均质土坝漫顶后冲刷破坏过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溃坝问题的研究可分为两大方面的内容。一方面是溃坝洪水波在坝下游河道传播演进过程问题,另一方面是大坝自身破坏溃决过程问题。本文研究的为后一方面的内容。造成大坝溃决的原因很多,如超标洪水引起水库漫顶、坝身渗透破坏和坝身滑坡等,不同原因引起的大坝破坏溃决过程也是不相同的。本文研究的为均质土坝因超标洪水引起水库漫顶后,坝身在漫顶水流作用下冲刷、破坏和溃决全过程的模拟,以及为进行这个全过程模拟所需的一些基础问题的研究。
     本文首先建立了坡面水流运动的一维和二维数学模型,为溃坝水流计算提供了一种新的计算方法。在此基础上建立了陡坎形成和发展数学模型,坝体冲刷采用试验得出的起动切应力和冲刷率计算式计算。陡坎坍塌模式和横向坍塌模式的建立为均质土坝漫顶后冲刷破坏过程中溃口形成和发展模拟提供理论基础,考虑了地形随机起伏变化和抗冲性能差异两个影响因素单独和综合作用对均质土坝漫顶溃决过程的影响。全文主要讨论了以下几个方面的问题:
     (1)叙述了均质土坝漫顶后冲刷破坏过程模拟的研究目的和意义,综述了土体起动冲刷、土坝漫顶溃决模拟和冲沟网形成研究现状,拟定了本文的主要研究内容。
     (2)推导出坡面坐标系下水流运动一维和二维数学方程组,再通过坐标变换转换成水平坐标系下的方程组,该方程组适合计算坡度较大的坡面水流运动,对方程进行离散并进行程序编制。选取三种不同坡度的坡面进行洪水演进计算,分析比较方程有无修正以及坡度变化对水流计算结果的影响。
     (3)建立了均质土坝漫顶溃决过程一维数学模型,模拟了陡坎的形成和发展过程。土坝在漫顶破坏过程中逐渐发展成为陡坎,陡坎的坍塌将引起坝顶高程大幅降低并形成溃口。在模型中通过力学平衡原理建立了陡坎坍塌模式,滑动面不局限于通过坡脚点。通过计算分析比较了有无陡坎坍塌对土坝漫顶溃决的影响。坝体冲刷采用多种土样在矩形管道水槽中进行试验,根据试验结果分析土体起动切应力和冲刷率分别与各自的影响因素之间的对应关系,推导了起动切应力和冲刷率计算式。
     (4)在推导出的坡面二维水流数学方程基础上建立了均质土坝漫顶溃决过程二维数学模型,在模型中根据力学平衡原理建立了土体横向坍塌模式,纵向坍塌采用陡坎坍塌模式。模型中引入筑坝土体起动切应力和冲刷率计算式计算坡面土体的冲刷。通过计算分析了地形起伏变化和抗冲性能差异两个因素单独和综合作用对均质土坝漫顶溃决过程的影响,并应用建立的模型对含导流渠土坝溃口刷深及展宽过程进行了模拟。
The research on dam-break problem can be divided into two aspects. On the one hand is the process of transmition and evolution when the dam-break flood wave is in downstream riverway, on the other hand is the process of the dam own breaking and bursting. In this paper, we put an emphasis on the latter one. Dam bursting caused by many causes such as reservoir overtopping caused by excessive flooding, infiltration and damage of dam body, landslide of dam body, and so on. The process of the dam bursting is not the same according to the factors which causes the damage. In this paper, simulation of the whole process in which the homogeneous earth dam body is eroded, destroyed and finally burst by the power of the overtopping current when the reservoir is overtopped due to the excessive flooding is projected, and some studies of the basic issues which are needed in the simulation is also paid attention to.
