花生抗黄曲霉(Aspergillus flavus Link)侵染和产毒机制以及抗性遗传规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
培育抗黄曲霉品种是解决花生黄曲霉毒素污染最有效、最经济和最安全的方法,而明确抗性品种的抗性机制以及它的遗传规律是培育抗黄曲霉品种所必需的前提条件。
     本文通过1)比较抗-感黄曲霉品种种子所固有的抗性组分的差异;2)比较抗-感种子感染A.flavus后所诱导的防卫反应的差异;3)分析抗性和感病品种杂交后代抗性的表现,探讨花生抗黄曲霉侵染和产毒的机制和抗性的遗传规律。
     结果表明:
     一、种皮的蜡质和角质层,以及种子所含有抗菌蛋白是花生抗黄曲霉侵染和产毒所固有的抗性机制。
     1、种皮破损的花生种子黄曲霉毒素含量显著高于种皮完整的种子,表明花生种皮在抗黄曲霉侵染和产毒方面起着重要的屏障作用。用氯仿去除种皮蜡质、KOH或角质酶去除种皮角质层后均能显著提高种子黄曲霉感染率和黄曲霉毒素含量。同时去除种皮蜡质和角质层的种子与种皮破损种子的黄曲霉感染率和毒素含量差异不显著,表明种皮的抗性成份主要是蜡质和角质层。种皮蜡质含量测定和种皮表面扫描电镜观察表明,种皮表面蜡质的含量和角质层的厚度与品种的抗性有关。抗性品种种皮蜡质含量显著高于感病品种,且其表面覆盖蜡质的面积较感病品种广。种皮蜡质提取物在体外抑菌效果不显著,说明蜡质的抗性作用主要是物理性阻止黄曲霉菌的穿透。
     2、不同pH值缓冲液提取蛋白抑菌试验表明花生种子pH2.8缓冲液提取蛋白中含有能抑制黄曲霉生长的有效蛋白组份。抗-感品种pH2.8缓冲液提取蛋白质的PAGE电泳图谱没有明显差异,而SDS-PAGE电泳图谱显示所有抗性品种38kDa蛋白的相对含量均比感病品种高。通过硫酸铵分级沉淀、分子筛和离子交换柱层析方法,从pH2.8缓冲液提取蛋白中分离纯化出在体外能显著地抑制A.flavus孢子萌发和菌丝生长的26.3kDa和14.2kDa蛋白。经肽质量指纹谱分析和蛋白质数据库检索,表明26.3kDa和14.2kDa蛋白可能是目前尚未发现的新蛋白质。
     3、通过丙酮分级沉淀和DEAE-Sephadex A50离子交换柱,从花生种子醋酸提取液中分离纯化的具有胰蛋白酶抑制剂活性的胰蛋白酶抑制剂。SDS-PAGE电泳图谱显示,纯化的胰蛋白酶抑制剂是以二聚体形式存在,分子量分别为17.1和10.3kDa,纯化的胰蛋白酶抑制剂在体外能显著地抑制A.flavus孢子的萌发和菌丝的生长,表明胰蛋白抑制剂是花生种子抗黄曲霉的有效成分。种子胰蛋白抑制剂含量的多少、活性的高低与品种抗黄曲霉侵染的能力有关。5个抗性品种胰蛋白抑制剂的含量和活性均高于感病品种,且抗性品种胰蛋白抑制剂粗提液体外抑菌效果也较感病品种显著,表明花生种子胰蛋白抑制剂含量和活性可作为花生抗黄曲霉侵染的标记性状之一。
    
     二、花生对黄曲霉入侵作出的主动防卫反应是多方面的,各种防下反应
    具有时序性、协同性和多样性,而且在花生抗黄曲霉伎染利产迈中发拼巫要
    的作川。受贝曲霉侵染后,抗-感品种防卫反应之间存在明显的斧异。
     l、受黄曲霉感染后,抗-感花生种于过氧化物酶(POD)、多酚氧化酶
     (PO)和苯丙氨酸解氨酶(PA L)活性以及木质素含量等均发生显义变化。
    接种后POD活性随感染大数增加而增加,但抗病品种比感病品种POD活性
    增幅人,接种后1~3d抗性品种PPO t性达峰值,而感病品种d才达峰
    值。抗性品种PAL活性在栓种后M活性急增,并达峰值,而感病品种在4—sd
    才达峰值。按种后种于木质素的含量陋着黄曲霉由侵染时间延K而增加,但
    抗病品种按种5-7d木质素的增K速率和累积量明显高丁感病品种。由丁PAL
    和叩D等酶活性的提高,加速了苯丙烷衍生物如木质索的人挝合成,从而加
    强防御黄曲霉侵染的能力。
     2、花生对茧曲霉的抗性与其受侵染后膜质过氧化的动态变化有X。受
    黄曲霉侵染后,5个抗性品种的脂氧合酶活性升高的速度快丁感病品种,且
    活性氧爆发较早且量人。抗性品种受侵染后屿$1;Ho;产生速度较快,并有
    两个高峰拙,第二个高峰期量人且持续时间较K,而感病品种产生速度权慢,
    且仅在接种后45d有一个高峰期。相反,感染后抗性品种活性氧消除酶CAT
    PJ SOD活性变化不明显,而感病品种在感染后 id急剧升高并达峰值。由丁
    脂氧合酶活性提高和活性氧爆发的甲且量多,但体内的 SOD*ICATffi性没有
    变化,未能消除累积的活性氧,从而使抗性品种膜质过氧发生较甲且积度高,
    表皮细胞发生及时性的过敏性反应坏死,抵御黄曲霉的穿透,达到抗黄曲霉
    侵染的目的。
     3、白黎芦醇是花生植保素中的一种。人土活力的花生种十不能产生白
    基芦醇。受黄曲霉侵染后种子白黎卢醇产生的速度与抗性有关。抗性品种在
    受侵染后3d人量累积,含量提高30倍,就达到峰值。而感病品种则要在侵
    染后4d才达到此水平。放线菌素酮和放线菌素D处理后按种试验表明,种
    子本身含有合成白螫芦‘醇的mRNA,当受外源Aj7Uv。。侵染时能檄活与合成
    白黎芦醇相关酶的活性,合成大量白葵芦醇。但种十体山与一黎卢醇合成有
    关的mRNA的数量似乎不多。
     4、花生种子受黄曲霉侵染后可诱导产生相应的病程相关蛋白(PR-蛋
    白),抗性品种PR-蛋白产生的速度较感病品种早,而且产生的m-蛋白?
Aflatoxins, the high carcinogenic secondary metabolites of Aspergillus flavus Link, is possess of serious health hazards to human and domestic animals because it frequently contaminates agricultural commodities.
