罗丹明荧光探针的设计、合成及光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗丹明类荧光染料具有独特的结构特性和突出的光物理性质,即在螺环状态下表现为非颜色和非荧光性质,而与客体分子作用生成其开环结构后表现为明显的颜色变化和荧光释放特性。将反应位点与罗丹明生色团相结合,设计出大量的基于罗丹明衍生物的荧光探针,不仅能够运用于识别传感阳离子,而且能用于阴离子、活性氧物质和中性分子的传感识别。本论文在总结前人工作的基础上,设计开发了四个基于罗丹明衍生物的荧光探针:罗丹明—吡啶甲酰肼衍生物、罗丹明—水杨甲酰肼衍生物、罗丹明—萘酰亚胺衍生物和罗丹明—吡啶腙衍生物。通过客体与探针分子作用后产生的独特光谱变化,采用荧光发射和紫外—可见光谱详细地研究了其传感性能,主要研究内容如下:
     将罗丹明和吡啶甲酰肼相结合得到了探针分子2-1,不仅能够通过与Cu2+的配位作用实现了在水溶液中对Cu2+的高选择性和高灵敏性的检测,而且利用C1O能定向氧化甲酰肼基团实现了对ClO的识别传感。实验结果表明,在乙腈/Tris-HC1(pH=7.0)缓冲溶液中,探针2-1与Cu2+形成了1:1的络合物并且结合常数为1.79×106M-1(R2=0.994),具有非常高的检测限(1nM)。在甲醇/Na2B407-NaOH(pH=12.0)缓冲溶液中对C1O-也显示出了很好的识别性能,其检测限可以达到1nM。相比于其它已经报道的Cu2+或C1O-荧光探针,这是第一个能在一个小分子中同时检测这两种离子的化学传感器。
     采用荧光"turn-on"策略来设计罗丹明铜离子配合物的CN-荧光传感器是非常困难的。因为氰离子会将配合物中的Cu2+取代,生成没有颜色也没有荧光的罗丹明关环结构。将做为发色团的罗丹明B与水杨甲酰肼相连,我们设计合成了一个能够通过配位模式,导致荧光释放来传感识别氰离子的荧光探针3-1。化合物先与Cu2+发生配位作用并导致了明显的紫外吸收光谱变化,其与Cu2+的结合常数为1.7×107M-1。第一次培养出了罗丹明衍生物和铜离子络合产物的单晶,通过分析可以看出,两个水杨甲酰肼基团与两个Cu2+所形成的双铜中心近乎处于一个平面上,两个罗丹明基团处于垂直位置。由于化合物与Cu2+之间的强的配位作用和铜离子的强的荧光猝灭效应,我们将该配合物成功应用于CN-的识别。配合物3-1+Cu2+与氰离子的结合比为1:2,并且得到了高分辨质谱的证实。其对氰离子的检测限可以达到1.4×10-7M,远远低于世界卫生组织(WHO)对饮用水中氰离子含量不得超过1.9μM的规定。
     基于FRET机理,我们设计合成了一个基于罗丹明—萘酰亚胺的Hg2+比率荧光探针4-4。在甲醇/水=2/1(V/VpH=7.0,Tris-HCl,10mM)溶剂体系中探针能够和汞离子进行定量的1:1加汞脱硫反应,并进一步发生分子内成环反应而导致罗丹明开环结构,并释放出光信号。探针能够对Hg2+实现高效且具有高选择性的特异性识别,当主体浓度为0.1μM时,Hg2+浓度在0.030.08μM之间,汞离子浓度和荧光比值之间产生了良好的线性,说明探针对Hg2+浓度的检测可以在一个非常低的范围内进行。
     在单一分子中,同样条件下探针能够实现对不同物种的选择性识别,具有重要的实际应用价值。我们采用罗丹明肼毗啶腙化合物5-3,实现了在同一溶液中利用紫外可见光谱识别Cu2+,而通过明显的荧光增强来选择性识别Fe3+。其与Cu2+的作用模式为两个探针分子结合一个铜离子,即按照2:1的化学计量比进行配位作用,结合常数为7.8×104M-2,并且这种结合是可逆进行的。探针在溶液中能够对1.76×10-9M的Fe3+进行检测,具有潜在的应用价值。
Rhodamine dyes have unique photochemical properties such as high molar extinction coefficients, large fluorescence quantum yields, and tolerance to photobleaching. Significantly, the carboxylic acid group of rhodamine dyes can undergo intramolecular cyclization. The spirolactam structures are nonfluorescent and colorless, whereas ring-opening of the corresponding spirolactam induced by target species gives rise to strong fluorescence emission and a pink color. By exploiting the unique fluorescence "OFF-ON" switching between rhodamine dyes and their amide derivatives, the rhodamine spirolactam has been employed as an effective platform for the construction of fluorescent probes for the detection of cations, anions, reactive oxygen species (ROS), and biological important moleculars. Inspired by their successful work, in this paper, we developed four rhodamine-based fluorescent probes, i.e., pyridinecarboxamide rhodamine B-hydrazide, N-salicyloyl rhodamine B-hydrazide, naphthalimide-rhodamine B, and carbohydrazone rhodamine B for the detection of Cu2+, ClO-, CN-, Hg2+and Fe3+
     By integrating N-picolinyl and rhodamine B-Hydrazide, a new dual-function chromo-and fluorogenic probe2-1for Cu2+and ClO-, in different solvents conditions was obtained. The probe displays high selectivity and extremely high sensitivity for Cu2+in9:1(V/V) MeCN—water (10mM Tris-HCl, pH7.0), and for CIO in7:3(V/V) MeOH—water (30mM Na2B4O7/NaOH, pH12.0). The association constant for Cu2+was estimated to be1.79×106M-1(R2=0.994) on the basis of nonlinear fitting of the titration curve assuming1:1stoichiometry. Importantly, the reaction of probe2-1with ClO-can be finished within10s, which is obviously faster than those reported ClO-specific probes, indicating the probe could be used in fast detection of ClO-. The detection limit for both Cu2+and ClO-is1nm, respectively. To the best of our knowledge, this is the first example of a fluorescent sensor based on a small molecule that allows the detection of both Cu2+and ClO-ions.
