高速列车载荷反演技术及其运用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激励随时间变化的关系对工程结构的设计、分析以及使用过程中的可靠性等具有十分重要的影响。对于高速列车而言,轮轨之间的相互作用是决定其运行稳定性的主要因素之一。对轨道来说,随着列车运行速度的提高,轮轨作用载荷急剧恶化,将导致轨道变形的加速,严重影响高速列车行车安全。另外,从评估高速列车动力学特性、各部件之间的振动耦合关系、摩擦磨损性能、耐久性等方面来说,实现对轮轨作用力的实时掌握和分析也是非常必要的。因此,轮轨之间的接触力信息一直是研究人员和工程人员关注的热点课题。
     在高速列车的运行中,由于轮轨之间的高速相对运动、结构复杂以及各个方向载荷相互影响等,运行状态下的轮轨激励载荷通常难以测量,因此需要发展一种间接的载荷-时间关系求解方法,即载荷反演法。论文在理论推导的基础上,与工程实际需求紧密结合,主要完成了以下工作:
     (1)论文全面总结了国内外有关载荷反演方法最新研究进展,并对载荷反演方法在铁道机车车辆上的发展和运用进行了梳理和详细的总结。从我国机车车辆以及高速列车的现状着手,分析了建立具有广泛应用价值的高精度的运行列车轮轨动载荷反演方法的重要性。
     (2)提出了一种基于动态规划的非迭代载荷反演时域方法。从系统的角度建立了结构输入载荷评估的数学模型,通过间接测量的方法,建立结构未知激励载荷与该激励下的结构响应之间的关系,从而得到时域下的输入激励载荷。由于反演模型的非迭代性,方法有效解决了动载荷反演中对初始条件过分依赖的问题,同时避免了载荷反演过程中误差的传递和累积,具有良好的数值稳定性。将Bellman最优化原理引入到目标函数的最小化当中,保证了每个积分步长上得到的反演载荷和响应均能够使目标函数最小,有效地降低了载荷识别过程中无法避免的病态问题对反演结果的影响,得到了与真实载荷非常相近的反演载荷。
     (3)系统地对正则化参数的求解方法进行了理论推导和研究,得到了适用于本反演模型的广义交叉验证法计算公式。数学物理反问题在求解过程中,由于原始测量数据受到测量仪器、外界干扰等的影响以及在反演数学模型中受到已知测量数据不足、边界条件取值不当、测量响应的噪声干扰和近似解的不稳定性等因素的影响,导致反演求解过程通常存在不适定性。正则化方法是解决这一不适定性问题的一类有效的方法。将正则化理论引入到载荷反演数学模型当中,基于反演数学模型和广义交叉验证法(GCV法)的原理,推演得到了适用于本反演模型的广义交叉验证法计算公式。利用GCV法和L曲线法对最优正则化参数进行求解,大大减小了计算舍入误差和测量噪声对反演结果的影响,克服了现有载荷反演技术中普遍存在的识别结果波动较大的问题,提高了反演数学模型抗噪声的能力,从而抑制测量噪声导致的反演载荷“漂移”现象。在上述载荷反演数学模型的基础上,本文进一步引入特征值缩减技术,解决了大型结构复杂载荷反演过程中,当待反演载荷数目以及测量响应的数目都比较少时,控制矩阵求解效率低的问题。
     (4)开展了载荷反演方法在高速列车上的工程运用研究。将载荷反演数学模型引入到高速列车轮轨接触力反演当中,分别建立了高速客车10自由度垂向随机振动力学模型和17自由度横向随机振动力学模型,首先从SIMPACK动力学仿真的角度对所提出的载荷反演数学模型进行了验证。在运行速度分别为100km/h和250km/h两个速度级下,将SIMPACK动力学仿真输出的轴箱纵向、横向和垂向加速度作为反演数学模型的输入,对轮轨接触力以及脱轨系数进行了预测,从时域和频域两个方面对反演结果与SIMPACK动力学仿真结果进行了对比分析。结果表明,轮轨垂向力和横向力反演结果与仿真结果趋势一致,两种方法得到的接触力相关系数均介于0.5和0.8之间,属于中等程度相关和强相关;对两种方法得到的接触力曲线进行功率谱密度分析表明,反演模型在O.1Hz-500Hz频率范围内,反演结果均令人满意。
     (5)利用西南交通大学牵引动力国家重点实验室的滚动振动试验台对反演模型进行了验证。通过24通道的DDS32数采集系统对280km/h运行速度下某高速车车体垂向加速度、构架的垂向加速度以及四个轴箱垂向加速度进行了采集。将任意四个部位的测量加速度作为反演数学模型的输入,对车辆轮轨垂向载荷和其它部位垂向振动加速度进行反演,得到了车辆的轮轨垂向载荷,并获得了与试验值非常吻合的垂向振动加速度。
The relationship between excitation and time is very important for the design and analysis of engineering structures, and also impact on their use of process reliability. For high-speed vehicle, its operational stability is very high decided by the interaction between the wheel and rail in some extent. For the rail, with the improvement of train running speed, the wheel/rail interaction force will be dramatically worse, this would be serious influence the safety of high speed train. In addition, from the evaluation of high speed train dynamics characteristics, the vibration coupling relationship between the components, friction and wear performance, durability and so on, to controlling and analysis the real time of the wheel/rail force is also very necessary. Therefore, how to get the wheel/rail contact force is always a hot topic for researchers and engineers.