    Peanut (Arachics hypogaea L.) is one of most susceptible host crops to A.flavus invasion and subsequently aflatoxin production. Development of host resistance to A.flavus invasion and aflatoxin producing is the best and most widely explored strategy to control aflatoxin contamination. About 20 resistance genotypes have been identified since 1970's, but progress toward developing resistance variety is the slow and the mechanism and inheritance of resistance were not clear, especially the specifics markers responsible for resistance.
    The objectives of this thesis were: ?to identified the main factors responsible for resistance in peanut seed; (2) to detect the difference of defense response between resistant and susceptible peanut seed after A.flavus invaded; (D to analyze the performance of resistant characters in progeny of resistant X susceptible genotype.
    To gain these informations above mentioned, 5 resistant genotypes (J-ll, VRR245, PI337494-F, UF71513 and Zhangqui 48) and 4 susceptible genotypes (Yueyou 5, Yueyou 114, Shanyou 523 and Zhanyou 30) were used. The experiment results are outlined below.
    1. The aflatoxin content of broken seeds was higher than intact seeds after inoculation with A.flavus. The account, distribution, bioassays in vitro of wax and cutin layers in peanut seeds was investigated. The datum revealed that there were significant differences between genotypes tested. The kernel wax contents of resistant genotypes were higher than susceptible genotypes. The bioassays in vitro showed that no significant test-by-treatment interactions were detected for wax bioassay data. Scanning electron microscopy of kernel wax revealed distinct differences between seed of resistant and susceptible genotypes. Most of resistant kernels were thick and coarse in appearance and had rich wax deposits on seed surfaces. Thin and a small amount of surface wax deposits were observed on most susceptible seeds.
    
    
    
    Removing of wax with chloroform, and removing of cutin with KOH and cutinase or both can increase the susceptibility of peanut seeds but don't reducing their germination. The infected rate of intact seeds after removing both wax and cutin were nearly equal to those in wounded control seeds in both genotypes.
    These results indicated wax and cutin layers of peanut seed might play a role in resistance to A.flavus invasion and colonization.
