Chemical Vapor Deposition[J]. The Journal of Physical Chemistry C,2009,113:10446-10451.
    [234]Paderno Y. B., Samsonov G.V. Thulium Borides[J]. Journal of Structural Chemis-try,1961,2:202-203.
    [235]姜骏,卞江,黎乐民.YbB6的能带结构和光电导率谱的解析[J].中国稀土学报,2007,25(5):522-532.
    [236]Mordovin O. A., Timofeeva E. N. "Rare-earth Element Hexaborides"[J]. Russian Journal of Inorganic Chemistry,1968,13:1627-1629.
    [237]Takakuwa Y, Suzuki S., Sagawa T. Photoemission Measurements of EuB6[J]. Japanese Journal of Applied Physics, Supplement,1978,17-2:284-287.
    [238]Tarascon J. M., Soubeyroux J. L., Etourneau J., et al. Magnetic structures determined by neutron diffraction in the EuB6-xCx system[J]. Solid State Communication,1981,37:133-137.
    [239]Singh N., Saini S. M., Nautiyal T., et al. Electronic structure and optical properties of rare earth hexaborides RB6 (R=La, Ce, Pr, Nd, Sm, Eu, Gd) [J]. Journal of Physics:Condensed Matter,2007,19:346226(1-10).
    [240]Aghababazadeh R., Mirhabibi A. R., Rand B., et al. Synthesis and characterization of nanocrystalline titanium nitride powder from rutile and anatase as precursors[J]. Surface Science,2007,601 (13):2881-2885.
    [241]Shieu F. S., Cheng L. H., Sung Y. C, et al. Microstructure and coating properties of ion-plated TiN on type 304 stainless steel[J]. Thin Solid Films, 1998,334:125-132.
    [242]Fortuna S. V., Sharkeev Y. P., Perry A. J., et al, Microstructural features of wear-resistant titanium nitride coatings deposited by different methods [J]. Thin Solid Films,2000,377-378:512-517.
    [243]Bharat A., Pradeep H. On the stability of TiN-based electrocatalysts for fuel cell applications [J]. International Journal of Hydrogen Energy,2011,36(6):3965-3974.
    [244]Birkholz M., Ehwald KE., Kulse P., et al. Ultrathin TiN membranes as a technology platform for CMOS-integrated MEMS and BioMEMS devices[J]. Advanced Functional Materials,2011,21(9):1652-1656.
    [245]Mahieu S., Leroy W.P., Van Aeken K., et al. Sputter deposited transition metal nitrides as back electrode for CIGS solar cells[J]. Solar Energy,2011,85(3): 538-544.
    [246]Harrer S., Waggoner PS., Luan B., et al. Electrochemical protection of thin film electrodes in solid state nanopores[J]. Nanotechnology,2011,22(27):275304.
    [247]Granqvist C G. Transparent conductors as solar energy materials:A panoramic review[J]. Solar Energy Materials and Solar Cells,2007,91(17):1529-1598.
    [248]Gong C. H., Zhang J. W., Yan C., et al. Synthesis and Microwave Electro-magnetic Properties of nanosized Titanium Nitride[J]. Journal of Materials Chemsitry,2012,22 (8):3370-3376.
    [249]Durusoy H. Z., Duyar O., Aydinli A. Influence of substrate temperature and bias voltage on the optical transmittance of TiN films[J]. Vacuum,2003,70:21-28.
    [250]Kurtz S. R., Gordon R. G Chemical vapor deposition of titanium nitride at low temperature[J]. Thin Solid Films,1986,140:277-290.
    [251]Cortie M. B., Giddings J., Dowd A. Optical properties and plasmon resonances of titanium nitride nanostructures[J]. Nanotechnology,2010,21:115201 (1-8).
    [252]Kim N.Y., Son Y. B., Oh J. H., et al. TiNx layer as an antireflection and antistatic coating for display[J]. Surface and Coatings Technology,2000, 156:128-129.