     In the high speed train operation, because of the high-speed relative motion between wheel and rail, structure complexity and load influence each other in each direction, it is very difficult to measure the wheel/rail excitation force in running state. So, we need to develop a kind of indirect force-time solution method, namely force inversion method. Based on the basis of theoretical derivation, with the engineering actual demand closely, the main works of this paper are as follows:
     (1) The domestic and foreign latest load inversion methods are comprehensively reviewed, and for the first time, we summarize the development and application of the load inversion methods which have been used in railway locomotive vehicles. From the present situation of the locomotive vehicle and high-speed train in our country, the importance of load inversion method for operation train to get high precision wheel/rail contact dynamic force is analyzed.
     (2) A non iterative load inversion time domain method which based on the dynamic programming is proposed. From the point of view of system, the structure input force evaluation mathematical model is established, and through the indirect measurement method, the relationship of the unknown excitation load and its response of the structure are also established, then the input excitation load in time domain is gotten. Because of the non iterative property of the inversion model, the initial condition dependence problem is solved effectively in the process of the load inversion. At the same time, the transfer and accumulation of the error are also avoided in the process of the method which makes the result have better numerical stability. Then the Bellman's principle of optimality is used for the minimization of the objective function to estimate the excitation forces, which ensure to get the inverse forces and responses that make the objective function minimum in each time step, and effectively reduce the influence that caused by avoidless the ill-posed in the process of the load inversion, and get the inverse load which is very similar to the real load.
     (3) For the first time to systematically deduce and research the regularization parameter solution, and the generalized cross-validation (GCV) method calculation formula which is very suitable for the inversion model is obtained. Because the original measurement data is influenced by measuring instruments and external disturbance, and in the inverse problem of mathematical physics solving process, it often meets such as the insufficiency of known measuring data, improper values of boundary conditions, the noise disturbance of measuring response and the instability of the approximate solution, etc., the inversion solution process usually exists ill-posedness. Regularization method is a kind of effective methods to solve the ill-posedness problem. The regularization theory is introduced into the inversion mathematical model, based on the inversion model and the principle of GCV method, the GCV calculation formula which is very suitable for the inversion model is obtained. The regularization parameter is solved by GCV method and the L-curve method, and the method greatly reduces the influence that due to a calculation rounding measurement error and the signal noise during the load identification process, overcome the large fluctuation which is widespread existing in the current load inversion technology, and improve the anti-noise ability of the inversion mathematical model. At the same time, load drift is inhibited. In the above load inversion mathematical model, this paper further introduces characteristic value reduction technology, which is effectively used in the load inversion process of the large complex structure, especially when there are less number of inversion loads and measuring responses, and the control matrix solution efficiency is very low.
     (4) The load inversion method is used in the high-speed train. The load inversion mathematical model is introduced into the high-speed train wheel/rail contact force inversion,10degrees of freedom vertical vibration model and17degrees of freedom horizontal vibration model are established, respectively. First of all, the load inversion mathematical model is verified from the point of the SIMPACK dynamics simulation. Under100km/h and250km/h, longitudinal acceleration, transverse acceleration and vertical acceleration of the axle box from the SIMPACK dynamics simulation are used as the input of the inversion mathematical model, the wheel/rail contact forces and derailment coefficients are identified. From the time domain and frequency domain, inverse results are compared with SIMPACK simulation results. The results indicate that the vertical and horizontal wheel/rail forces had the same trend with SIMPACK simulation results, and in time domain, their correlation coefficients are greater than0.5, belongs to the moderate related and strong correlation. PSD analysis shows that, both in the low frequency range and in the high frequency range, from0.1Hz to500Hz, the PSD of the inverse forces is as the same as the simulation results, the inversion results are satisfactory.