    2. In attempt to search for zn\\-A.flavus protein, peanut seeds proteins extracted at pH2.8 and pH7.5 were analyzed with PAGE and SDS-PAGE. Consistent differences in protein profiles were detected only in proteins extracted at pH2.8 buffer among genotypes. A protein of 38kDa was unique or presented in higher concentration in resistant genotypes, whereas absent or in low concentration in susceptible genotypes. Protein extracted at pH2.8 from seed showed markedly antifungal activity against A.flavus in vitro. By means of (NH)4SO4 precipitation and chromatography, 14.2 and 26.3 kDa proteins were isolated and purified. 14.2 and 26.3 kDa proteins can inhibit spores germination and hypha extending of A.flavus in vitro. The peptide mass fingerprinting and database search showed 14.2 and 26.3 kDa proteins may be new proteins.
    3. A trypsin inhibitor in peanut seeds was purified by acetone fractionation, followed by passing through DEAE-Sephadex A50 ion-exchange column. The purified inhibitor consisted of two subunits with molecular weight of 10.3 andlTkDs respectively. The inhibition of germination and hypha growth of A.flavus were observed in protein concentration 10 u g on Czapek medium. The content and activity of trypsin inhibitor were relative to genotypes resistance. The content and activity of trypsin inhibitor in resistant genotypes were significantly higher than that in susceptible genotypes.
    4. The activities of perox
引文
1、梁炫强、潘瑞炽、宾金华,影响花生收获前黄曲霉感染因素的研究概况.中国油料作物学报,2000,22(4):
    2、梁炫强、潘瑞炽、宾金华,花生抗黄曲霉侵染机理的研究进展.中国油料作物学报,2000,22(3):77-80.
    3、梁炫强、周桂元、潘瑞炽,花生种子受黄曲霉菌侵染后若干生化成份的变化及其与抗性的关系,中国油料作物学报,2001,23(2):26-31。
    4、Liang X Q(梁炫强)and Pan R C(潘瑞炽), Studies on the mechanism of resistance to aflatoxin contamination and development of host resistance in peanut, New Millennium International Groundnut Workshop, Qingda China. 2001,pp: 66-70.
    5、周桂元,梁炫强.花生种子抗黄曲霉侵染性状遗传控制的研究,花生学报,2001,30(3):13-16。
    6、周桂元,梁炫强.抗黄曲霉花生种皮纹理超微结构的研究,中国油料作物学报1999,21(1)
    7、王金生编著,分子植物病理学,中国农业出版社,1998年。
    8、中国科学院上海植物生理研究所编,现代植物生理学实验指南,科学出版社,1999年。
    9、王建康,盖钧镒.利用杂种F_2世代鉴定数量性状主基因-多基因混合遗传模型并估计遗传效应,遗传学报,1997,24(5):432~440
    10、邓德祥,盖钧镒,秦泰辰等,玉米对黄曲霉抗性的遗传控制,作物学报,2000,26(6):731736。
    11、黎穗临,廖小妹等,花生种质资源对黄曲霉菌的抗性鉴定.中国油料作物学报.1994(2):11-12
    12、孟昭赫,张国柱、宋苗菊,真菌毒素研究进展,人民卫生出版社,1979
    13、傅爱根、罗广华、王爱国,活性氧在植物抗病反应中的作用,热带亚热带植物学报,2000,8(1)63-69。
    14、文方德 傅家瑞,植物种子的蛋白酶抑制剂及其功能,植物生理学通讯,1997,33(1):1-9。
    15、杨晓泉,文方德,张水华,花生胰蛋白酶抑制剂的纯化及钝化研究,营养学报,1998,20(3)337-324。
    16、宋凤呜、郑重、葛秀春,活性氧及膜脂过氧化在植物-病原物互作的作用,植物生理学通讯1996,32(5):337-385。
    17、宋凤鸣、葛秀春、郑重,活性氧及膜脂过氧化与棉花对枯萎病抗性的关系,植物病理学报,200131:110-116。
    18、曾艳、赵南明、刘进元,几丁质酶与植物防卫反应,生物工程进展,1997,17(4):31-334。
    
    
    19、陈二凤、刘德虎 李季伦,植物几丁质酶的结构、基因及其表达,生物工程进展,1998,18(2):33-36。
    20、单丽波、贾旭,核糖体失活蛋白及其在植物抗真菌基因工程中的应用,生物工程进程,2000,20(6):74-78。
    21、秦引萍、彭友良,脂氧合酶的侵染诱导在植物抗病反应中的可能作用,农业生物技术学报,1995,3(4):1-9。
    22、曾泳三、王振中,苯丙氨酸解氨酶在植物抗病反应中的作用,仲恺农业技术学院学报,1999,12(3):56-65。
    23、蓝海燕、陈正华,葡聚糖酶及其在植物中的发育调节和防卫反应,生物技术通报,1994(4)34-47。