     It is very difficult to design a fluorescence "turn-on" probe for anions based on the rhodamine derivatives by the displacement approach, because the snatching of Cu2+from the complex with CN-will result in the formation of a spirocyclic form of rhodamine that is colorless and nonfluorescent. We provided a new approach for the detection anions based on the rhodamine dyes, namely "complexation approach". In complexation approach, a ligand (N-salicyloyl) with strong coordination ability for Cu2+into the rhodamine skeleton was incorporated to produce a ring-opened rhodamine-Cu(II) complex (3-1+Cu2+) with high stability, so that the added CN-will complex to the chelated Cu2+rather than snatching it, by which the desired fluorescence "turn-on" response could be obtained. The rhodamine-Cu(II) complex (3-1+Cu2+) in a2:2binding stoichiometry as a fluorescence 'turn-on" chemosensing system for CN-. X-Ray diffraction studies of3-1+Cu2+revealed a nearly planar central structural moiety with two vacant axial coordination positions for each Cu2+ion.3-1+Cu2+could detect CN-in9:1(V/V) MeCN/water solution (10mM Tris-HCl, pH7.0) with high sensitivity and selectivity. The detection limit was measured to be1.4×10-7M at S/N=3.
     On the basis of fluorescent resonance energy transfer from1,8-naphthalimide to rhodamine B, a new fluorophore dyads (4-4) containing rhodamine B and a naphthalimide moiety was synthesized as a ratiometric fluorescent probe for detecting Hg2+with a broad pH range5.7-11.0. The selective fluorescence response of4-4to Hg2+is due to the Hg2+-promoted desulfurization of the thiocarbonyl moiety, leading to the ring-opening of rhodamine B moiety of4-4. When4-4was employed at0.1μM with the slit size being20nm/20nm in CH3OH/H2O=2/1(V/V, pH7.0, Tris-HCl,10mM), a low level of Hg2+(up to3×10-8M) can be detected using the system.
     The design of multi-channel probes, which could be a suitable mode to enhance recognition features in single chemosensor via signaling of multiple guests but using a unique molecular entity, is of interest. By coupling the carbohydrazone block and rhodamine B, we synthesized a new rhodamine derivative (5-3), which is able to selectively recognize Cu2+by a color change and Fe3+by a remarkable significant emission enhancement in aqueous media. The absorption titration indicates a2:1stoichiometry of the5-3to Cu2+. The association constant, between5-3and two Cu2+, is determined to be7.8×104M-2. The fluorescent response of5-3toward the Fe3+was calculated to cover a linear range from1.0×10-9M to1.0×10-8M, with a detection limit of1.76×10-9M. This system has the potential of practical value.
引文
[1]PEDERSEN C J. Cyclic polyethers and Their Complexes With Metal Salts [J]. J. Am. Chem. Soc.,1967,89(24):7017-7036
    [2]LEHN J M. Supramolecular Chemistry:Receptors, Catalysts and Carriers [J]. Science, 1985,227:849-856.
    [3]CRAM D J, CRAM J M. Host-Guest Chemistry[J]. Science,1987,183:803-809
    [4]刘育,尤长城,张横益,超分子化学-合成受体的分子识别与组装,天津:南开大学出版社,2001
    [5]BALZANI V, DECOLA L. Supramolecular Chemistry. The Netherlands:Kluewr Academic Publishers,1992
    [6]陈国珍,黄智贤,许金钩等,荧光分析法[M],北京出版社,1989,113-145
    [7]VALEUR B. Molecular Fluorescence Principles and Applications. Weinheim: Wiley-VCH,2002
    [8]吴世康,超分子光化学导论-基础与应用[M]。北京科学出版社,2005
    [9]MI EUU JUN, KYO HAN AHN, "Turn-on" Fluorescent Sensing with "Reactive" Probs [J]. Chem. Commun.2011,47,7583-7601
    [10]刘卫敏,光化学传感器的设计、合成及其识别性能研究。中国科学院理化技术研究所,2008研究所,2008
    [11]TASUKU UENO, TETSUO NAGANO, Rational Principles for Modulating Fluorescence Properties of Fluorescein [J]. J. Am. Chem. Soc.2004,126, 14079-14085
    [12]YUNKU WU, XIAOJUN PENG, Boron Dipyrromethene Fluorophore Based Fluorescence Sensor for the Selective Imaging of Zn(II) in living cells [J]. Org. Biomol. Chem.,2005,3:1387-1392
    [13]ERI K., T. NAGANO, Design and Synthesis of Zinc-Selective Chelators for Extracellular Applications [J]. J. Am. Chem. Soc.,2005,127(3):818-819
    [14]WANG JIAOBING, QIAN, X. A pH-Resistant Zn(II) Sensor Derived From 4-Aminonaphthalimide:Design, Synthesis and Intracellular Applications [J]. J. Mater. Chem.,2005,15:2836-2839
    [15]XU ZHAOCHAO, QIAN XUHONG, Exploiting the Deprotonation Mechanism for the Design of Ratiometric and Colorimetric Zn2+ Fluorescent Chemosensor with a Large Red-Shift in Emission [J]. Tetrahedron,2006,62:10117-10122.