    [253]Matenoglou G. M., Koutsokeras L. E., Patsalas P. Plasma energy and work function of conducting transition metal nitrides for electronic applications[J]. Applied Physics Letters,2009,94(15):152108 (1-3).
    [254]Naik G. V., Schroeder J. L., Sands T. D., et al. Titanium nitride as a plasmonic material for visible wavelengths[J]. Physics Optics,2010, arXiv:1011.4896v2.
    [255]Wang C., Dai Y., Gao H., et al. Surface properties of titanium nitride:A first-principles study[J]. Solid State Commun,2010,150:1370-1734.
    [256]Vasu K., Ghanashyam Krishna M., Padmanabhan K. A. Substrate-temperature dependent structure and composition variations in RF magnetron sputtered titanium nitride thin films[J]. Applied Surface Science,2011,257:3069-3074.
    [257]Morin F. J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature[J]. Physical Review Letters,1959,3:34-36.
    [258]Goodenough J. B. Direct Cation--Cation Interactions in Several Oxides[J]. Physical Review,1960,117:1442-1451.
    [259]Wentzcovitch R. M., Schulz W. W., Allen P. B. VO2:Peierls or Mott-Hubbard? A view from band theory[J]. Physical Review Letters,1994,72:3389-3392.
    [260]Rice T. M., Launois H., Pouget J. P. Comment on "VO2:Peierls or Mott-Hubbard? A View from Band Theory"[J]. Physical Review Letters,1994,73: 3042-3042.
    [261]Biermann S., Poteryaev A., Lichtenstein A.I., et al. Dynamical Singlets and Correlation-Assisted Peierls Transition in VO2[J]. Physical Review Letters, 2005,94:026404(1-4).
    [262]Sakuma R., Miyake T., Aryasetiawan. F. First-principles study of correlation effects in VO2[J]. Physical Review B,2008,78:075106(1-9).
    [263]Takayuki U., Kozo O., Akio K. Electronic Structures of Ti and V Oxides: Calculation of Valence Photoemission and Bremsstrahlung Isochromat Spectra[J]. Journal of the Physical Society of Japan.1993,62:2595-2599.
    [264]Goering E., Schramme M., Muller O., et al. LEED and photoemission study of the stability of VO2ssurfaces[J]. Physical Review B,1997,55:4225-4230.
    [265]Kim H. T., Chae B. G, Youn D. H., et al. Mechanism and observation of Mott transition in VO2-based two-and three-terminal devices [J]. New Journal of Physics,2004,6:52(1-19).
    [266]Kim H. T., Chae B. G, Youn D. H., et al. Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices[J]. Applied Physics Letters,2005,86:242101 (1-3).
    [267]Kim B. J., Lee Y. W, Choi S., et al. Micrometer x-ray diffraction study of VO2 films:Separation between metal-insulator transition and structural phase transition[J]. Physical Review B,2008,77:235401(1-5).
    [268]Eguchi R., Taguchi M., Matsunami M., et al. Photoemission evidence for a Mott-Hubbard metal-insulator transition in VO2[J]. Physical Review B,2008, 78:075115(1-6).
    [269]Xu S. Q., Ma H. P., Dai S. X., et al. Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films[J]. Journal of Materials Science,2004,39:489-493.
    [270]Gopalakrishnan G., Ruzmetov D., Ramanathan S. On the triggering mechanism for the metal-insulator transition in thin film VO2 devices:electric field versus thermal effects[J]. Journal of Materials Science,2009,44:5345-5353.
    [271]Koethe T. C., Hu Z., Haverkort M. W., et al. Transfer of Spectral Weight and Symmetry across the Metal-Insulator Transition in VO2[J]. Physical Review Letters,2006,97:116402 (1-4).
    [272]Barker A. S., Jr., Verleur H. W., et al. Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature [J]. Physical Review Letters,1966,17(26):1286-1289.
    [273]Verleur H. W., Barker A. S., Jr., et al. Optical Properties of VO2 between 0.25 and 5 eV[J]. Physical Review,1968,172(3):788-798.
    [274]Kana Kana J.B., Ndjaka J.M., Vignaud G, et al. Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry[J]. Optics Communications,2011,284:807-812.