    24、蔡以滢、陈珈,植物防御反应中活性氧的产生和作用,植物中通报,1999,16(2)107-112。
    25、周淼平、陆维忠,植物几丁质酶及其在抗真菌基因工程中的应用,江苏农业学报,1998,14(3)183-187。
    26、王义琴、张利明、李文彬、孙勇如,植物病原相关蛋白研究进展,生物工程进展,2000,20(5):36-38。
    27、王京兰、万(日口口)宏、罗凌等,蛋白质组研究中肽质量指纹谱鉴定方法的建立及应用,生物化学与生物物理学报,2000,32(4):373-378。
    28、陈晓梅、郭顺星,植物抗病物质的研究进展,植物学通报,1999,16(6)658-664。
    29、杜良成、王钧,稻瘟病诱导水稻几丁质酶,β-1-3-葡聚糖酶活性及分布,植物生理学报,1992,18(1):29-36。
    30、Abou Z A M., Production, purification and characterization of an extracellular alpha-amylase enzyme isolated from Aspergillus flavus.Microbios, 1997:89(358): 55-56.
    31、Adrian M, Jeandel P., Induction of phytoalexin(resveratrol) synthesis in grapevine leaves treated with aluminum chloride. J. Agric. Food Chem.1996.44, 1979-1981.
    32、Agamah,G.E., Langcakr, D.P., Two novel stibene phytoalexin from Arachics h. vpogaea L.. Phytochemistry 1983, 20:1381-1388.
    33、Ahmed, N.E., Younis, Y.M.E., and Malik, K.M., Aspergillus flavus colonization and aflatoxin contamination of groundnut: 1989,Proceedings of the International Workshop, 6-9 Oct 1987,1CRISAT Center, India. Patancheru, A.P. 502 324,India.
    34、Amaya. F.J, Young. C.T.,Norden.A.J, Chemical screening for Aspergillus plavus resistance in peanut. Oleagineux. 1990, 35(5): 255-259.
    35、Azaizeh,A.K., and Pettit, R.E., Sarr, B.A.., and Philips,T.D. Effect of peanut tannin extracts on growth of Aspergillu parasititus and afiatoxin
    
    production. Mycopathologia 1990,110(3) : 125-132.
    36、 Azaizeh A K., and Pettit R E. Influence of tannin-related compounds from peanut seed coats and cotyledons on Aspergillus parasitltus growth and aflatoxin production. Phytopathology 1987, 77(12(12) : 1703.
    37、 Azaizeh A K., Pettit R E., and Taber R A., Influence of tannin-related compounds on the growth of Aspergillus purasititus and aflatoxin producing. Proceedings of the American Peanut Research and Education Society. 1987,19:35.
    38、 Azaizeh A K, Waniska R.D., and Pettit R E. Isolation and characterization of phenolic acid in mature peanut seed coats from twenty-three peanut genotypes. Proceedings of the American Peanut Research and Education Society. 1988,20:27
    39、 Baker CJ, Orlandi EW. Active oxygen in plant pathogenesis. Annu Rev Phytopathol, 1995,33:299-321.
    40、 Basha,S M. Resolution of peanut seed proteins by high performance liquid chromatography. J. Agric.Food.Chem. 1988, 36:778-781.
    41、 Basha,S M. Factors affecting phytoalexin producing in peanut seed. J. Plant Physiol. 1990. 136:143-148.
    42、 Basa S.M. A phytoalexin and aflatoxin producing peanut seed culture system. Peanut Science. 1994,21:103-134.
    43、 Bhat R V., Risk to human health associated with consumption of groundnut contaminated with aflatoxin. Proceeding of International Workshop, International Crops Research Institute for the Semi-Arid Tropics, 1987, Page 19-30.
    44、 Bianchi-Hall C M, A note on use of seed protein marker for identification of aflatoxin resistance in peanut. Peanut Science, 1994,21:159-161.
