盐碱胁迫下耐寒地被竹抗逆性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐碱问题已经成为世界性的问题,如何更好的开展利用盐碱地已经成为研究的热点问题。竹子是重要的森林资源,具有抗盐碱、生长快、成材早、产量高、用途广等优点,尤其是在园林上的应用愈来愈广泛,因此选用竹子作为抗盐碱的研究对象不仅具有重要的理论意义,还将产生巨大的经济效益和社会效益。本文主要以黄条金刚竹和铺地竹两个种竹作为试材,利用盆栽等手段,研究了在不同盐碱胁迫条件下生长及生理生化指标的动态变化,探讨和比较了耐盐特性和机理的差异,主要研究结果如下:
     1.研究了不同盐碱胁迫处理对两种竹生长状态的影响
     (1)不同盐碱胁迫处理对两种竹的影响有所不同:各盐碱处理一定程度上影响了两种竹的生长。在C4(盐浓度:300mmol·L-1,pH:9.96)处理下,黄条金刚竹全部死亡。在K4(盐浓度:300mmol·L-1)、C4处理下,铺地竹均有死亡现象。
     (2)不同盐碱胁迫处理明显抑制了两种竹的高生长和生物量。中性盐胁迫下,两种竹的高生长均呈现先生长加速后降低的趋势,当盐分达到300mmol·L-1时,第24天,黄条金刚竹的生长量仅为对照的25%左右,铺地竹全部死亡。在碱性盐胁迫下,铺地竹的影响较黄条金刚竹大,说明高碱对铺地竹的作用更为明显。中性盐与碱性盐胁迫明显抑制了两种竹的生长量,两种竹的根茎比显著增加,这是植物在逆境下的重要生存对策之一。
     2.研究了不同盐碱胁迫处理对两种竹叶绿素含量的影响。低浓度中性盐胁迫下,黄条金刚竹叶绿素a含量呈现升高—降低—升高的趋势,其余处理叶绿素a含量变化较为平缓,说明始终受到抑制;铺地竹受到胁迫后,叶绿素a开始均呈现上升趋势,但随着胁迫时间的推移,叶绿素a含量呈现明显的下降趋势,尤其以K4处理最为明显。两种竹叶绿素b含量变化基本呈现初期上升后期下降的趋势。碱性盐胁迫下,两种竹的叶绿素a和b含量变化规律不明显,但是含量总体呈现下降的趋势。
     3.研究了不同盐碱胁迫处理对两种竹MDA含量变化的影响。中性盐胁迫下,两种竹的MDA的含量随着盐浓度的增大而升高,变化幅度也越来越大,其中铺地竹的含量变化更明显一点,K1处理在第6天就与对照达到了极显著水平,这说明盐胁迫加剧了膜系统的破坏。在碱性盐胁迫下,两种竹的MDA含量呈现先上升后下降然后再上升的趋势,膜脂过氧化作用是造成两种竹细胞膜结构和功能损伤的主要因素。
     4.研究了不同盐碱胁迫处理对两种竹保护酶活性的影响。不同中性盐处理胁迫下,两种竹的SOD、POD活性变化规律基本一致,初期都是上升趋势,从而防止和降低自由基对细胞的伤害;在胁迫末期,二者活性下降,表明了两种竹抗氧化能力的下降。碱性盐胁迫下SOD、POD活性变化与中性盐胁迫下的变化规律基本一致。
     5.研究了不同盐碱胁迫处理对两种竹渗透调节物质的影响。在中性盐处理胁迫下,两种竹的脯氨酸含量随着盐浓度的增高而呈现先升高后急剧下降的趋势,K4处理下,铺地竹全部死亡;碱性盐各处理胁迫下,两种竹的脯氨酸含量变化并无一致规律;中性盐胁迫下,黄条金刚竹中可溶性蛋白的含量随着盐浓度的增加呈现缓慢上升的趋势,但低盐胁迫较高盐胁迫增加明显。铺地竹可溶性蛋白的含量呈现与黄条金刚竹完全相反的趋势,其中高盐处理下,可溶性蛋白急剧下降。碱性盐处理下,黄条金刚竹可溶性蛋白的含量除K1(低盐)处理呈现上升趋势外,其余处理均出现不同程度的下降,其中高盐处理出现了死亡现象。铺地竹各盐处理下可溶性蛋白的含量与黄条金刚竹的变化规律基本一致。
     6.研究了不同胁迫处理对两种竹伤害程度的评定
     采用模糊数学隶属函数法,在综合分析各胁迫处理对各个指标影响性大小的基础上,评定了16个胁迫处理下两种竹的伤害性大小并进行排序。
     试验结果证明,盐胁迫与碱胁迫是两种完全不同的胁迫,应将碱性盐胁迫称为碱胁迫,而通常所说的盐胁迫应仅指中性盐胁迫,而且两者具有明显的交叉作用。
The problem of salinization was become to the cosmopolitan problem. How better to use the saline-alkaline soil was return to the hot problem of the study. Bamboo is the important forest resources; it has many advantages, such as the saline-alkaline resistance, fast growth, early lumber, high yield, wide application. Especially it can be wider used in the garden. So selecting bamboo as the research object of saline-alkaline resistance not only have the important theoretical significance, but also can bring huge economic benefit and social benefit.Using Pleioblastus kongosanensis f. aureostriaus and Pleioblastus argenteostriatus as the major test material, and pot culture and so on, this paper studied the dynamic changes of the growth and physiological and biochemical indexes under the saline-alkali stress, discussed and compared the character and mechanism differences of the salt-tolerance. The main research result is as follows.