     (5) The rolling and vibrating test-bed in TPL at Southwest Jiaotong University is used to verify the effectiveness of the load inversion mathematical method. Under280km/h, the car body vertical acceleration, two bogie frames accelerations and four axle boxes accelerations are measured using DDS32data acquisition system. Selecting four values in these measurement responses as the input of the inversion mathematical model, the wheel/rail vertical force and other parts of the inversion vertical vibration acceleration are gotten. The inversion vertical vibration acceleration is very close to the test value, at the same time, we also get the vertical contact force of the train.
引文
[1]Hiromichi Kanehara. Measuring rail/wheel contact point of running railway vehichle[J]. Wear,2002, Vol(253), pp275-283.
    [2]Higgns R L. High accuracy load measuring wheelset.1992.
    [3]Otter D E. A design for next generation load measuring wheelset[J]. IEEE/ASME, May, 1991.
    [4]Pezerat C, Guyader J L. Two inverse methods for localization of external sources exciting a beam. Acta Acustica,1995, Vol.3 (1), pp1-10.
    [5]Mitra M, Gopalakrishnan S. Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides. International Journal of Solids and Structures.2005, Vol.42, pp4695-4721.
    [6]Djamaa M C, Ouelaa N. Reconstruction of a distributed force applied on a thin cylindrical shell by an inverse method and spatial filtering. Journal of Sound and Vibration.2007, Vol.3(301), pp560-575.
    [7]Han X, Liu J, Li W J. A computational inverse technique for reconstruction of multi-source loads in time domain. Acta Mechanica Sinica.2009, Vol.41 (4), pp595-602.
    [8]Zhang Y. Mann III J A. Examples of using structural intensity and the force distribution to study vibrating plates. Journal of Acoustical Society of America.1996, Vol.99, pp353-361.
    [9]何华武.快速发展的中国高速铁路.学术动态,2006,Vol.4,pp1-16.
    [10]F D Barlett, W G Flannelly. Model verification of force determination for measuring vibration loads[J]. Journal of the American Helicopter Society,1979, Vol.19(4), pp10-18.
    [11]Giansamete N, Jones R, Calapodas N J. Determination of in-flight helicopter loads[J]. Journal of the American Helicopter Society,1982, pp58-64.
    [12]Hillary B, D J Ewins. The use of strain gages in force determination and frequency response measurements[C]. Proceedings of 2nd International Modal Analysis Conference. Orlando, Florida, February,1984, pp685-690.
    [13]K K Stevens. Force identification problems-an overview[C]. Proceedings of the 1987 Society of Experimental Mechanics Spring Conference on Experimental Mechanics, 1987,pp838-844.
    [14]Karlsson S E S. Identification of external structural loads from measured harmonic responses[J]. Journal of Sound and Vibration,1996, Vol.196 (1), pp59-74.
    [15]智浩,文祥荣,缪龙秀,林家浩.动态载荷的频域识别方法[J].北方交通大学学报,2000,Vo1.24(4),pp5-10.
    [16]许峰,陈怀海,鲍明.动载荷识别的广义域模态模型及其精度分析研究[J].计算力 学学报,2003,Vol.20(2),pp218-222.
    [17]Desanghere G, Snoeys D. Indirect identification of excitation forces by modal coordinate transformation[C]. Proceedings of the 3rd MAC, Florida, USA,1985, pp164-168.
    [18]Kreitinger T, Luo H L. Force identification from structural responses[C]. Proceedings of the 1987 SEM Spring Conference, June 1987, pp851-855.
    [19]唐秀近.动态力识别的时域方法[J].大连工学院学报,1987,Vol.26(04),pp21-27.
    [20]唐秀近.时域识别动态载荷的精度问题[J].大连理工大学学报,1990,Vol.1.
    [21]初良成,区乃泗,邬瑞锋,动态载荷识别的时域正演方法[J].应用力学学报,1994,Vol.11(2),pp9-18.
    [22]时战,许士斌,初良成,李桂华,利用脉冲响应函数识别载荷的时序法[J].振动工程学报,1995,Vol.8(3),pp235-242.