    45、 Bradford MN. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem, 1976,72:248-254
    46、 Brown R L, Chen Z Y, Cleveland T E and Russin J S., Advances in the development of host resistance in corn to aflatoxin contamination by Aspergillus flavus. Phytopathology, 1999,89:113-117.
    47、 Boiler T, Geheri A, Mauch F., Chitinase in bean leaves: Induction by ethylence, purification properties, and possible function, Planta, 1983,157:22-31.
    48、 Chen Z Y, Brown R L, Lax A R and Guo B Z. Resistance to Aspergillus flavus in corn kernels is associated with a 14-kDa protein,
    
    Phytopathology 1998,88:276-281.
    49、 Chen Z Y, Brown R L and Russin J S., A Corn trypsin inhibitor with antifungal activity inhibits Aspergillus flavus α-amylase. Phytopathology. 1999,89:902-907.
    50 、 Chiou, R.Y. Estimate fungal infection of peanut kernels by determination of free glutamic acid content, Applied Environmental Microbiology 1997,63(3) : 1083-1087.
    51、 Chourasia,H.K. Kernel infection and aflatoxin and aflatoxin producing in peanut (Arachics hypogaea L.) by Aspergillus flavus in processes of geocarposphere bacteria. Journal of Food Science and Technology Mysore 1995, 32(6) : 459-464.
    52、 Cleveland,T.E., and P.J.Cotty., Invasiveness of Aspergillus flavus isolates in wounded cotton bolls is associated with production of a specific fungal polygalacturonase. Phytopathology, 1991, 81:155-158.
    53、 Cole R L, Dorner J W, Blankenship P D., Potential role of phytoalexin in aflatoxin contamination of peanuts. Biotechnology for Crop Protection, ACS symposium series 379, American Chemical Society, Washington, DC, 1988,pp: 74-81.
    54、 Cordero M J, Raventos D, Segundo B S., Induction of PR proteins in germination maize seeds infected with the fungus Fusarium momiliforme. Physiological and Molecular Plant Pathology, 1992,41:189-200.
    55、 Cordero M J, Raventos D, Segundo B S., Differential expression and induction of chitinases and β-1-3-glucanases in response to fungal infection during germination of maize seeds. Molecular Plant-Microb Interactions 1994, 7:23-31.
    56、 Cuero,R.G. Aspergillus-induced chitinases in germinating peanut and corn seed. Eighth International IUPAC Symposium on Mycotoxins and Phycotoxins Mexico, 1992.
    57、 Daigle,D.J., Mixon,A.C., DeLucca,A.J., and Coffelt,T.A. Flavonoids and A.flavus resistant peanut. Proceedings of the American Peanut Research and Education Society. 1984,16(1) : 47.
    58、 Dalisay R F, Kuc J A., Persistence of induced resistance and enhanced peroxidase and chitinases activities in cucumber plants, Physiological and Molecular Plant Pathology, 1995,47:315-327.
    59、 Dasse B, Dumass-Gaudot E and Gianinazzi., Do pathogenesis-related (PR) proteins play a role in bioprotection of mycorrhizal tomato roots towards Phytophtyora parasitical Physiological and Molecular Plant
    
    Pathology 1998,52:167-183.
    60、 Dieckert, J.W., and Dieckert, M.C., Pettit,R.E., Comparison of Aspergillus flavus tolerant and susceptible lines II Electron microscopy. Proceeding of the American Peanut Research and Education Association, 1973. 5(1) : 207.
    61、 Fajardo.J.E. Phenolic compounds in peanut seed. Enhanced elicitation by chitosan and effects on growth and aflatoxin B1 producing by Aspergillus flavus. Food Biotechnology 1994, 8(2) : 191-211.
    62、 Fajardo,J.E., Effect of chitosan and Aspergillu flavus on isozymes related to phenolic compound synthesis and protein profiles of peanut seeds. Food Biotechnology. 1994, 8(2) : 213-228.
    63、 Guo, B.Z, Russin, J.S T.E. Cleveland., The role of the pericarp of corn kernels to reduce infection and Aflatoxin production by Aspergillus flavus. Phytopathology. 1993,83:417-1418.