     1.The growth state of the two bamboos under different salt stress were studied.
     (1) Different salt stress had different effect on the two bamboos: The growth condition was extent affected by the saline-alkaline treatments. The Pleioblastus kongosanensis f. aureostriaus all died under the C4 ( the salt concentration is 300mmol·L-1and the pH:9.96) treatment. And Pleioblastus argenteostriatus had death phenomenon under K4(the salt concentration is 300mmol·L-1 ) and C4 treatment.
     (2) Different salt stress treatments obvious inhibited the growth and biomass of two kind bamboo. Under the stress of the neutral salt, the tendency of the height growth showed accelerating growth firstly and then decreased. Especially when the concentration reached 300mmol.L-1, the biomass of Pleioblastus kongosanensis f. aureostriaus was only about 25% relative to the control. And Pleioblastus argenteostriatus all dead. Under the stress of the alkaline salt, the effect showed more serious for the Pleioblastus argenteostriatus. The height growth of seedlings was inhibited and the biomass was decreased under the neutral salt and alkaline salt stresses. Under different stress level, the ratio of root to stem was increased significantly; Adding nutrients distribution to root may be the main adapting stress way of two bamboos.
     2.Studied on the effects of salt stresses on Chlorophyll of Pleioblastus argenteostriatus and Pleioblastus kongosanensis f. aureostriaus. Under low-strength neutral salt stress, the results showed that the contend of Chlorophyll a of Pleioblastus kongosanensis f. aureostriaus leaves appeared an increasing and then declining trend and then increasing, The change of other treatments were not obvious. And the results showed that the contend of Chlorophyll a of Pleioblastus argenteostriatus leaves appeared an increasing and then declining trend especially K4. The results showed that the contend of Chlorophyll b of Pleioblastus kongosanensis f. aureostriaus and Pleioblastus argenteostriatus leaves appeared an increasing and then declining trend. Under the stress of the alkaline salt, the content of Chlorophyll a and b were not presented a single tendency, but the general trend was decreased.
     3.Studied on the effects of salt stresses on MDH of Pleioblastus argenteostriatus and Pleioblastus kongosanensis f. aureostriaus. Under the neutral salt stress, with the increasing of the salt concentration, the content of the MDH was increasing, especially Pleioblastus argenteostriatus. It showed that the membrane system was damaged by the salt stress. Under the stress of the alkaline salt, the results showed that the contend of MDH of Pleioblastus kongosanensis f. aureostriaus leaves appeared an increasing and then declining trend and then increasing, the membrane lipid per oxidation of leaves was the main factor to the damage of the cell structure and function.
     4.Studied on the effects of salt stresses on protective enzyme of Pleioblastus argenteostriatus and Pleioblastus kongosanensis f. aureostriaus. At the early stage of neutral salt stress, the activities of SOD and POD were increased and the damage of free radical was off set. At later stage of the stresses, the decreasing of SOD and POD activities indicated that the capacity of eliminating free radical was weakening. Under the stress of the alkaline salt, the change law of the SOD and POD activities was the same to the neutral salt stress.