    [16]XU ZHAOCHAO, LU CHUNLIANG, Ratiometric and Highly Selective Fluorescent Sensor for Cadmium Under Physiological pH Range:A New Strategy to Discriminate Cadmium from Zinc [J]. J. Org. Chem.,2007,72 (9):3554-3557.
    [17]WANG HUANHUAN, JIANG HUA. Novel Ratiometric Fluorescent Sensor for Silver Ions [J]. Org. Lett.,2010,12(2):292-295.
    [18]LIU YU, HAN MING, A Proton-Triggered ON—OFF—ON Fluorescent Chemosensor for Mg(II) via Twisted Intramolecular Charge Transfer [J]. Org. Lett., 2008,10:2873-2876
    [19]SHANG G.-Q., GAO X., CHEN M., ZHENG H., XU J.-G, A Novel Hg2+ Selective Ratiometric Fluorescent Chemodosimeter Based on an Intramolecular FRET Mechanism [J]. J. Fluoresc.,2008,18:1187-1192.
    [20]ZHOU ZHIGUO, LI FUYOU, HUANG CHUNHUI. FRET-Based Sensor for Imaging Chromium(III) in Living Cells [J]. Chem. Commun.2008,3387-3389.
    [21]JISHA V. S., RAMAIAH D. Fluorescence Ratiometric Selective Recognition of Cu2+ Ions by Dansyl-Naphthalimide Dyads [J]. J. Org. Chem.,2009,74:6667-6673
    [22]VALEUR B. Molecular Fluorescence Principles and Applications,1 edition.2001, Wiley-VCH.
    [23]NI XINLONG, YAMATO T. Pyrene-Linked Triazole-Modified Homooxacalix[3] arene:A Unique C3 Symmetry Ratiometric Fluorescent Chemosensor for Pb2+[J]. Org. Lett.,2011,4:552-555.
    [24]XU ZHAOCHAO, YOON J.-Y., SPRING D. R. A Selective and Ratiometric Cu2+ Fluorescent Probe Based on Naphthalimide Excimer-Monomer Switching [J]. Chem. Commun.2010,46:2563-2565
    [25]BOUAS-L.H., CASTELLAN A. Cation-Directed Photochemistry of an Anthraceno-Crown Ether [J]. J. Am. Chem. Soc.,1986,108:315-317
    [26]TANAKA K., KUMAGAI T., Application of 2-(3,5,6-Trifluoro-2-Hydroxy-4-Methoxy-Phenyl)benzoxazole and-Benzothiazole to Fluorescent Probes Sensing pH and Metal Cations [J]. J. Org. Chem.2001,66(22):7328-7333.
    [27]XU Y Q., PANG Y. Zinc Binding-Induced Near-IR Emission from Excited-State Intramolecular Proton Transfer of a Bis(benzoxazole) Derivative [J], Chem. Commun, 2010,46:4070-4072.
    [28]YANG X.F., QI H.P. Ratiometric Fluorescent Probe for Fluoride Ion Employing the Excited-State Intramolecular Proton Transfer [J], Talanta 2009,80:92-97
    [29]LUO J.D., XIE Z. L, LAM J. W. Y., ZHU D. B., TANG B. Z. Aggregation-Induced Emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun.,2001,18: 1740-1741.
    [30]LIU L., ZHANG, G. X. XIANG J. F., ZHU D. B. Fluorescence "Turn On" Chemosensors for Ag+ and Hg2+ Based on Tetraphenylethylene Motif Featuring Adenine and Thymine Moieties [J]. Org. Lett.,2008,10:4581-4584.
    [31]WU J. S., LIU W. M., WANG P. F., LEE S. T. Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization [J]. Org. Lett.,2007,9:33-36
    [32]JUNG H. S., KIM Y., KIM S. J., KIM J. S. Rationally Designed Fluorescence Turn-On Sensors:A New Design Strategy Based on Orbital Control [J]. Inorg. Chem., 2010,49:8552-8557.
    [33]DELA CRUZ J. L., BLANCHARD G. J. The Influence of Chromophore Structure on Intermolecular Interaction. A Study of Selected Rhodamines in Polar Protic and Aprotic Solvents [J]. J. Phys. Chem. A.2002,106(44):10718-10724
    [34]GHANADZADEH A., ZANJANCHI M. A. Self-Association of Rhodamine Dyes in Different Host Materials [J], Spectrochimica Acta Part A,2001,57(9):1865-1871
    [35]MEALLIER P., MOULLET M., CHABAUD F. Photochemistry of Rhodamine 610 [J], Dyes & Pigm,1998,36(2):161-167.
