挤压铸造Al-Zn-Mg-Cu合金组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Zn-Mg-Cu系合金是一类超高强铝合金,广泛应用于航空航天、交通运输等部门。挤压铸造技术可获得晶粒细小、组织致密、性能高的毛坯或零件,是一种结合了铸造和锻造特点的先进高效近净成形技术。本文采用挤压铸造技术制备了一种(质量百分数)Al-6.5~7.5 Zn-2.0~3.0 Mg- 1.8~2.2 Cu合金(代号HGZL05),采用流动性测试、拉伸性能测试、金相、扫描电镜、差热分析等技术研究了合金的组织和性能。主要结果如下:
     研究了HGZL05合金在不同挤压力下的显微组织与力学性能,并对比研究了HGZL05合金与一种Al- Si- Cu合金(代号HGZL04)的流动性能。结果表明,浇注温度为720℃和740℃时,HGZL05合金的流动性能要优于HGZL04合金,并且浇注温度越低时,这种优越性更显著;无论是铸态还是热处理态,HGZL05合金的抗拉强度和伸长率均随着挤压力的增大而增大,热处理后,75 MPa下该合金的典型力学性能为:抗拉强度520 MPa,屈服强度405 MPa,伸长率15.8 %,布氏硬度150。当挤压力由0 MPa增大到75 MPa,合金的晶粒尺寸明显减小,由125~130μm减小到65~70μm。
     研究了杂质Fe含量对合金显微组织和力学性能的影响,并分析了挤压力对Fe相分布和形貌的影响。研究表明,高Fe含量合金的力学性能明显低于低Fe含量合金,但随着挤压力的增大,高铁含量合金和低铁含量合金之间的力学性能的差值逐渐缩小,当挤压力由0 MPa增大到75 MPa时,抗拉强度差值由18 MPa减小到7 MPa,伸长率差值由1.2 %减小到0.4 %;随着挤压力的增大,高Fe含量合金中脆性含Fe相尺寸和分布形态发生了变化,深灰色含Fe相在晶界处呈长条链状聚集分布逐渐变为短杆状离散均匀分布,在Fe相应力集中引起的沿晶断裂处产生了韧性断裂特征。
     对比研究了挤压力对四种研制合金(HGZL02、HGZL03、HGZL04和HGZL05)的耐腐蚀性能的影响。结果表明,在相同的腐蚀时间下,腐蚀速率由高到低的次序是:HGZL05、HGZL02、HGZL04、HGZL03,四种合金具有不同腐蚀性能主要是由于合金的显微组织和腐蚀形貌不同所致。腐蚀时间一定时,随着挤压力由0 MPa增大到50 MPa,四种合金的腐蚀速率均略有上升,这主要是因为挤压力对合金中晶粒尺寸、第二相形貌及分布产生影响,随着挤压力的增加,四种合金的腐蚀坑尺寸均有所减小,腐蚀坑密度显著增加,腐蚀坑面积所占比例增大,晶间腐蚀深度增加。
Al-Zn-Mg-Cu alloys are widely used in aerospace, transportation and other industrial fields due to their super high strength. As a near-net-shape materials processing, squeeze casting that combines the characteristics of casting and forging can produce nearly full dense, fine grain structures. In this paper, the Al-6.5~7.5 Zn-2.0~3.0 Mg-1.8~2.2 Cu alloy named HGZL05 were prepared by squeeze casting. The microstructures and properties of the alloy were studied by fluidity testing, tensile testing, optical microscope, scanning electronic microscope and differential scanning calorimetry. The results are as follows:
     The effect of applied press on microstructure and mechanical properties of HGZL05 alloy was investigated and the comparative study of the castability of HGZL05 and HGZL04 was also carried out. The results indicate that the fluidity of HGZL05 is superior to HGZL04 when the pouring temperature is either 740℃or 720℃. And the fluidity of HGZL05 shows much better at the lower temperature since the melting temperature of HGZL05 is lower than that of HGZL04. The mechanical properties of both as-cast and heat-treated HGZL05 are improved with the increase of applied press. In condition of the induced pressure of 75MPa, the heat-treated HGZL05 has the tensile strength of 520MPa, yield strength of 405 MPa, elongation of 15.8% and HB of 150. The grain size of the alloy reduces from 125 ~ 130μm to 65 ~ 70μm when the pressure increases from 0 MPa to 75 MPa.