     The one dimension and two dimension mathematical model for the current movement on slope is established firstly, which provide a new method of calculation for the flow of the broken dam. On the basis, the mathematical models of scarp formation and development are established. The formula for starting shear stress and erosion rates which is educed by the examinnation is adopted to calculate the erosion of the dam. The establishment of scarp collapse mode and lateral collapse mode provide a theoretical basis for the simulation of the bursting breach formation and evolution in the process of eroding and destroying when the homogeneous earth dam is overtopped, considering the effects caused by the terrain random undulation and the the impact resistance property diffence which affect separately and synchronously on the dam overtopping. The paper mainly discussed the following issues:
     (1) The research purpose and significance of the simulation to the process of the homogeneous earth dam overtopping erosion and damage is described, the research status quo on the soil starting, erosion, dam breaking simulation and gullies network formation is reviewed, the main contents of this article is drawn up.
     (2) One and two dimensional water movement mathematical equations are deduced under the slope coordinate system, and the equations are transformed to the equations under the plane coordinate system. The equations are suitable for calculating the water movement under the condition of the large slope, equations are dispersed for programming. Three different slopes are selected for flood calculation, and the results of flow are analyzed and compared with or without equations amendment and the change of slope.
     (3) One dimensional mathematical model of the process of earth dam overtopping and break is established to simulate the formation and development process of the scarp. Earth dam gradually develops into the scarp during the process of overtopping and break, the collapse of scarp will lead to dramatically reduced crest elevation and the formation of dam breach. The scarp collapse mode is established in this model through mechanical equilibrium, and the sliding surface is not limited by the foot of slope. The effects of existence and nonexistence of scarp collapse on the earth dam overtopping and break are analyzed by means of calculation. A variety of soil samples are put in a rectangular pipe flume to experiment in the dam erosion trial. The corresponding relationship of incipient shear stress, erosion rate and their influencing factors is analyzed according to the experiment results, two formula of incipient shear stress and erosion rate are presented.
     (4) The two dimensional mathematical model of the process of earth dam overtopping and break based on two dimensional flow mathematical equations on the slope is established. Transverse collapse mode of the soil body is established in this model according to mechanical equilibrium, and the scarp collapse mode is adopted in longitudinal collapse. The formula of dam soil starting shear stress and erosion rate is adopted to calculate the erosion of the slope soil in the model. The effects caused by the terrain random undulation and the the impact resistance property diffence which affect separately and synchronously on the dam overtopping is analyzed by means of calculation, and the simulation of the deepening and widening process of earth dam crevasse with one and two diversion channels is processed by using the established model.
引文
[1]杜雷功,薛占群,张锡彭,等.全国病险水库水闸除险加固专项规划简要报告[R].水利部天津水利水电勘测设计研究院,水利部水利建设与管理总站,2001.
    [2]SINGH V P. Dam breach modeling technology[M]. Dordrecht, the Netherland:Kluwer Academic Publisher,1996:55-58.
    [3]林秉南.明渠不恒定流研究的现状与发展[G]//林秉南.林秉南论文集.北京:中国水利水电出版社,2001:340-373.
    [4]谢任之.溃坝水力学[M].济南:山东科学技术出版社,1993.
    [5]ALCRUDO F, MULET J. Conclusions and recommendations from the IMPACT project WP3: Floodpropagation[EB/OL]. http://www.sam ui.co.uk/impact-project/wp3-technical.htm.
    [6]谭维炎.浅水动力学的回顾和当代前沿问题[J].水科学进展,1999,10(03):296-303.
    [7]HABTEE D R. Some practical methods of using characteristics in the calculation of non-steady compressible flows[R]. Los Alumos:U. S. Atomic Energy Commission Report AECU-2713,1953:44-48.
    [8]王船海,李光炽.流域洪水模拟[J].水利学报,1996(03):44-50.
    [9]SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shocks capturing schemes II[J]. Compute Phys,1989,83:32-78.
    [10]ZHOU Di-hua, SHEN H W, LAI Jihnsung, et al. Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling[J]. Journal of Hydraulic Engineering,1996,122 (2):692-702.
    [11]谭维炎,胡四一.浅水流动计算中一阶有限体积法Osher格式的实现[J].水科学进展,1994,12(4):262-270.
    [12]谭维炎.浅水动力学的回顾和当代前沿问题[J].水科学进展,1999,10(03):296-303.
    [13]王嘉松,倪汉根,金生.瞬间全溃溃坝波的传播、反射和绕射的数值模拟[J].水动力学研究与进展,2000,15(01):1-7.