    [36]RAVI V.A. Covenient Solide-phase Coupling of Rhodamine Dye Acids to 5'Amine-Oligonucleotide [J]. Tetrahedron Lett.,1999,40(43):7611-7613
    [37]KELLER R. A, AMBROSE W. P. Single-Molecule Fluorescence Analysis in Solution [J],Appl. Spectrosc.,1996,50(7):12A-32A
    [38]PECENAGE D., AUVERAER M., SCHRYVER D., Influence of The Molecular Structure on The Lateral Distribution of Xanthene Dyes in Langmuir-Blodgett Films [J]. Langmuir,1999,15(24):8456-8473
    [39]RUCKER V. C., SHANE F. CHRISTIAN, Sequence Specific Fluorescence Detection of Double Strand DNA [J].J.Am. Chem. Soc. 2003,125:1195-1202
    [40]KURT B., TODD E., Novel Polymer Capsules From Amphiphilic Graft Copolymers and Cross-Metathesis [J]. J. Am. Chem. Soc.,2003,125:12070-12071
    [41]RAO T. S., ZHANG W., XIAO H., Synthesis of Novel Tyrosinyl Fret Cassettes, Terminators, And Their Potential Use in DNA Sequencing Nucleosides [J]. Nucleotides & Nucleic Acid,2003,22(5-8):1443-1445
    [42]SANDO S., HIROSHI A., KOOL. Quenched Auto-Ligating DNAs:Multicolor Identification of Nucleic Acids at Single Nucleotide Resolution [J]. J. Am. Chem. Soc.,2004,126:1081-1087
    [43]LIPPARD, S. J., BERG J. M. Principles of Bioinorganic Chemistry:University Science Books, Mill Valley, CA,1994.
    [44]TAPIERO H., TOWNSED D. M., TEW K. D. Trace Elements in Human Physiology and Pathology, Copper [J]. Biomed. Pharmacother,2003,57:386-398.
    [45]LOVSTAD R. A., A Kinetic Study on the Distribution of Cu(Π)-ions Between Albumin and Transferring [J]. BioMetals,2004,17:111-113.
    [46]BARRANGUET C., VANDENENDE F. P. Copper-Induced Modifications of the Trophic Relations in Riverine Algal-Bacterial Biofilms [J]. Environ. Toxicol. Chem., 22(2003):1340-1349.
    [47]DUJOLS V., FORD F., CZARNIK A. W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water [J]. J. Am. Chem. Soc.,1997, 119(31):7386-7387.
    [48]XIANG Y., TONG A., JIN P., YONG J. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) With High Selectivity and Sensitivity [J]. Org. Lett.,2006, 8(13):2863-2866.
    [49]HUO F.-J., SU J., SUN Y.-Q., YIN C.-X. Rhodamine-Based Dual Chemosensor for the Visual Detection of Copper and The Ratiometric Fluorescent Detection of Vanadium [J]. Dyes & Pigm.,2010,86:50-55.
    [50]XIANG Y, LI Z., TONG A. Highly Sensitive and Selective Optical Chemosensor for Determination of Cu2+ in Aqueous Solution [J]. Talanta,2008,74(5):1148-1153
    [51]CHEN X., LI Z., TONG A. Salicylaldehyde Fluorescein Hydrazone:A Colorimetric Logic Chemosensor for pH and Cu(II) [J]. Tetrahedron Lett.,2008,49,4697-4701
    [52]ZHOU Y., WANG F., KIM S., YOON J. Cu2+-Selective Ratiometric and "off-on" Sensor Based on the Rhodamine Derivative Bearing Pyrene Group [J]. Org. Lett., 2009,11(19):4442-4445
    [53]ZHANG J. F., ZHOU Y., YOON J., KIM S. J., KIM J. S. Naphthalimide Modified Rhodamine Derivative:Ratiometric and Selective Fluorescent Sensor for Cu2+ Based on Two Different Approaches [J]. Org. Lett,2010,12(17):3852-3855.
    [54]SWAMY K. M. K., KO S.-K., KIM J. M., KIM J., SHIN L., YOON J. Boronic Acid-linked Fluorescent and Colorimetric Probes for Copper Ions [J]. Chem. Commun.2008,7(45):5915-5197.
    [55]HUANG L., CHEN F., XI P., MA Z., ZENG Z. A Turn-on Fluorescent Chemosensor for Cu+ in Aqueous Media and Its Application to Bioimaging [J]. Dyes & Pigm., 2011,90:265-270.
    [56]LEE M. H., KIM H. J., YOON S., KIM J. S. Metal Ion Induced FRET OFF-ON in Tren/Dansyl-Appended Rhodamine [J]. Org. Lett.,2008,10(2):213-216
    [57]HE G, ZHANG X., HE C., ZHAO X., DUAN C. Ratiometric Fluorescence Chemosensors for Copper(II) and Mercury(II) Based on FRET Systems [J]. Tetrahedron,2010,66:9762-9768.
    [58]YU M., SHI M., CHEN Z., LI F., LI X., HUANG C. Highly Sensitive and Fast Responsive Fluorescence Turn-on Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging [J]. Chem.—Eur. J.,2008,14(23):6892-6900.
    [59]ZHAO M., YANG X.-F., HE S., WANG L. A Rhodamine-Based Chromogenic and Fluorescent Chemosensor for Copper Ion in Aqueous Media [J]. Sens.& Actuators B, 2009,135:625-630.