     5.Studied on the effects of salt stresses on osmoregulation substance of the Pleioblastus argenteostriatus and Pleioblastus kongosanensis f. aureostriaus. Under the neutral salt stress, with the increasing of the salt concentration, the content of the proline was increasing and then sharp drop about the two kind bamboos. And under the K4 treatment, Pleioblastus argenteostriatus all dead. Under the stress of the alkaline salt, the change law of the proline was not uniformly. Under the neutral salt stress, with the increasing of the salt concentration, the content of the soluble protein was slowly increasing of Pleioblastus kongosanensis f. aureostriaus, but change law showed completely reverse trend about the soluble protein on Pleioblastus argenteostriatus. Under the stress of the alkaline salt, the content of the soluble protein was decreasing except for K1, and the part Pleioblastus kongosanensis f. aureostriaus dead under high salt treat. The change law was on the content of the soluble protein about two kind bambooss were the similar.
     6. Studied on the injured result of comprehensive evaluation under different alkaline and salt stress gradients. According to the analyzed on the all influence indexes by Subordination function method and evaluated and sorted damage degree of the two kinds bamboos according to the sixteen stress treatments.
     Results revealed that alkali salt stress and salt stress were actually two distinct kinds of stresses. The former was better called alkali stress, while salt stress only meant neutral salt stress. An interactive effect between salt stresses and alkali stresses could be found under mixed salt and alkali stress.
引文
[1]曹福亮.中国南方主要造林树种耐盐耐旱机理研究[M].北京:中国林业出版社,1993.
    [2]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学),2003,21(2):177~182.
    [3]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84~90.
    [4]陈兴玲等,三种彩色树对盐碱胁迫的生理响应[J].吉林林业科技, 2009(5): 10~14.
    [5]戴蒲英.盐胁迫对主要造林树种种子活力及幼苗生理特性的影响[J].广西科学, 1998,5(1):62~65,70.
    [6]冯利波,蒋卫杰,亢秀萍等.植物耐盐性机理及基因控制技术研究进展[J].农业工程学报,2005,12(增刊):5~9.
    [7]傅秀石,崔光泉.冬小麦耐盐力与脯氨酸含量的关系[J].山东农业科学,1988,(2):5.
    [8]高岩,张汝民,姚云峰等.盐胁迫对梭梭幼苗体内保护酶系统活性的影响[J].内蒙古大学学报,1997,28(2):253~256.
    [9]何开跃,郭春梅.盐胁迫对3种竹子体内SOD,POD活性的影响.江苏林业科技, 1995,22(4):11~14.
    [10]惠红霞,许兴,李守明.宁夏干旱地区盐胁迫下枸杞光合生理特性及耐盐性研究[J].中国农学通报,2002,18(5):29~34.
    [11]贾恢先,赵曼容,马莹.典型盐地植物细胞脂质过氧化伤害与质膜超微结构变化的研究[J].西北植物学报,1994,14(5):1~5.
    [12]李庆贱等,.白榆家系苗期耐盐碱研究[J].北京林业大学学报, 2010(5): 74~81.
    [13]李学强,李秀珍.盐碱胁迫对欧李叶片部分生理生化指标的影响[J].西北植物学报, 2009(11): 2288~2293.
    [14]刘涛等,混合盐碱胁迫对两种抗性不同的绣线菊光合特性的影响[J].东北农业大学学报, 2009(5): 32~36.
    [15]李晓燕,宋占午,董志贤.植物的盐胁迫生理[J].西北师范大学学报(自然科学版),2004,40(3):106~111.
    [16]刘桂丰,杨传平,温绍龙等.盐逆境条件下三个树种的内源激素变化[J].东北林业大学学报,1998,26(10):1~3.
    [17]刘家尧,衣艳君,赵可夫等.甜菜碱的测定技术及其在植物抗盐生理中的作用[J].曲阜师范大学学报,1994,20(2):66~69.
    [18]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987,12(4):1~7.
    [19]吕芝香,乙引.NaCl对小麦苗叶片脯氨酸氧化酶活性和游离脯氨酸积累的影响[J].植物生理学报,1992,(18):376~382.
    [20]马常耕.世界植物树种抗逆性育种研究进展[J].世界林业研究,1996,(3):4~11.
    [21]马翠兰,刘星辉,陈中海.果树对盐胁迫的反应及耐盐性鉴定的研究进展[J].福建农业大学学报,2000,29(2):161~166.
    [22]马焕成,罗明灿,白根本等.植物抗盐研究中存在的误区和问题[J].辽宁林业科技, 1996,3:49~50.
    [23]马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应[J].西南林学院学报, 1998,18(1):33~41.
    [24]马焕成,王沙生.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院学报,1998,18(1):15~23.
    [25]马焕成,王沙生.盐胁迫下胡杨的离子响应[J].西南林学院学报,1998,18(1):42~47.