    64、 Guo, B.Z, Russin, J.S, Thomas, E., Wax and cutin layers in maize kernels associated with resistance to aflatoxin production by Aspergillus flavus. Journal of Food protection. 1995,58 (3) 296-300. Phytopathology 1996,86:824-829
    65、 Guo, B.Z, Chen Z Y, Brown R L, Lax A R, Cleveland T E, Russin J S, Mehta A D, Selitrennikoff C P and Widstrom N W., Germination induces accumulation of specific proteins and antifungal activities in corn kernels. Phytopathology 1997,87:1174-1178.
    66、 Guo, B.Z, Russin J S, Cleveland T E., Evidence for cutinase production by Aspergillus flavus and its possible role in infection of corn kernels, Phytopathology 1996,86(8) : 824-829.
    67、 Guo, B.Z, Brown R L, Lax A R, Cleveland T E, Russin J S, Widstrom N W., Protein profiles and antifungal activities of kernel extracts from corn genotypes resistant and susceptible to Aspergillus flavus. Journal of Food Protection. 1998,61:98-102.
    68、 Guo, B.Z, Xu C, Holbrook, Lynch, E.R., Factors associated with resistance to Aflatoxin formation in peanuts and molecular genetic analysis of the resistance. New millennium international groundnut workshop, Qingda, China. 2001,73-73.
    69、 Hammerschmidt R. Rapid deposition of lignin in potato tuber tissue as a response to fungi non-pathogenic on potato. Physiological Plant Pathology. 1984,24:33-42.
    70、 Hammerschmidt R., Induced disease resistance: How do induced plants stop pathogens? Physiological and Molecular Pathology, 1999,55:77-84.
    
    
    71、 Huang Z Y, White D G and Payne G A., Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis. Phytopathology, 1997, 87:622-627.
    72、 Hentrik.K W., Biological effects of resveratrol. Life Sciences, 2000, 66(8) :663-673.
    73、 Ignatius S M J, Chopra R K and Muthukrishnan S., Effects of fungal infection and wounding on the expression of chitinases and β-1-3-glucanase in near-isogenic lines of barley. Physiologia Plantarum, 1994,90:584-592.
    74、 Ingham J L, 3,5,4-Trihydroxystibene as a phytoalexin from groundnut (Arachics hypogeae). Phytochemistry 1976,15:1791-1793.
    75、 Ji C, Norton R A, Wicklow D T and Dowd P R, Isoform Patterns of Chitinase and β-1-3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milk stage infection. J. Agric. Food Chem, 2000,48:507-511.
    76、 Keen N T, Isolation of phytoalexins from germination seeds of peanut. Phytopathology 1975,65:91-92
    77、 Keen N T, New stibene phytoalexins from peanut. Phytochemistry, 1976, 15:1794-1795.
    78、 Keppler L D, Baker C J, Atkinson M M. Active oxygen production during a bacteria induced hypersensitive reaction in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Phytopathology, 1989,79:974-978
    79、 Koidsumi,K. Antifugal action of cuticular lipids in insects. 1957, J.Ins. Physiol.1:40-51.
    80、 Koushik Seetharaman, Elizabeth Whitehead., In vitro activity of sorghum seed antifungal proteins against grain mold pathogens. J. Agric. Food Chem. 1997,45:3666-3671.
    81、 LaPrade J C, Bartz J A, Norden A J and DeMuynk T J., Correlation of peanut seed coat surface wax accumulations with tolerance to colonization by Aspergillus flavus. Proceedings of the American Peanut Research and Education Association. 1973,5(1) : 89-94.
    82、 Laurence E F, Gueguen J., Proteinase inhibitors from seeds: Purification and characterization. J. Agric. Food Chem. 1997, 45:127-131.
    83、 Linthorst H J M., Pathogenesis-related proteins of plant. Crit. rev. Plant Sci., 1991,10:123-150.
    84、 Lozovaya V V, Waranyuwat A, Widholm J M., β-1-3-glucanase and 110
    
    resistance to Aspergillus flavus infection in maize. Crop Sci 1998. 38:1255-1260.
    85、 Marc de Tapia W N, Kauffmann S, Montasser-Kouhsari S., Identification and characterization of maize pathogenesis-related proteins. Four maize PR protein are Chitinases. Plant Molecular Biology, 1989,11:529-538.
    86、 Mellon J E, Cotty P J., Purification and partial characterization of an elastinolytic proteinase from Aspergillus flavus culture filtrates, Applied Microbiology and Biotechnology, 1996,46(2) : 138-142.