    [60]HUANG Z.-Q., WANG X.-M., FENG Y.-C., DING L., LU H.-Y. Sulfonyl Rhodamine Hydrazide:A Sensitive and Selective Chromogenic and Fluorescent Chemodosimeter for Copper Ion in Aqueous Media [J]. Dyes & Pigm.,2011,88: 257-362.
    [61]ZENG X., DONG L., WU C., TAO Z. Highly Sensitive Chemosensor for Cu(II) and Hg(II) Based on The Tripodal Rhodamine Receptor [J]. Sens. Actuators B,2009, B141:506-511.
    [62]SURESH M., SHRIVASTAV A., SURESH E., DAS A. A Rhodamine-Based Chemosensor that Works in the Biological System [J]. Org. Lett.,2008,10(14): 3013-3016
    [63]KIM H. N., NAM S. W., CHEN X., KIM Y., KIM S. J., YOON J. Rhodamine Hydrazone Derivatives as Hg2+ Selective Fluorescent and Colorimetric Chemosensors and Their Applications to Bioimaging and Microfluidic System [J]. J. Analyst,2011,136(7):1339-1343.
    [64]HUANG W., ZHOU P., YAN W., LI F., DUAN C. Y. A Bright Water-Compatible Sugar-Rhodamine Fluorescence Sensor for Selective Detection of Hg2+ in Natural Water and Living Cells [J]. J. Environ. Monit.,2009,11(2):330-335.
    [65]TANG L., LI F., LIU M., NANDHAKUMAR R. Single Sensor for Two Metal Ions:Colorimetric Recognition of Cu2+ and Fluorescent Recognition of Hg2+[J]. Spectrochim. Acta Part A,2011,78(3):116-172.
    [66]WU D., HUANG W., DUAN C., LIN Z., MENG Q. Highly Sensitive Fluorescent Probe for Selective Detection of Hg2+ in DMF Aqueous Media [J]. Inorg. Chem., 2007,46(5):1538-1540.
    [67]WU S., HUANG W., DUAN C., HE C., WANG D. Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg2+ in Natural Water and Different Monitoring Enviro nments [J]. Inorg. Chem.,2008,47(16):7190-7201.
    [68]DU J., FAN J., PENG X., SUN P., SUN S. A New Fluorescent Chemodosimeter for Hg2+:Selectivity, Sensitivity, and Resistance to Cys and GSH [J]. Org. Lett.,2010, 12(3):476-479.
    [69]SHIRAISHI Y, SUMIYA S., HIRAI T. A Rhodamine-cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II) [J]. J.Org. Chem.,2008, 73(21):8571-8574.
    [70]KWON S. K., KIM H. N., SWAMY K. M. K., YOON J. Rhodamine Derivative Bearing Histidine Binding Site as a Fluorescent Chemosensor for Hg2+[J]. J. Bull. Korean Chem. Soc.,2009,30(3):719-721.
    [71]KIM S. K., SWAMY K. M. K., KIM H. N., KIM M. J., YOON J. New Fluorescent and Colorimetric Chemosensors Based on the Rhodamine and Boronic Acid Groups for the Detection of Hg2+[J]. Tetrahedron Lett.,2010,51:3286-3314.
    [72]LEE M. H., WU J. S., LEE J. W., KIM J. S. Highly Sensitive and Selective Chemosensor for Hg2+ Based on the Rhodamine Fluorophore [J]. Org. Lett.,2007, 9(13):2501-2504.
    [73]ZHAO Y, SUN Y., LV X., LIU Y. L., CHEN M., GUO W. Rhodamine-Based Chemosensor for Hg(2+) in Aqueous Solution With a Broad pH Range and Its Application in Live Cell Imaging [J]. Org. Biomol. Chem.,2010,8(18):4143-4147.
    [74]LIN W., CAO X., DING Y, YUAN L., LONG L. A Highly Selective and Sensitive Fluorescent Probe for Hg2+ Imaging in Live Cells Based on a Rhodamine-Thioamide-Alkyne Scaffold [J]. Chem. Commun.,2010,46(20): 3529-3531.
    [75]YANG Y. K., YOOK K. J., TEA J. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media [J]. J. Am. Chem. Soc.,2005,127(48):16760-16761.
    [76]YANG X. F., LI Y, BAI Q. A Highly Selective and Sensitive Fluorescein-Based Chemodosimeter for Hg2+ Ions in Aqueous Media [J]. Anal. Chim. Acta,2007,584(1): 95-100.
    [77]WU J. S., HWANG T. C., KIM K. S., KIM J. S. Rhodamine-Based Hg2+-Selective Chemodosimeter in Aqueous Solution:fluorescent OFF-ON [J]. Org. Lett.,2007, 9(5):907-910.
    [78]XI P. X., HUANG L., LIU H., XU M., ZENG Z. Z. Dual-Rhodamine Urea Derivative, a Novel Chemidosimeter for Hg(II) and Its Application in Imaging Hg(II) in Living Cells [J]. J. Biol. Inorg. Chem.,2009,14(6):815-819.
    [79]YUAN M., ZHOU W., LIU X., LI J., ZHENG H., LIU H., ZHU D. A Multianalyte Chemosensor on a Single Molecule:Promising Structure for an Integrated Logic Gate [J].J. Org. Chem.,2008,73(13):5008-5014.
    [80]ZHANG X., XIAO Y, QIAN X. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells [J]. Angew. Chem. Int. Ed.,2008,47(42): 8025-8029.