     The effect of Fe content on the microstrutures and mechanical properties of HGZL05 and the influence of applied press on the distribution and morphologies of Fe phase were studied. The results indicate that the mechanical properties of high Fe content alloy are lower than that of low Fe content alloy. However, the mechanical properties discrepancies of two different Fe content alloys reduce as the squeeze pressure increases. The tensile strength and elongation of the alloy reduce from 18 MPa to 7 MPa and from 1.2 % to 0.4 %, respectively. As the squeeze pressure increases, the size, distribution and morphology of Fe phase change obviously. The accumulated long deep-grey Fe phase changes to dispersive short one, which leads to the ductile fracture around the Fe phase where the intergranular fracture generally occurs caused by stress concentration.
     The comparative study of corrosion resistance of HGZL02, HGZL03, HGZL04 and HGZL05 alloys were performed. The results show that the order from high to low of corrosion rate of the alloys is HGZL05, HGZL02, HGZL04 and HGZL03 at the same corrosion time. The difference of the corrosion rate is mainly due to the difference in microstructures and corrosion morphology of the alloys. The corrosion rate of the four alloys all increase slightly with the increase of the applied press from 0 MPa to 50 MPa. The reason is that the grain size, morphology and distribution of the second phases are affected by the applied press. As the applied press increases, the grain size reduces and the corrosion area, the depth of intergranular corrosion all increase for the four alloys.
引文
[1]董丁丁.我国汽车零部件行业问题分析[J].价值工程, 2010, (35): 25-26
    [2]汤筠筠,张代胜,刘立强.汽车企业核心竞争力评价体系的研究[J].汽车研究与开发, 2004, (12): 14-19
    [3]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社, 1989: 151-155
    [4]崔忠圻.金属学与热处理[M].北京:机械工业出版社, 2001: 408-422
    [5] Ghomashchi M R, Vikhrov A. Squeeze casting: an overview[J]. Journal of Materials Processing Technology, 2000, 101: 1-9
    [6]罗守靖等.钢质液态模锻[M].哈尔滨:哈尔滨工业大学出版社, 1990: 1-15
    [7]上海交通大学锻压教研室.液态模锻[M].北京:国防工业出版社, 1981: 2-9
    [8]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术[M].北京:化学工业出版社, 2006: 1-7
    [9]齐丕骧.面向21世纪的挤压铸造技术[J].特种铸造及有色合金, 1984, (4): 32-36
    [10]罗继相.我国挤压铸造技术的回顾及展望[J].铸造, 1998, (11): 5-9
    [11]罗继相.挤压铸造汽车铝合金制动泵缸体[J].特种铸造及有色合金, 1997, (1): 17-19
    [12]周绍荣.摩托车前减振器套管挤压铸造的研制[J].特种铸造及有色合金, 1998, (1): 26-28
    [13]唐多光,张金龙,徐张翼.挤压铸造原理及缺陷分析[J].特种铸造及有色合金, 2003, (1): 43-45
    [14]齐丕骧.美国挤压铸造发展概况[J].兵器金属材料科学与工程, 1987, (3): 52-56
    [15]罗继相.间接挤压铸造模具设计特点及研究[J].特种铸造及有色合金, 2002, (1): 38-40