    [14]林秉南.明渠不恒定流研究的现状与发展[G]//林秉南.林秉南论文集.北京:中国水利水电出版社,2001:340-373.
    [15]梁林,倪晋仁.黄河溃堤过程数学模型及其模拟方法[J].中国科学(E辑),2002,32(05):618-627.
    [16]潘存鸿,林炳尧,毛献忠.一维浅水流动方程的Godunov格式求解[J].水科学进展,2003,7(4):430-436.
    [17]潘存鸿,林炳尧,毛献忠.求解二维浅水流动方程的Godunov格式[J].水动力学研究
    与进展,2003,18(1):16-23.
    [18]潘存鸿.三角形网格下求解二维浅水方程的和谐Godunov格式[J].水科学进展,2007,3(2):204-209.
    [19]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003.
    [20]魏文礼,沈永明,孙广才,等.二维溃坝洪水波的数值模拟[J].水利学报,2003,(09):43-47.
    [21]SCHWANENBERG D, HARMS M. Discontinuous galerkin finite-element method for transcritical two-dimensional shallow water flows[J]. J Hydraul Eng,2004,130 (05) 412-421.
    [22]陈建忠,史忠科.运用半离散中心迎风格式计算二维浅水方程的研究[J].水科学进展,2005,1 1(6):853-857.
    [23]谢作涛,张小峰,杨芳丽,等.一维洪水演进数学模型研究及应用[J].武汉大学学报(工学版),2005,38(01):69-72.
    [24]张永祥,陈景秋.用守恒元和解元法数值模拟二维溃坝洪水波[J].水利学报,2005,36(10):1224-1229.
    [25]黄金池,何晓燕.溃坝洪水的统一二维数学模型[J].水利学报,2006,37(02):222-226.
    [26]张大伟,张超,王兴奎.具有实际地形的溃堤水流数值模拟[J].清华大学学报(自然科学版),2007,47(12):2127-2130.
    [27]ROUSE. Engineering hydraulics[M]. New York:John Wiley & Sons, Inc,1950.
    [28]MACDONALD T C, LANGRIIDGE-MONOPLIS J. Breaching eharacties of dam failures[J]. J Hydraul Eng,1984,110 (5):567-585.
    [29]李炜.水力计算手册[M].北京:中国水利水电出版社,2006.
    [30]戴荣尧,王群.溃坝最大流量的研究[J].水利学报,1983,2:13-21.
    [31]FREAD D L. DAMBRK:The NWS dam break flood forecasting model[R]. Silver Spring: National Weather Service (NWS) Report, NOAA,1984.
    [32]黄金池.堰塞坝漫顶溃口流量变化过程的数值模拟[J].水利学报,2008,39(10):1235-1240.
    [33]MORRIS M W, FABBBI K, BRELEN H. IMPACT:Investigation of extreme flood processes and uncertainty contract No.EVGI—CT-2001-00037, final technical report[R]. Wallingford: HR Wallingford Ltd,2005.
    [34]杨武承.引冲式自溃坝口门形成时间的试验及规律[J].水利水电技术,1984,7:21-25.
    [35]杨武承.引冲式自溃坝下切率规律的试验研究[J].水利水电技术,1985,3:1-7.
    [36]浙江省南山水库管理局,浙江省水利水电科学研究所.南山水库自溃坝试验阶段报告[J].浙江水利科技,1978,3:1-17.
    [37]郝书敏.自溃坝模型试验方法初步探讨[C]//水利工程管理论文集第1集.北京:中国水南京水利科学研究院博士学位论文91利学会工程管理专业委员会,1984.
    [38]CRISTOFANO E A. Method of computing erosion rate for failure of earth-fill dams[J]. Denver:Bureau of Reclamation,1965.
    [39]HARRIS G W, WAGNER D A. Outflow from breached earth dams[R]. Salt Lake City: Department of Civil Engineering, University of Utah, UT,1967.
    [40]LOU W C. Mathematical Modeling of Earth Dam Breaches[D].Fort Collins:Colorado State University,1981.