    [81]YU H., XIAO Y, GUO H., QIAN X. Convenient and Efficient FRET Platform Featuring a Rigid Biphenyl Spacer Between Rhodamine and BODIPY: Transformation of'Turn-On" Sensors Into Ratiometric Ones with Dual Emission [J]. Chem.—Eur. J.,2011,17(11):3179-3191
    [82]SHANG G. Q., GAO X., CHEN M. X., XU J. G A Novel Hg2+ Selective Ratiometric Fluorescent Chemodosimeter Based on an Intramolecular FRET Mechanism [J]. J. Fluoresc.,2008,18(6):1187-1192.
    [83]KUMAR M., KUMAR N., BHALLA V., SHARMA P. R., KUMAR T. Naphthalimide Appended Rhodamine Derivative:Through Bond Energy Transfer for Sensing of Hg2+ Ions [J]. Org. Lett.,2011,13(6):1422-1425
    [84]MARSHRAQUI S. H., KHAN T., SUNDARAM S. Rhodamine-Pyridyl Probe:A Selective Optical Reporter for Biologically Important Zn2+[J]. Chem. Lett.,2009,38: 730-735.
    [85]HAN Z.-X., ZHANG X.-B., LI Z., YU R.-Q. Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ Using a Rhodamine Spirolactam as a Trigger [J]. Anal. Chem.,2010,82(8): 3108-3113
    [86]SASAKI H., HANAOKA K., URANO Y., TERAI T., NAGANO T. Design and Synthesis of a Novel Fluorescence Probe for Zn2+ Based on the Spirolactam Ring-opening Process of Rhodamine Derivatives [J]. Bioorg. Med. Chem.,2011, 19(3):1072-1078.
    [87]XIANG Y, TONG A. A New Rhodamine-Based Chemosensor Exhibiting Selective Fe(III)-Amplified Fluorescence [J]. Org. Lett.,2006,8(8):1549-1552.
    [88]MAO J., WANG L., DOU W., TANG X., YAN Y, LIU W. Tuning the Selectivity of Two Chemosensors to Fe(III) and Cr(III) [J]. Org.Lett.,2007,9(22):4567-4570.
    [89]LEE M. H., GIAP T. V., KIM S. H., LEE Y H., KIM J. S. A Novel Strategy to Selectively Detect Fe(III) in Aqueous Media Driven by Hydrolysis of a Rhodamine 6G Schiff base [J]. Chem. Commun.,2010,46(9):1407-1409.
    [90]XU M., WU S., ZENG F., YU C. Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing [J]. Langmuir,2010,26(6): 4529-4534
    [91]ZHOU Z., YU M., YANG H., HUANG K., LI F., YI T., HUANG C. FRET-Based Sensor for Imaging Chromium (III) in Living Cells [J]. Chem. Commun.,2008, (29): 3387-3389.
    [92]CHATTERJEE A., SANTRA M., WON N., KIM S., KIM J. K., KIM S. B., AHN K. H. Selective Fluorogenic and Chromogenic Probe for Detection of Silver Ions and Silver Nanoparticles in Aqueous Media [J]. J. Am. Chem. Soc.,2009,131(6): 2040-2041.
    [93]JOU M. J., CHEN X., S WAMY K. M. K., KIM H., KIM H. J., LEE S., YOON J. Highly Selective Fluorescent Probe for Au3+ Based on Cyclization of Propargylamide [J]. Chem. Commun.,2009, (46):7218-7220.
    [94]YANG Y.-K., LEE S., TEA J. A Gold(Ⅲ) Ion-Selective Fluorescent Probe and Its Application to Bioimagings [J]. Org. Lett.,2009,11(24):5610-5613.
    [95]JUN M. E., AHN K. H. Fluorogenic and Chromogenic Detection of Palladium Species Through a Catalytic Conversion of a Rhodamine B Derivative [J]. Org. Lett., 2010,12(12):2790-2793.
    [96]CHUNG S.-Y., NAM S.-W., PARK S., YOON J. A Highly Selective Cyanide Sensing in Water via Fluorescence Change and Its Application to in Vivo Imaging [J]. Chem. Commun.,2009, (20):2866-2868
    [97]LOU X., QIANG L., QIN J., LI Z. A New Rhodamine-Based Colorimetric Cyanide Chemosensor: Convenient Detecting Procedure and High Sensitivity and Selectivity [J].ACS Appl. Mater. Interfaces,2009,1(11):2529-2535.
    [98]KAEWTONG C., NOISEEPHUM J., UPPA Y., WANNO B., TUNTULANI T., PULPOPA B. A Reversible Em-FRET Rhodamine- based Chemosensor for Carboxylate Anions Using a Ditopic Receptor Strategy [J]. New J. Chem.,2010,34: 1104-1108
    [99]CHEN X., WANG X., WANG S., MA H. A Highly Selective and Sensitive Fluorescence Probe for the Hypochlorite Anion [J]. Chem.-Eur. J.,2008,14(15): 4719-4724.