    [16]中国机械工程学会铸造分会编.特种铸造[M].北京:机械工业出版社, 1993: 89-120
    [17]齐丕骧.国内外挤压铸造技术发展概括[J].特种铸造及有色合金, 2002, (2): 20-23
    [18]罗继相.挤压铸造在汽车、摩托车制造业中的应用[J].特种铸造及有色合金, 1998, 60: 30-32
    [19]宋仁国.高强度铝合金的研究现状及发展趋势[J].材料导报, 2000, 14, (1): 20-21
    [20]罗继相.铝合金挤压铸造技术的研究与应用[J].铸造, 2002, 51(4): 464-466
    [21]齐丕骧,吴岳壹,齐霖.挤压铸造合金材料的研究进展[J].特种铸造及有色合金, 2005, 25(1): 28-31
    [22]Yamamoto N. Effects of squeeze casting process on mechanical properties of aluminum die casting alloy[J]. AFS Transactions, 1992, 87: 539-540
    [23]Gallerneault M., Durrant G., Cantor B. The squeeze casting of hypoeutectic binary Al- Cu[J]. Metallrugical and Materials Transactions A, 1996, 27: 4121-4123
    [24]彭晋民,钱瀚城.铸造铝硅合金的现状和发展[J].铸造技术, 2000, (6): 32-34
    [25]张克武.挤压铸造Al- Si- Cu合金与汽车换挡臂成型的研究[D].广州:华南理工大学, 2009
    [26]张克武,赵海东,欧阳晓贤等.不同挤压力下凝固的Al- Si- Cu- T4的组织与性能[J].中国有色金属学报, 2009, 19(4): 625-632
    [27]廖恒成,董光明,吴其昌等.变质处理对Al- 11.7%Si合金耐蚀性的影响[J],铸造, 2006, 55(11): 1166-1169
    [28]范鹏.铸造A1- Si系合金电化学行为的研究[D].桂林:广西大学, 2007
    [29]张林和,周华.新型船舶用铸造铝合金腐蚀性能研究[J].合金与热处理, 2002, 25(2): 38-53
    [30]魏梅红,刘徽平.一种新型Al- Mg- Si耐蚀合金的成分、熔炼与热处理[J].国外金属热处理, 2005, 26(2): 9-11
    [31]李德成等.高强铸造铝合金A-U5GT及其应用[J].铸造, 1998(11): 34-35
    [32]Great M, Scalliet R A. Review of Recent French Casting Alloy Developments[J]. AFS Transactions, 1978, 86: 549-553
    [33]Kearney A L, Raffin J. Mechanical Properties of Aluminum Castings Alloys A206.0-T4 and A206.0-T71 vs CoMParable Alloys at Various Cooling Rates[J]. AFS Transactions, 1977, 85: 559-570
    [34]黄恢元.铸造手册(第3卷-铸造非铁合金)[M].北京:机械工业出版社, 1993: 152-173
    [35]舒群.砂型铸造ZL205A合金组织与力学性能的研究[J].特种铸造及有色合金, 2005, 25(2): 74-76
    [36]郭国文.高强韧铸造铝合金材料及其挤压铸造技术的研究[D],广州:华南理工大学,2002
    [37]李彦霞.高强韧挤压铸造铝铜合金组织与性能研究[D],广州:华南理工大学, 2006
    [38]谢爱明.高强韧挤压铸造Al- Cu合金的热处理研究[D],广州:华南理工大学, 2007
    [39]张明.高强韧挤压铸造Al- Cu合金及其大型构件挤压铸造成形的研究[D],广州:华南理工大学, 2009
    [40]李荻,张琦,王弟珍等. LY12CZ铝合金晶间腐蚀电化学记录[J].材料保护, 1996, 29(1): 6-8
    [41]左尚志,李荻.国内外铝合金剥蚀研究的现状[J].材料导报, 1994, 27(12): 23-26
    [42]何立子.类6010铝合金热处理制度的研究[J].航空材料工艺. 1999(1): 42-46
    [43]J.H. Lee, H.S. Kim, S.I. Hong. Effect of die geometry on the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy and numerical analysis of the cooling behavior[J]. Journal of Materials Processing Technology, 1999, (96): 188-197
    [44]A. Heinz, A. Haszler, C. Keidel. Recent development in aluminum alloys for aerospace applications[J]. Materials Science and Engineering A, 2000, 280(1): 101-107
    [45]陈昌麒. Al- Zn- Mg- Cu合金的发展[J].中国有色金属学报, 2002, 12(3): 22-27