    [26]倪寿山,王艳华,梁富强等.三角叶滨藜耐盐性试验[J].山东农业科学,2005,(6):31~34.
    [27]彭儒胜等.黑杨和胡杨派间杂种无性系耐盐碱试验[J].林业科技开发, 2010(5): 30~33.
    [28]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001.
    [29]曲元刚,赵可夫.NaCl和Na2CO3对盐地碱蓬胁迫效应的比较[J].植物生理与分子生物学学报,2003,29(5):387~394.
    [30]阮成江,谢庆良.盐胁迫下沙棘的渗透调节效应[J].植物资源与环境学报, 2002,11(2):45~47.
    [31]沈惠娟,曾斌.干旱、低温胁迫对SOD、POD活性的影响[J].南京林业大学学报, 1992,16(4):54~57.
    [32]石德成,盛艳敏,不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报, 1998,40(12):1136~1142.
    [33]史军义,易同培,马丽莎等.园林地被竹及其开发利用[J].四川林业科技, 2007,27(6):95~100.
    [34]孙国荣,阎秀峰.盐胁迫对星星草幼苗保护酶系统的影响[J].草地学报,2001,9(1):34~38.
    [35]汤章城.逆境条件下植物脯氨酸的累积及可能的意义[J].植物生理学通讯, 1984(1):15~27.
    [36]唐伟英,徐子龙,李三玉等.海涂温州密柑砧木比较试验[J].中国柑橘,1998(3):12~ 14.
    [37]万贤崇,宋永俊.盐胁迫及其钙调节对竹子根系活力和丙二醛含量的影响[J].南京林业大学学报,1995,19(3):16~20.
    [38]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J].南京林业大学学报, 2003,27(3):11~14.
    [39]王邦锡,孙莉.渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系[J].中国科学,1992(4):364~368.
    [40]王凯,尹金来,周春霖等.耐盐蔬菜三角叶滨藜引种和栽培研究[J].江苏农业科学, 2001,(4):57~59.
    [41]王锁民等.渗透调节在碱茅属幼苗适应盐逆境中的作用初探[J].草业学报, 1993,2(3):40~46.
    [42]王秀娟与杨会青,盐碱胁迫下西伯利亚白刺的渗透调节物质的变化[J].热带农业科学, 2010(2): 34~36.
    [43]王衍安,李际红,张友朋,等.耐盐杨树新无性系选育续报[J].山东林业科技, 1997,4:7~11.
    [44]王志春,梁正伟.植物耐盐研究概况与展望[J].生态环境,2003,12(1):106~109.
    [45]韦小丽,徐锡增,朱守谦.水分胁迫下榆科3种幼苗生理生化指标的变化[J].南京林业大学学报(自然科学版),2005,29(2):46~50.
    [46]魏海霞,孙明高,夏阳,等.NaCl胁迫对苦楝细胞膜透性和有机渗透调节物质含量的影响[J].甘肃农业大学学报,2005,40(5):599~603.
    [47]翁森红,蒋尤泉.牧草耐盐性鉴定指标和方法的初步研究[J].中国草地, 1992,(1):30~34.
    [48]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报,2002,26(3):19~22.
    [49]吴永波.四种绒毛白蜡树幼苗耐盐性的比较研究[D].南京林业大学博士论文,2002.
    [50]武康生.栓皮栋苗木的水分关系[J].北京林业大学学报,1990,12(3):26~33.
    [51]武之新,齐树亭.土壤盐分对金丝小枣生长发育的影响[J].中国果树,1985,(2):11~15.
    [52]夏尚光.美国岩榆的引种育苗技术与耐盐耐旱特性研究[D].南京林业大学硕士论文,2005.
    [53]夏阳,梁慧敏,束怀瑞等.NaCl胁迫下苹果幼树叶片膜透性,脯氨酸及矿质营养水平的变化[J].果树学报,2005,22(1):1~5.
    [54]夏阳,孙明高,李国雷等.盐胁迫对四园林绿化树种叶片中叶绿素含量动态变化的影响[J].山东农业大学学报(自然科学版),2005,36(1):30~34.
    [55]肖春旺,董鸣,周广胜,等.鄂尔多斯高原沙柳幼苗对模拟降水量变化的响应[J].生态学报,2001,21(1):171~176.
    [56]肖春旺,刘玉成.不同光环境的四川大头茶幼苗的生态适应[J].生态学报, 1999,19(3):422~426.
    [57]肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报, 2000,20(5):818~822.