    [100]YANG Y, CHO H., LEE J., SHIN I., TAE J. A Rhodamine-Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings [J]. Org. Lett.,2009,11:859-861
    [101]KE NMOKU S., URANO Y., KOJIMA H., NAGANO T. Development of a Highly Specific Rhodamine-based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-time Imaging of Phagocytosis [J]. J. Am. Chem. Soc.,2007, 129(23):7313-7318
    [102]CHANG M. C., PRALLE A., ISACOFF E. Y, CHANG C. J. A Selective, Cell-permeable Optical Probe for Hydrogen Peroxide in Living Cells [J]. J. Am. Chem. Soc.,2004,126(47):15392-15393
    [103]ALBERS A. E., OKREQLAK V. S., CHANG C. J. A FRET-based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide [J]. J. Am. Chem. Soc., 2006,128(30):9640-9641.
    [104]TAPIERO H, TOWNSEND D. M., TEW K. D. Trace Elements in Human Physiology and Pathology Copper [J]. Biomed. Pharmacother.,2003,57:386-398.
    [105]STRAUSAK D., MERCER J. F. B., DIETER H. H., STREMMEL W., MULTHAUP G. Copper in Disorders with Neurological Symptoms:Alzheimer's, Menkes, and Wilson diseases [J]. Brain Res. Bull.,2001,55175-185
    [106]FINK M. P. Role of Reactive Oxygen and Nitrogen Species in Acute Respiratory Distress Syndrome [J]. Curr. Opin. Crit. Care.,2002,8:6-11
    [107]PATTISON D. I., DAVIES M. J. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds [J]. Chem. Res. Toxicol.,2001,14:1453-1464
    [108]LAKOWICZ J. R. Principles of Fluorescence Spectroscopy,3rd.; Springer:New York,2006; pp 67-69
    [109]KIM H. N., LEE M. H., KIM J. H., KIM J. S., YOON J. A New Trend in Rhodamine-based Chemosensors:Application of Spirolactam Ring-opening to Sensing Ions [J]. Chem. Soc. Rev.,2008,37(8),1465-1472
    [110]BEIJA M., AFONSO C. A. M., MARTINHO J. M. G. Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes [J]. Chem. Soc. Rev.,2009,38: 2410-2433.
    [111]ZHAO H. T., KALIVENDI S., ZHANG H., KALYANARAMAN B. Superoxide Reacts with Hydroethidine but Forms a Fluorescent Product that is Distinctly Different from Ethidium:Potential Implications in Intracellular Fluorescence Detection of Superoxide. Free Radical Biol. Med.,2003,34:1359-1368.
    [112]SETSULINAI K., URANO Y, MAJIMA H. J., NAGANO T. Development of Novel Fluorescence Probes that Can Reliably Detect Rreactive Oxygen Species and Distinguish Specific Species [J]. J. Biol. Chem.,2003,278:3170-3175.
    [113]AUBRY J. M., CAZIN B., DUPRAT F. Chemical Sources of Singlet oxygen.3. Peroxidation of Water-soluble Singlet Oxygen Carriers with the Hydrogen Peroxide-molybdate System [J]. J. Org. Chem.,1989,54:726-728.
    [114]NGUYEN T., FRANCIS M. B. Practical Synthetic Route to Functionalized Rhodamine Dyes [J]. Org. Lett.,2003,5:3245-3248
    [115]DYDIO P., ZIELINSKI T., JURCZAK J. Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors [J].J. Org. Chem.,2009,74(4):1525-1530
    [116]BEER P. D., GALE P. A. Anion Recognition and Sensing:The State of the Art and Future Perspectives [J]. Angew. Chem., Int. Ed.,2001,40:486-516
    [117]MILLER G. C., PRITSOS C. A.G. C. Cyanide:Soc., Ind. Econ. Aspects, Proc. Symp. Annu. Meet. TMS,2001,73-81.
    [118]VANNESLAND B., KNOWNLES C. J., WESTLY J., WISSING F. Cyanide in biology, Academic Press, London,1981.
    [119]XU Z, CHEN X, KIM H N, YOON J. Sensors for the Optical Detection of Cyanide Ion [J]. Chem Soc Rev,2010,39:127-137.
    [120]KIM Y H, HONG J I. Ion Pair Recognition by Zn-porphyrin/crown Ether Conjugates:Visible Sensing of Sodium Cyanide [J]. Chem Commun,2002,24(5): 512-513
    [121]CHEN C L, CHEN Y H, CHEN C Y, SUN S S. Dipyrrole Carboxamide Derived Selective Ratiometric Probes for Cyanide Ion [J]. Org Lett,2006,8:5053-5056.
    [122]MIYAJI H, SESSLER J L. Off-the-Shelf Colorimetric Anion Sensors [J]. Angew Chem Int Ed Engl,2001,40:154-157.
    [123]TOUCEDA-VARELA A, STEVENSON E I, GALVE-GASION J A, DRYDEN D T F, MAREQUE-RIVAS J C. Selective Turn-on Fluorescence Detection of Cyanide in Water using Hydrophobic CdSe Quantum Dots [J]. Chem Commun,2008 17: 1998-2000.
    [124]CHUNG Y M, RAMAN B, KIM D S, AHN K H. Fluorescence Modulation in Anion Sensing by Introducing Intramolecular H-bonding Interactions in Host-Guest Adducts [J]. Chem Commun,2006,2:186-188.
    [125]ROS-LIS J V, MARTINEZ-MANEZ R, SOTO J. Subphthalocyanines as Fluoro-chromogenic Probes for Anions and Their Application to the Highly Selective and Sensitive Cyanide Detection [J]. Chem Commun,2005,42:5260-5262.