    [46]N. V. Deshpande, A. M. Gokhale, D. K. Denler. Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminium alloy: Part I. Quantitative characterization[J]. Metallurgical and Materials Transactions A, 1998, 29A: 1191-1201
    [47]I.J.Polmear. The effects of small additions of silver on the ageing of aluminum alloys[J]. Transactions AIME, 1964, 230: 1331-1339
    [48]罗兵辉,柏震海.高性能铝合金研究进展[J].兵器材料科学与工程, 2002, 25(3): 59-61
    [49]Wallace John, Chang Qingming, Schwam. Process control in squeeze casting[J]. Die Casting Engineer, 2000, 44(6): 42-48
    [50]张君晓.航空结构用高纯高韧性铝合金的进展[J].轻金属, 1994, (6): 54-58
    [51]马场义雄.超硬铝(EDS)及飞机铝合金发展动向[J].轻合金加工技术, 1996, (2): 31-33
    [52]周鸿章.高强铝合金的研究进展[J].稀有金属材料与工程. 2001, 30(6): 87-92
    [53]吴一雷,李永伟.超高强度铝合金的发展和应用[J].航空材料学报, 1994, 2(1): 49-55
    [54]谢优华,杨守杰.含锆超高强铝合金的研究及发展概况[J].中国有色金属学报, 2003,3(2): 87-88
    [55]M. B. Hall, J. W. Martin. Effect of retrogression temperature on the properties of an RRA (retrogressed and re-aged) 7150 aluminium alloy[J]. Zeitschrift fuer Metallkunde, 1994, 85(2): 134-139
    [56]李春梅. Al- Zn- Mg- Cu系超高强铝合金热处理工艺的研究[D].重庆:西南师范大学, 2005
    [57]倪培相,左秀荣,吴欣凤. Al- Zn- Mg系合金研究现状[J].轻合金加工技术, 2007, 35: 7-11
    [58]戴晓元,夏长清,古一. Al- Zn- Mg- Cu- Sc- Zr系富Al角相图评估[J].材料导报, 2006, 20(11): 77-79
    [59]樊喜刚. Al- Zn- Mg- Cu- Zr合金组织性能和断裂行为的研究[D].哈尔滨:哈尔滨工业大学, 2007
    [60]陈军舟. AA7055铝合金的时效析出行为与力学性能[D].哈尔滨:哈尔滨工业大学, 2008
    [61]肖亚庆,谢水生,刘静安等.铝合金技术使用手册[M].北京:冶金工业出版社, 2005: 5-19
    [62]潘复生,张丁飞.铝合金及应用[M].北京:化学工艺出版社, 2006: 14-36
    [63]TkaueHko E A.高强变形铝合金[J].轻合金加工技术, 2006, 2: 56-59
    [64]杨守杰,谢优华,朱娜等. Zr对Al- Zn- Mg- Cu系超高强合金力学性能的影响[J].材料研究学报, 2002, 16(4): 406-412
    [65]戴晓元,夏长清,刘昌斌.微量钪对Al- Zn- Mg- Cu- Zr铝合金组织与性能的影响[J].矿冶工程, 2004, 24 (3): 59-61
    [66]杨磊. Al- Zn- Mg- Sc- Zr合金组织与性能的研究[D].长沙:中南大学, 2001
    [67]肖于德,黄龙坚,熊建明等.钪对7005铝合金组织性能的影响[J].稀有金属, 1999, 23 (2): 113-116
    [68]韦强,雄柏青,张永安.喷射成形高强铝合金的组织和性能[J].中国有色金属学报, 2001, 11(2): 279-283
    [69]王洪彬,黄进峰,杨滨. Al- Zn- Mg- Cu系超高强度铝合金的研究现状与发展趋势[J].材料导报, 2003, 17(9): 1-4
    [70]T M. YUE. Squeeze casting of high-strength aluminum wrought alloy AA7010[J]. Journal of Materials Processing Technology, 1997, 66: 179-185
    [71]S. W. Kim, D. Y. Kim, W. G. Kim. The study on characteristics of heat treatment of the direct squeeze cast 7075 wrought Al alloy[J]. Materials Science Engineering, 2011, A304-306: 721-726
    [72]刘昌斌.微量Sc及热处理工艺对高强铝合金组织与性能影响的研究[D].长沙:中南大学, 2004
    [73]E.C.Zwickan, U.T.Freiberg. Possibilities for the Calculation for the Heat Treatment Diagrams for Industrial Al- Zn- Mg- Cu alloy[J]. Aluminum, 1999, 75: 90-96
    [74]张琦,李获,丁学谊. LC4铝合金晶间腐蚀电化学机理[J].材料保护, 1996, 29(8): 6-8
    [75]李劲风,贾志强,李朝兴. 7150铝合金剥蚀行为及腐蚀机理研究[J].腐蚀科学与防护技术, 2009, 21(2): 107-109