    [41]NOGUEIRA V D Q. A mathematical model of progressive earth dam failure[D]. Fort Collins: Colorado State University,1984.
    [42]FREAD D L. DAMBRK:The NWS dam break flood forecasting model [R]. Silver Spring: National Weather Service (NWS) Report, NOAA,1984.
    [43]FREAD D L. A Breach Erosion Model for Earthen Dams[R]. Silver Spring:National Weather Service (NWS) Report, NOAA,1984.
    [44]Ralston D C, Mechanics of Embankment Erosion During Overflow[A]. Proceedings of the 1987 ASCE National Conference on Hydraulic Engineering [C], Williamsburg,Virginia,1987. pp.733-738.
    [45]Wahl T L. Prediction of Embankment Dam Breach Parameters:A Literature Review and Needs Assessment [R].DSO-98-004, Dam Safety Research Report, U. S. Bureau of Reclamation,1998.
    [46]Hanson G J, Temple D M, and Cook K R. Dam Overtopping Resistance and Breach Processes Research[A]. Proceedings of the 1999 Annual Conference Association of State Dam Safety Officials[C], St. Louis, MO,1999. CD-ROM.
    [47]朱勇辉,廖鸿志,吴中如.土坝溃决模型及其发展[J].水力发电学报,2003,(02):31-38.
    [48]屈文谦.土石坝漫顶溃决模拟研究[D].博士学位论文,武汉大学,2009.
    [49]J.william Kamphuis and Kevin R.Hall, Cohesive Material by Unidirctional Current Journal of Hydraulic Engineering, Vol.109, No.1, Jamuary,1983.
    [50]Osman, A.M., and Thorne, C. R. Riverbank stability analysis Ⅰ:Theory[J]. Journal of Hydraulic of Engineering,1988,114 (2):134-150.
    [51]华景生,万兆惠.粘性土及粘性土夹沙的起动规律研究[J].水科学进展,1992,(04)271-278.
    [52]韩其为,何明民.细颗粒泥沙成团起动及其流速的研究[J].湖泊科学,1997,9(04):307-316.
    [53]黄岁梁,陈稚聪,府仁寿.粘性类土的起动模式研究[J].水动力学研究与进展,1997,12
    (01):1-7.
    [54]洪大林.粘性原状土冲刷特性研究[D].河海大学博士学位论文,河海大学,2005.
    [55]王军.淤积固结条件下粘性泥沙起动与冲刷问题初步研究[D].武汉大学博士学位论文,武汉大学,2007.
    [56]舒彩文,王军,谈广鸣.干容重对粘性淤积物起动和冲刷的影响[J].武汉大学学报(工学版),2007,40(1):25-28.
    [57]曹叔尤,杜国翰.粘性土冲淤的试验研究[J].泥沙研究,1986,(04):73-82.
    [58]李华国,袁美琦,张秀芹.淤泥临界起动条件及冲刷率实验研究[J].水道港口,1995,(3):20-26.
    [59]王兆印,黄金池,苏德惠.河道冲刷和清水水流河床冲刷率[M].泥沙研究,1998,(1):1-11.
    [60]Krone, R.B.. Effects of bed structure on erosion of cohesive sediments[J]. Journal of Hydraulic Engineering,1999,125 (12):1297-1301.
    [61]J. L. Briaud, F. C. K. Ting. Erosion function apparatus for scour rate prediction[J]. Journal of Geotechnical and geoenvironmental engineering,2001,127 (2)
    [62]洪大林,谢瑞,张思和,等.苏通长江公路大桥桥区河床抗冲性能试验研究[J].海洋工程,2003,21(4):91-96.
    [63]凌浩美,赵娟芳.工程地质[M].郑州:黄河水里出版社,2008.
    [64]何福红.基于“3S”技术的沟蚀研究方法构建与应用[D].博士学位论文,中国农业科学院,2006.
    [65]唐克丽.中国水土保持[M].北京:科学出版社,2004.
    [66]王礼先,朱金兆.水土保持学[M].北京:中国林业出版社,2005.
    [67]程宏,伍永秋.切沟侵蚀定量研究进展[J].水土保持学报,2003,17(5):32-35.