    87、 Mehan V K., McDonald D., Aflatoxin production in groundnut cultivars resistant and susceptible to seed invasion by Aspergillus flavus. Page 221-228 in Proceedings of the International Symposium on Mycotoxins, 6-8 sep 1981, Cairo, Egypt. Cairo, Egypt: National Research Centre.
    88、 Mehan V K., McDonald D., The groundnut aflatoxin problem review and literature database, International Crops Research Institute for the semi-Arid Tropics, Patancheru, Andhra, India, 1991.
    89、 Mixon A C., Roger K M., Peanut accessions resistant to seed infection by Aspergillus flavus. Agronomy Journal 1973, 65:560-562.
    90、 Mixon A C., Reducing Aspergillus species infection of peanut seed using resistant genotypes. Journal of Environmental Quality 1986, 15(2) : 101-103.
    91、 Mohanty.B., Variation in phytoalexin producing by peanut seed from several genotypes. Peanut Science, 1991,18:19-22.
    92、 "Mycotoxin Management in Peanut by Prevention of contamination and monitoring" CRSP working group Reporter. 1989-1994.
    93、 Neucere J N and Zeringue H J., Inhibition of Aspergillus flavus growth by salt-extracted proteins from maize kernel. J. Agric. Food Chem. 1987,35:806-808.
    94、 Neucere J N., Electrophoretic analysis of cationic proteins extracted from aflatoxin-resistant/susceptible varieties of corn. J.Agric Food Chem, 1992,40:1422-1424.
    95、 Neucere J N, Brown R L, Cleveland T E. Correlation of antifungal properties and β-1-3glucanases in aqueous extracts of kernels from several varieties of corn. J.Agric Food Chem, 1995,43(2) . 275-276.
    96、 Neucere J N and Cleveland T E., Antifungal and electrophoretic properties of isolated protein fractions from corn kernels. J. Agric. Food Chem, 1997,45:299-301.
    97、 Panse V G. Application of genetics to plant breeding. II .The
    
    inheritance of quantitative characters and plant breeding. Journal of Genetics. 1940, 40:283-302
    98、 Pan S Q, Ye X S,Kuc J., Direct detection of β-1-3-giucanase isozymes on polyacrylamid electrophoresis and isoelectrofocusing gels. Analytical Biochemistry, 1989,182:136-140.
    99、 Pan S Q, Ye X S, Kuc J., A technique for detection of chitinases, β-1-3-giucanase, and protein patterns after a single separation using polyacrylamide gel electrophoresis or isoelectrofocusing, Phytopathology, 1991,81:970-974.
    100、 Patterson B D, Mackae E A, Fergusen I B., Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal Biochem, 1984, 139:487-492.
    101、 Peever T L, Higgins V J., Electrolyte leakage, lipoxygenase and lipid peroxidation induced in tomato leaf tissue by specfic and non-specific elicitor from Cladosporium fulvum, Plant Physiol, 1989,90:867-875.
    102、 Peng J H., Black L L. Increased proteinase inhibitor activity in response to infection of resistance tomato plants by Phytophthora infestans. Phytopathology, 1976,66:958-963.
    103、 Pettit R E, Azaizeh H A, Taber R A, Szerszen J B., Screening groundnut cultivars for resistance to Aspergillus flavus, Aspergillus parasiticus and aflatoxin contamination in Aflatoxin contamination of groundnut: Proceeding of International Workshop, International Crops Research Institute for the Semi-Arid Tropics, 1987, Page291-294.
    104、 Pinto M C, Garcia-Barrado J A, Macias P., Resveratrol is a potential inhibitor of the dioxygenase activity of lipoxygenase. J. Agric. Food Chem. 1999, 47:4842-4846.
    105、 Popham P L and Novacky A., Use of Dimethyl sulfoxide to detect hydroxyl radical during bacteria-induced hypersensitive reaction. Plant Physiol, 1991,96:1157-1160
    106、 Reddy M J, Shetty H S, Fanelli C and Lacey J., Role of seed lipids in Aspergillus parasiticus growth and aflatoxin production. J. Sci. Food Agric. 1992,59:68-72.
    107、 Russin, J S, Guo B Z, Tubajika, K M., Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus, Phytopathology 1997,87:529-533.
    108、 Rusterucci C, Atallaert V, Milat M., Relationship between active oxygen species, lipid peroxidation, necrosis, and phytoalexin production induced by eliciting in Nicotiana. Plant Physiol, 1996,111:885-891.