    [126]GANESH V, SANZ M P C, MAREQUE-RIVAS J C. Effective Anion Sensing Based on the Ability of Copper to Affect Electron Transport across Self-assembled Monolayers [J]. Chem Commun,2007,47:5010-5012.
    [127]ZENG Q, CAI P, LI Z, QIN J, TANG B. An Imidazole-Functionalized Polyacetylene:Convenient Synthesis and Selective Chemosensor for Metal Ions and Cyanide [J]. Chem Commun,2008,9:1094-1096.
    [128]LI Z, LOU X, YU H, LI Z, QIN J. An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide [J]. Macromolecules 2008,41(20):7433-7439.
    [129]TOUCEDA-VARELA A, STEVENSON E I, GALVE-GASION J A, DRYDEN D T F, MAREQUE-RIVAS J C. Selective Turn-on Fluorescence Detection of Cyanide in Water using Hydrophobic CdSe Quantum Dots [J]. Chem Commun,2008 17: 1998-2000.
    [130]LOU X, ZHANG L, QIN J, LI Z. An Alternative Approach to Develop a Highly Sensitive and Selective Chemosensor for the Colorimetric Sensing of Cyanide in Water [J]. Chem Commun,2008,44:5848-5850.
    [131]LOU X, QIANG L, QIN J, LI Z. A New Rhodamine-Based Colorimetric Cyanide Chemosensor:Convenient Detecting Procedure and High Sensitivity and Selectivity [J]. ACS Appl Mater & Interfaces,2010,1(11):2529-2535.
    [132]CHUNG S Y, NAM S W, LIM J, PARK S, YOON J. A Highly Selective Cyanide Sensing in Water via Fluorescence Change and Its Application to in vivo Imaging [J]. Chem Commun,2009,20:2866-2868.
    [133]XU Z, PAN J, SPRING D R, CUI J, YOON J. Ratiometric Fluorescent and Colorimetric Sensors for Cu2+ Based on 4,5-disubstituted-1,8-naphthalimide and Sensing Cyanide via Cu2+ Displacement Approach [J]. Tetrahedron,2010,66: 1678-1683.
    [134]GULIYEV R, BUYUKCAKIR O, SOZMEN F, BOZDEMIR O A. Cyanide Sensing via Metal Ion Removal from a Fluorogenic BODIPY Complex [J]. Tetrahedron Lett, 2009,50:5139-5141.
    [135]PATRICK L. Mercury Toxicity and Antioxidants. Part 1. Role of Glutathione and Alpha-lipoic Acid in the Treatment of Mercury Toxicity [J]. Altern med. Rev.2002,7: 456-471
    [136]GRANDJEAN P, WEIHE P, WHITE RF, DEBES F. Cognitive Performance of Children Prenatally Exposed to "Safe" Levels of Methylmercury [J]. Environ Res. 1998,77:165-172.
    [137]TAKEUCHI T, MORIKAWA N, MATAUMOTO H, SHIRAISHI Y. A Pathological Study of Minamata Disease in Japan [J]. Acta Neuropathol 1962,2: 40-57
    [138]MARTINEZ-MANEZ R, SANCANON F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions [J]. Chem Rev.2003,103:4419-4476.
    [139]CZARNIK AW. Chemical Communication in Water Using Fluorescent Chemo-sensors [J]. Acc Chem Res,1994,27:302-308.
    [140]KIM JS, QUANG D T. Calixarene-derived Fluorescent Probes [J]. Chem. Rev,2007, 107:3780-3799.
    [141]GRYNKIEWICZ G, POENIE M, TSIEN RY. A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties [J]. J. Biol. Chem.,1985,260: 3440-3350.
    [142]TSIEN R Y, HAROOTUNIAN AT. Practical Design Criteria for a Dynamic Ratio Imaging System [J]. Cell Calcium,1990,11:93-109.
    [143]LIN W, YUAN L, LONG L, GUO C, FENG J. A Fluorescent Cobalt Probe with a Large Ratiometric Fluorescence Response via Modulation of Energy Acceptor Molar Absorptivity on Metal Ion Binding [J]. Adv Funct Mater,2008,18:2366-2372.
    [144]GOSWAMI S, SEN D, DAS NK. A New Highly Selective, Ratiometric and Colori-metric Fluorescence Sensor for Cu2+ with a Remarkable Red Shift in Absorption and Emission Spectra Based on Tnternal Charge Transfer [J]. Org. Lett. 2010,12:856-859
    [145]KIM JS, CHOI MG, SONG KC, NO KT, AHN S, CHANG S-K. Ratiometric Determination of Hg2+ Ions Based on Simple Molecular Motifs of Pyrene and Dioxaoctane-diamide [J]. Org. Lett.,2007,9:1129-1132
    [146]ZHOU Z, YU M. YANG H, HUANG K, LI F, YI T. FRET-based Sensor for Imaging Chromium(III) in Living Cells [J]. Chem Commun.2008,3387-3389.
    [147]LIPPARD S. J., BERG J. M. Principles of Bioinorganic Chemistry; University Science Books:Mill Valley, CA,1994.
    [148]P. AISEN, M. WESSLING-RESNICK, E. A. LEIBOLD, Iron Metabolism, Curr. Opin [J]. Chem. Biol.1999,3:200-215
    [149]G CAIRO, A. PIETRANGELO, Iron Regulatory Proteins in Pathobiology [J], Biochem. J.2000,352:241-260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700