    [58]肖用森,王正直,郭绍川.渗透胁迫下稻田中游离脯氨酸与膜脂过氧化的关系[J].武汉植物学研究,1996,14(4):334~340.
    [59]许详明,叶和春,李国风.植物抗盐机理的研究进展[J].应用与环境生物学报, 2000,6(4):379~387.
    [60]游为贵.明溪竹类图志[M].1998.
    [61]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社.2001,752~753.
    [62]闫永庆等.白刺对不同浓度混合盐碱胁迫的生理响应[J].植物生态学报, 2010(10): 1213~1219.
    [63]苑增武,张孝民,毛齐来等.大庆地区主要造林树种耐盐碱能力评价[J].防护林科技, 2000,1:15~17.
    [64]姚帅男,刘晓东,施冰,.混合盐碱胁迫对金山绣线菊Na~+和K~+分布影响的研究.林业科技[J], 2009(5): 60~63.
    [65]尹福强.混合盐碱胁迫对黄花烟部分理化特性的影响[J].江苏农业科学, 2009(6): 112~113.
    [66]张宝泽,赵可夫.刺槐和沙枣耐盐性能的研究[J].山东科学,1996,9(2):53~55.
    [67]张川红,沈应柏,尹伟伦.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学, 2002,38(2):27~31.
    [68]张川红.北方几个造林树种抗盐能力与抗盐机理研究[D].北京:北京林业大学, 1999.
    [69]张建锋,李吉跃,宋玉民等.植物耐盐机理及耐盐植物选育研究进展[J].世界林业研究,2003,16(2):16~21.
    [70]张建锋,乔勇进,焦明,等.盐碱地改良利用研究进展[J].山东林业科技,1997,3:5~8.
    [71]张莉,续九如.水分胁迫下刺槐不同无性系生理生化反应的研究[J].林业科学, 2003,39(4):162~167.
    [72]张玲,曹帮华,高健等. 5种地被竹光合日变化特性研究[J].山东科学, 2009, 22 (2):22~26.
    [73]张明艳.杜仲对盐胁迫反应的研究[D].硕士论文.2000.
    [74]张新春,庄炳吕,李自超.植物耐盐性研究进展[D].玉米科学2002,10(1):50~56.
    [75]章宁,唐龙飞,郑德英.不同盐浓度对红萍生长及若干生理指标的影响[J].亚热带植物通讯,1994,23(1):41~45.
    [76]赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报,1999,16(5):56~63.
    [77]赵可夫,范海.盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究[J].应用与环境生物学报,2000,6(2):99~105.
    [78]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1998.
    [79]郑国琦,许兴,徐兆桢.耐盐分胁迫的生物学机理及其基因工程研究进展[J].宁夏大学学报(自然科学版),2002,23(1):79~85.
    [80]郑容妹,郑郁善,张梅,等.盐分胁迫对沿海绿竹光合作用及叶绿素的影响[J].竹子研究汇刊,2002,21(4):76~80.
    [81]周三,韩军丽,赵可夫.泌盐盐生植物研究进展[J].西北植物学报2003,23(1):190~ 194.
    [82]朱建军,王洪春.生物膜渗透特性的理论分析.植物生理学通讯[J],1986(1):6~10.
    [83]朱万泽,薛建辉,王金锡.台湾桤木种源对水分胁迫的光合响应及其抗旱性[J].水土保持学报,2004,18(4):170~181.
    [84]朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报, 1999,16(4) :332~338.
    [85]Bohnert HT et al.Adaptation to environmental stress[J].Plant cell,1995.
    [86]Causes,Extent,Management and Case Studies[M].Sydney:University of New South Wales Press,1995.
    [87]Choukr Allah R.The potential of halophytes in the development and rehabilitation of arid and semiarid zones[A].Halophytes and Biosaline Agriculture[C].NewYork:Marcel Dekker Inc.,1996.3~13.
    [88]Ghassemi F,Jakeman A J,Nix H A.Salinisation of Land and Water Resources;Human Causes,Extent,Management and Case Studies[M]. Sydney: University of New South Wales Press,1995.
    [89]Hare PD,Cress WA,Van Staden J.Dissecting the roles of osmolyte accumulation during stress[J].Plant Cell Envir,1998,21:535~553.
    [90]Hare PD,Cress WA.Metabolic implications of stress-induced proline accumulation in plants[J]. Plant Growth Regulation,1997,21:79~102.