    [68]石建省,刘长礼.黄河中下游主要环境地质问题研究[M].北京:中国大地出版社,2007.
    [69]阎文贵.黑土地冲沟的形成及草垡块治理方法[J].中国水土保持,2001,(4):33-34.
    [70]郭力宇,甘枝茂,苏惠敏.陕北洛川塬黄土崩滑及谷坡扩展模式[J].山地学报,2002,20(1):37-41.
    [71]Ralston D C, Mechanics of Embankment Erosion During Overflow[A]. Proceedings of the 1987 ASCE National Conference on Hydraulic Engineering [C], Williamsburg, Virginia,1987. pp.733-738.
    [1]槐文信,赵明登,童汉毅.河道的近海水流的数值模拟[M].北京:科学出版社,2005.
    [2]李义天,赵明登,曹志芳.河道平面二维水沙数学模型[M].北京:中国水利水电出版社,
    2002.
    [3]Zhang Xiao-feng, Yu Ming-hui. Numerical simulation of bed deformation in dike Burst[J]. Journal of Hydrodynamics, Ser. B,2001,13 (04):60-64.
    [4]曹志芳,李义天.分蓄洪区平面二维干河床洪水演进数值模拟[J].应用基础与工程科学学报,2001,9(01):74-79.
    [5]冯民权,周孝德,王克平.分蓄洪区洪水模拟研究综述[J].西北水利发电,2002,18(01):5-8.
    [6]穆锦斌,胡晓张,张小峰,等.分蓄洪区数学模型中边界处理的改进[J].水利水运工程学报,2006,(04):51-56.
    [7]袁晶,张小峰,谢作涛.公路建设对分洪区内洪水演进影响的数值模拟[J].武汉大学学报(工学版),2005,38(01):64-68.
    [8]穆锦斌,张小峰,白洋,等.荆江-洞庭湖洪水演进模型[J].武汉大学学报(工学版),2009,42(01):96-100.
    [9]张小峰,白洋,屈文谦,等.分蓄洪区内河渠边界模拟方法[J].武汉大学学报(工学版),2009,42(04):409-412.
    [10]张小峰,中川一,许全喜.一阶迎风格式的精度问题[J].武汉大学学报(工学版),2001,34(1):6-10.
    [11]张小峰,张艳霞,谢作涛.一阶迎风差分格式求解非线性对流扩散方程的精度[J].武汉大学学报(工学版),2003(5):1-8.
    [1]De Ploey J.A Model for headcut Retreat in Rills and Gullies,CATENA Supplement 14[M]. Cremlingen,Germany,1989.
    [2]Hanson GJ,Robinson KM,and Cook K R. Prediction of Headcut Migration Using a Deterministic Approach[J]. Transactions of ASAE,2001,44 (3):525-531.
    [3]陈珺,张小峰,谈广鸣.考虑溃口展宽的溃堤水流泥沙数值模拟[J].水动力学研究与进展A辑,2007,22(05):647-653.
    [4]袁晶.移动坐标下平面二维水沙数学模型研究及应用[D].博士学位论文,武汉大学,2007.
    [5]陈珺.蓄滞洪区水流数值模拟技术研究[D].硕士学位论文,武汉大学,2005.
    [6]屈文谦.土石坝漫顶溃决模拟研究[D].博士学位论文,武汉大学,2009.
    [7]涂启华,杨赉斐.泥沙设计手册[M].北京:中国水利水电出版社,2006.
    [8]李显军.河流水沙及河岸稳定性数值模拟[D].硕士学位论文,太原理工大学,2007.
    [9]黄本胜,白玉川,万艳春.河岸崩塌机理的理论模式及其计算[J].水利学报,2002,(09):49-53.
    [10]夏军强,王光谦等.河道横向展宽机理与模拟方法的研究综述[J].泥沙研究,2001,(06):71-78.
    [11]周名德.粘土局部冲刷与相似模拟[J].水利学报,1998,(07):60-63.
    [12]Thomas M. Ravens and Philip M. Gschwend Flume measurements of sediment erodibility in Boston harbor[J]. Journal of Hydraulic Ennineerinn,1999,125 (10):998-1005.