    [275]Guelfucci M. F. Electronic calculations on rutile VO2 by the LMTO-ASA method[J]. Journal of Physics and Chemistry of Solids,2001,62:1961-1966.
    [276]Hamad B. A. First-principle calculations of structural and electronic properties of rutile-phase dioxides (MO2), M= Ti, V, Ru, Ir and Sn[J]. The European Physical Journal B,2009,70:163-169.
    [277]宋婷婷,何捷,孟庆凯,等.金红石型二氧化钒的电子结构及光电性质的计算[J].计算物理,2008,25(3):365-372.
    [278]宋婷婷,何捷,孟庆凯,等.二氧化钒的电子结构及光学性质计算[J].光散射学报.2008,20(2):194-199.
    [279]Lu S. W., Hou L. S., Gun F. X. Structure and Optical Property Changes of Sol-Gel Derived VO2 Thin Films[J]. Advanced Materials,1997,9(3):244-246.
    [280]Huaping B., Michael B. C., Abbas I. M., et al. The preparation of a plasmonically resonant VO2 thermochromic pigment[J]. Nanotechnology,2009, 20:085607(1-10).
    [281]Li W. W., Yu Q., Liang J. R., et al. Intrinsic evolutions of optical functions, band gap, and higher-energy electronic transitions in VO2 film near the metal-insulator transition region[J]. Applied Physics Letters,2011,99,241903 (1-4).
    [282]Gao Y. F., Wang S. B., Luo H., et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control [J]. Energy & Environmental Science Articles,2012,5,6104-6110.
    [283]Georg A. Studies on Vanadium Oxides. II. The Crystal Structure of Vanadium Dioxide[J]. Acta Chem. Scandinavica,1956,10:623-631.
    [284]McWhan. D. B., Marezio. M., Remeika. J. P., et al. X-ray diffraction study of metallic VO2[J]. Physical Review B,1974,10:490-495.
    [285]Pan. M., Zhong H. M., Wang S. W., et al. First-principle study on the chromium doping effect on the crystal structure of metallic VO2[J]. Chemical Physics Letters,2004,398:304-307.
    [286]Hiromitsu. T. Hexaboride particle, dispersed body with dispersed hexaboride particle, and article using hexaboride particle or dispersed body. Japan: JP2003277045A[P],2003-10-02.
    [287]Masayuki M., Toshiharu H., Michio K. Coating for forming infrared light-shading film and substrate having infrared light-shading film. Japan: JP2004204173A[P],2004-07-22.
    [288]Tofuku A. Process for production of surface-coated hexaboride particle precursor, surface-coated hexaboride particle precursor, surface-coated hexaboride particles, dispersion of particles, and structures and articles made by using particles. Japan:JP2009096696A[P],2009-05-07.
    [289]Jiang F., Leong Y. K., Martyniuk M., et al. Dispersion of lanthanum hexaboride nanoparticles in water and in sol-gel Silica arrays[J]. Optoelectronic and Microelectronic Materials and Devices (COMMAD),2010,163-164.
    [290]Chen C. J., Chen D. H. Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material[J]. Chemical Engineeing Journal,2012,180:337-342.
    [291]段小平.无机粉体粒子/聚丙烯复合材料老化性能研究及光谱研究[D].成 都:四川大学,2005.
    [292]Yahia z., Turrell S., Mercurio J. P., et al. Spectroscopic investigation of lattice vacancies in hexaborides[J]. Raman Spectrosc,1993,24:207-212.
    [293]Schmechel R, Werheit H, Paderno Y B. FT Raman spectroscopy of some metal hexaborides[J]. Journal of Solid State Chemistry,1997,133:234-268.
    [294]Jia. G, Zhang. C., Wang. C., et al. Uniform and well-dispersed LaBO3 hierarchical architectures synthesis, formation, and luminescence properties [J]. CrystEngCommunity,2012,14:579-584.
    [295]张华.现代有机波谱分析.[M].北京:化学工业出版社,2005:267-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700