    [91] Haro R,Baneulosma,Quintero FJ,etal.Genetic basis of sodium exclusion and sodium tolerance in yeast.A model for plants[J].Physiol Plant, 1993, 89: 868~874.
    [92]Hernandez J A,Campillo A and Jimenez A.Response of antioxidant systems and leaf water relations to NaCl stress in pea plants.New Phytol,1999,141(2):241~251.
    [93]HsiaoTC.Plant responses to water stress[J].Plant Physiol, 1973, 24: 519~ 570.
    [94]Kaasen I,Falknberg P.Molecular cloning and physical mapping of the otsBA genes,which encode the osmoregulatory trehalose pathway of Escherichia coli[J].Journal of Bacteriology, 1992, 174:889~898.
    [95]Katsu M,Kuchitsu K.,Tskeshige,Taza wa M,Salt stress-induced cytoplamic acidificationand vacuolar alkalization in Nitellopsis obtuse cells[J].Plant Physiol., 1989, 90:1102~1107.
    [96]Kingsbury R.W.Epstein E.1986,Salt sensitivity in wheat[J].Plant Physiol., 80: 651 ~ 654.
    [97]Kulieva FB,Shanina Z B,Strogonov BP Effect of high sodium chloride concentrogonations on the in-vitrocell division of Crepis capillaries[J].Fiziol Rast, 1975,22:131~135.
    [98]Laungjame.J etc.salinity effects in Eucalyptus camaldulensis and Combretum quadrangulare: ecophysiological and morphological studies[J]. Acta Forestalia Fennica,1990 ,(214):105.
    [99]Luangjame.J etc.Salinity effects in Eucalyptus camaldulensis and combretum quadrangulare.
    [100]Ecophysiological and morphologicalstudies [J]. Acta Forestalia Fennica.1990, (214) :105~110.
    [101]Ludlow,M.M,R.C.Muchow.A critical evaluation traits for improving crop yields in water-limited environments[J].Advances in Agronomy,1990(43): 107~153.
    [102]Maynard G,Hok.David M.The physiology of plant under stress[M].John wilcy&son New York 1987,89.
    [103]Mishra N P,Mishra R K,Singhal G S.Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperature in the presence of protein synthesis inhibitors[J].Plant Physiol, 1993, 102: 903~908.
    [104]Oertli JJ.Effect of susceptibility of sunflower plant to smog.[J].Soil science, 1959, 87: 249~253.
    [105]Petrusalm,Winicoll.Proline status in salt tolerant and salt sensitive alfalfacellllines and plants in response to NaCl[J].Plant Physiol Biochem,1997,35;303~310.
    [106]Pitman M.G.,,In Salinity Tolerance in Plants[J](eds.Staples R.C., Toenniessen G.A.). 1984, 93-123.
    [107]Qureshi R H,Barrett Lennard E G.Saline Agriculture for Irrigated Land in Pakistan:a Handbook[C].Monograph No50,Canberra:Australian Centre for International Agricultural Research, 1998.
    [108]Rodolfo Zentella.A Selaginella lepidoghylla trehalose-6-phosphat esynthase complements growth and stress-tolerance defects in a yeast tps1 mutant [J]. Plant Physiology, 1999, 119:1473~1482.
    [109]Schlet P.J.&Morshall P.E.Growth and water relation of balek locust and pinus seedling exposed to control water stress [J]. Can. J. For. Res. 1982, 13:334~335.
    [110]Silhavy D,Hutvager G,Bara E,Isolation and characterization of water stress in ducible Cdna clone from soltnum chacoense[J].Plant Molecular Biology 1995,27(3): 587 ~595.
    [111]Smart CM. Gene expression during leaf senescence.New Phytol [J]. 1994, 126: 419 ~ 448.
    [112]Termaat A.et al., Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley[J].Plant Physiol., 1985,77:869-873.
    [113]TunerNC.Concurrent comparisons of stomatal behavior,water status,and evaporation of maize in soil at high or low water potential[J].Plant Physiol, 1975, 55: 932 ~936.
    [114]Yeo AR,Lee KS,Izard P,etal short and long term effects of salinity on leaf groeth in rice(Oryza satival.)[J].Journal of Experimental Botany, 1991, 42:881~889.
    [115]Yu S W(余叔文),Tang Z C(汤章城).Plant Physiolaogy and Molecular Biology.Beijing:Science Press. 1998, 752~769(in Chinese).
    [116]Wu S, Ding L & Zhu J.SOS I a genetic locus essential for salt tolerance and potassium acquisition [J].The Plant Cell, 1996, 8:617~627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700