    [13]曹叔尤,杜国翰.粘性土冲淤的试验研究[J].泥沙研究,1986,(04) :73-82.
    [14]Thorne, C. R. and Osman, A. M.. Riverbank stability anaiysis Ⅱ:Application[J]. Journal of Hydraulic Ennineerinn,1988,114 (2):151-172.
    [15]Kandiah, A.. Fundamental aspects of surface erosion of cohesive soils[D]. PhD thesis, University of Califonia, Davis, Calif,1975.
    [16]李国华,袁美琦,张秀芹.淤泥临界起动条件及冲刷率试验研究[J].水道港口,1995,(09):20-26.
    [17]Roberts, J., Jepsen, R. and Lick,W.. Effects of paticle size and bulk density on erosion of quartz particles[J]. Journal of Hydraulic Engineering,1998,124 (12):1261-1167.
    [18]Krone, R.B.. Effects of bed structure on erosion of cohesive sediments[J]. Journal of Hydraulic Engineering,1999,125 (12):1297-1301.
    [19]Aberle, J., Nikora, V. and Walters, R.. Date interpretation for in stiu measurements of cohesive sediment erosion[J]. Journal of Hydraulic of Engineering,2006,132 (6):581-588.
    [20]Zhao-ying Wang. Experimental Study on Scour and River Beds[J]. Journal of Hydraulic Reseach,1999,37 (1):17-37.
    [21]Kuninori, O. and Kohji, M. Critical Shear Stress of Cohesive Bottom Sediments[J]. Journal of Hydraulic Engineering,1988,114 (10):1241-1256.
    [22]秦崇仁,张金凤.铜鼓浅滩泥沙起动和运移形态[J].水道港口,2003,24(01):8-13.
    [23]蒋昌波,白玉川,姜乃申等.海河口粘性淤泥起动规律研究[J].水利学报,2001,(06):51-56.
    [24]洪大林.粘性原状土冲刷特性研究[D].博士学位论文,河海大学,2005.
    [25]王军.淤积固结条件下粘性泥沙起动与冲刷问题初步研究[D].博士学位论文,武汉大学,2007.
    [1]Osman A M and Thorne C R. Riverbank stability analysis Ⅰ:Theory. ASCE, Journal of Hydraulic Engineering,1988,114 (2):134-150.
    [2]Thorne C R and Osman A M. Riverbank stability analysis Ⅱ:Application. ASCE, Journal of Hydraulic Engineering,1988,114 (2):151-172.
    [3]Darby S E, Throne C R. Numerical simulation of widenting and bed deformation of straight sand2bed river:Model developm I ent. J. Hydr Engrg, ASCE,1996,122 (4):184-193.
    [4]Darby S E, Thorne C R, Simon A. Numerical simulation of widening and bed deformation of straight sand2bed rivers Ⅱ:Model evalucation. J Hydr Engrg,ASCE,1996,122 (4):194-202.
    [5]Darby S E,Thorne C R. Development and testing of riverbank-stability analysis. J Hydr Engrg ASCE,1996,122 (4):443-454.
    [6]黄本胜,白玉川,万艳春.河岸崩塌机理的理论模式及其计算[J].水利学报,2002,(09):49-53.
    [7]王新宏.冲积河道纵向冲淤和横向变形数值模拟研究及应用[M].西安:西安理工大学,2002.
    [8]夏军强.河岸冲刷机理研究及数值模拟[D].博士学位论文,清华大学,2002.
    [9]夏军强,袁欣,王光谦.冲积河道冲刷过程中横向展宽的初步模拟[J].泥沙研究,2000,(06):16-24.
    [10]夏军强,王光谦,吴保生.平面二维河床纵向与横向变形数学模拟[J].中国科学(E辑),2004,34(01):165-174.
    [11]夏军强,王光谦等.河道横向展宽机理与模拟方法的研究综述[J].泥沙研究,2001,(06):71-78.
    [12]梁林,倪晋仁.黄河溃堤过程数学模型及其模拟方法[J].中国科学(E辑),2002,32(05):618-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700