    [76]汝继刚,伊琳娜.不同时效处理对7B04铝合金腐蚀性能的影响[J].轻合金加工技术, 2004, 32(50): 45-46
    [77]李春梅. Al- Zn- Mg- Cu系超高强铝合金热处理工艺的研究[D].重庆:西南师范大学, 2005
    [78]倪培相,左秀荣,吴欣凤. Al- Zn- Mg系合金研究现状[J].轻合金加工技术, 2007, 35(1): 7-11
    [79]Flemings M C. Solidification processing[J]. Metallurgical and Materials Transactions, 1975, 135(10): 2121-2134
    [80]CHADWICH G A, YUE T M. Principles and applications of squeeze casting[J]. Metallurgical and Materials Transactions, 1989(5): 6-12
    [81]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社, 1998: 21-24
    [82]王一建,黄本元,王余高.金属大气腐蚀与暂时性保护[M].北京:化学工业出版社, 2007: 1-3
    [83]Brown R H, Fink W L, Hunter M S. Measurement of irreversible potentials as a metallurgical research[J]. Transactions AIME, 1941, 143: 115
    [84]Galavele J R, De Micheli S M. Mechanism of intergranular corrosion of Al- Cu alloys[J]. Corrosion Science., 1970, 10: 1795
    [85]Maitra S, English G C. Mechanism of localized corrosion of 7075 alloy plate[J].Metallgical Transactions A, 1981, 12A: 535
    [86]Buchiheit R G, Morgan J P, Stoner G E. Electrochemical behavior of the T1(Al2CuLi) intermeatllic compound and its role in localized corrosion of Al- 2%Li- 3%Cu alloys[J]. Corrosion, 1994, 50: 120
    [87]Buchheit R G, Wall F D, Stoner G E. Anodic dissolution-based mechanism for the rapid cracking , preexposure phenomenon demonstrated by aluminum-lithium-copper alloys[J]. Corrosion, 1995, 51: 417
    [88]F. Y. Xie. Microstructure and microsegregation in Al rich Al- Cu- Mg alloys[J]. Elsevier Science Limited, 1999, 47(2): 489-500
    [89]L. B. Ber. Accelearted artificial ageing regimes of commercial aluminum alloys. I. Al- Cu- Mg alloys[J]. Materials Science and Engineering, 2000, A280: 83-90
    [90]张琦,李荻,丁学谊等. LC4铝合金晶间腐蚀电化学机理[J].材料保护, 1996, 29(1): 6-8
    [91]李荻,张琦,王弟珍等. LY12CZ铝合金晶间腐蚀模拟试验研究[J].北京航空航天大学学报, 1998, 24(1): 1-4
    [92]陈文敬.高强铝合金应力条件下的腐蚀行为及其电化学行为研究[D].长沙:中南大学, 2008
    [93]邵敏华,付燕,胡融刚等. Al2024-T3合金局部腐蚀的扫描微电极研究[J].物理化学学报. 2002, 18(4): 350-354
    [94]胡德林,张帆.三元合金相图[M].西安:西北工业大学出版社, 1995: 41-43
    [95]龚磊清,金长庚,刘发信等.铸造铝合金金相图谱[M].长沙:中南工业大学出版社, 1987: 75-76
    [96]廖恒成,董光明,吴其昌等.变质处理对合金耐蚀性的影响[J].铸造, 2006, 55(11): 1166-1169
    [97]张作贵,周兵. ECAP加工工艺对Al- Si- Cu合金耐腐蚀性能的影响[J].材料导报, 2008, 22(8): 458-460
    [98]韩顺昌.金属腐蚀显微组织图谱[M].北京:国防工业出版社, 2008: 109-150
    [99]邵敏华,林昌健. Al合金点腐蚀及研究方法[J].腐蚀科学与防护技术, 2002, 14(3): 147-151
    [100]RG Buchheit, LP Montes, MA Martinez. The electrochemical characteristics ofbulk-synthesized Al2CuMg[J]. Electrochemical Society, 1999, 142(11): 3994
    [101]朱立群,谷岸,刘慧从等.典型高强铝合金材料的点腐蚀坑前缘特征的研究[J].航空材料学报, 2008, 28(6): 61-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700