    
    
    109、 Sanders T H and Mixon A C., Effect of peanut tannin on % seed colonization and in vitro growth by Aspergillus parasiticus. Mycopathologia, 1978,63(3) : 169-173.
    110、 Sanders T H, McMichael R W, Hendrix K W., Occurrence of resveratrol in edible peanuts. J. Agric. Food. Chem. 2000,48:1243-1246.
    111、 Sela-Buurlage M B, Ponstein A S, Bres-Vloemans S A., Only specific tobacco chitinase and β-1-3-glucanase exhibit antifungal activity. Plant Physiol., 1993, 101:857-863
    112、 Sekizawa Y, Haruyama T, Kano H., Dependence on ethylene of the induction of peroxidase and lipoxygenase activity in rice leaf infected with blast fungus. Agric. Biol Chem, 1990,54(2) : 471-478.
    113、 Statistical Analysis systems (SAS) Institute. 1991. SAS/STAT user's guide, release 6. 03 edition. SAS institute, Cary, NC.
    114、 Smith C, Megen W V, Hitchcock. C., The determination of trypsin inhibitor levels in foodstuffs. J Sci Food Agric, 1992,33:165.
    115、 Szerszen J B., Isozymes varieties in peanut cotyledons during early stages of infection by Aspergillus flavus and A.parasticus. American Peanut Research Education Society. 1988,20:31.
    116、 Szerszen J B., Change of isozymes of Aspergillus group spp. Infected peanut cotyledon from plants grown under drought stress. American Peanut Research Education Society. 1990,21:23.
    117、 Szerszen J B and Pettit R E., Detection and partial characterization of new polypeptides in peanut cotyledons associated with early stages of infection by Aspergillus spp. Phytopathology, 1990, 80:1432-1438.
    118、 Terras FRG, Goderis IJ., In vitro antifungal activity of a radish (Raphanus sativus L.)seed and protein homologous to nonspecific lipid transfer proteins. Plant Physiol ., 1992,100:1055-1058.
    119、 Terras FRG, Schoofs H M E., Analysis of two novel class of antifungal proteins from radish seeds. J.Biol.Chem, 1992,267:2228-2233.
    120、 Trudel J and Asselin A, Detection of chitinase activity after polyacrylamide gel electrophoresis. Analytical Biochemistry, 1989,178:362-366.
    121、 Van Loon L C and Van Strien E A., The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathhology, 1999,55:85-97.
    122、 Vasudeva M J, Nigam S N, Mehan V K., Aspergillus flavus resistance breeding in groundnut: Progress made at ICRISAT center. Proceeding of
    
    International Workshop, International Crops Research Institute for the Semi-Arid Tropics, 1987, Page345-355.
    123、 Vgers A F, Roberts W K and Selitrennikoff C P., A new family of plant antifungal proteins. Molecular Plant-Microbe Interactions, 1991. 4:315-323.
    124、 Wojtaszek P., Oxidative burst: an early plant response to pathogen infection. Biochem. J. 1997. 322:681-692
    125、 Wooton.H.R. and R.N.strange., Increased susceptibility and reduced phytoalexin accumulation in drought stressed peanut. Applied and Environmental Microbiology 1987,53:270-273.
    126、 Wu G S, Shortt B J, Lawrence E B and Leon J et al., Activation of Host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol, 1997,115:427-435.
    127、 Xu, H.X, Seanna, A, John, L, Frances, T., Infection and colonization of peanut pods by Aspergillits parasiticus and the expression of aflatoxin biosynthetic gene, nor-1, in infection hyphae. Physiological and Molecular Plant Pathology. 2000, 56:185-196.
    128、 Yi S Y and Hwang B K., Differential induction and accumulation of β-1-3-glucanase and chitinases isoforms in soybean hypocotyls and leaves after compatible and incompatible infection with phytophthhora megasperma f.sp.glycinea. Physiological and Molecular Plant Pathology. 1996, 4 (88) :179-192.
    129、 Zacheo G, Zacheo T B. Involvement of superoxide dismutase and superoxide radials in the susceptibility and resistance of tomato plant to Meloidogyme incognite attack. Physiol Mol Plant Pathol 1988, 32:313-319.
    130、 Zhang Y, Kang M S, Magari R., Genetic of resistance to kernel infection by Aspergillu flavus in maize. Plant Breeding, 1997,116(2) : 146-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700