    [23]路敦勇,吴淼,动载荷识别的SWAT方法研究[J].振动与冲击,1999,18(4):78-82
    [24]张运良,林皋等.一种改进的动态载荷时域识别方法[J].计算力学学报,2004,Vol.21(2),pp209-215.
    [25]蔡元奇,朱以文.基于逆向滤波器的动态载荷时域识别方法[J].振动工程学报,2006, Vol.19(2),pp201-205.
    [26]李辉,丁桦.一种基于比例反馈控制原理的动载荷时域反演方法[J].计算力学学报.2008,Vol.5,pp602-609.
    [27]Masri S F. Chassiakos A.G. Caughey T K. Identification of nonlinear dynamic systems using neural networks[J]. Journal of Applied Mechanics.1993, Vol.60(1), pp123-133.
    [28]Liang Yanehun, ZhouChunguang, Wang Zaishen. Identification of restoring forces in nonlinear vibration systems based on neural networks[J]. Journal of Sound and Vibration, 1997,Vol.206(1),pp103-105.
    [29]梁艳春.计算智能与力学反问题中的若干问题[J].力学进展,2000,Vol.30(3),pp321-331.
    [30]吴大宏,赵人达.基于神经网络的混凝土桥梁荷载识别方法研究[J].中国铁道科学,2002,Vol.23(1),pp25-28.
    [31]窦春红,林近山,寇兴磊.基于BP神经网络的海洋平台振动载荷识别[J].石油矿场机械,2007,Vol.36(7),pp11-15.
    [32]Inoue H, Kishimoto K, Shibuya T. Experimental wavelet analysis of flexural waves in beams[J]. Experimental Mechanics,1996, Vol.36 (3), pp212-217.
    [33]Doyle J F. A wavelet disconsolation method for impact force identification[J]. Experimental Mechanics,1997, Vol.37 (4), pp403-408.
    [34]赵玉成,袁树清,李舜酩,许庆余.动态载荷的小波正交算子变换识别法[J].机械强度,1998,Vol.20(2),pp127-133.
    [35]黄林,袁向荣.小波分析在桥上移动荷载识别中的应用[J].铁道学报,2003,Vol.25(4),pp97-101.
    [36]D C Kammer. Input force reconstruction using a time domain technique. AIAA Dynamics Specialists Conference. Salt Lake City, UT,1996.
    [37]D C Kammer, A D Steltzner. Structural identification of Mir using inverse system dynamics and Mir/shuttle docking data. Journal of Vibration and Acoustics.2001, Vol.23, pp230-237.
    [38]D C Kammer, A D Steltzner. Structural identification using inverse system dynamics. Journal of Guidance Control and Dynamics.2000, Vol.23, pp819-825.
    [39]A D Steltzner, D C Kammer. Input Force Estimation Using an Inverse Structural Filter. 17th International Modal Analysis Conference (IMAC XXVII). Kissimmee, Florida, 1999.
    [40]J J Liu, C K Ma, J C Kung, D C Lin. Input force estimation of a cantilever plate by using a system identification technique. Computer Methods in Applied Mechanics and Engineering.2000, Vol.190, ppl309-1322.
    [41]C C Ji, S Ay, C Liang. A study on an estimation technique for the transverse impact of plates. International Journal for Numerical Methods in Engineering.2001, Vol.50, pp579-593.
    [42]M S Allen, T G Carne. Delayed, multi-step inverse struetural filter for robust force identifieation. Mechanical Systems and Signal Proeessing.2008, Vol.22, pp1036-1-54.
    [43]智浩,郭杏林,林家浩.平稳随机振动荷载识别的逆虚拟激励法[J].计算力学学报,1998,15(4):395-400.
    [44]J H Lin, X L Guo, H Zhi, W P Howson, F W Williams. Computer simulation of structural random loading identification[J]. Computers and Structures,2001, Vol.79, pp375-387.
    [45]袁向荣等.移动荷载识别的函数逼近法[J].振动与冲击,2000,Vol.19(1),pp58-70.
    [46]姜增国,孙艳茹.三次样条函数在桥梁移动荷载识别中的应用[J].振动与冲击,2006,Vol.25(6),pp124-126.
    [47]Inoue H, et al. Estimation of impact load by inverse analysis[J]. JSME International Journal, Series I,1992, Vol.35 (4), pp420-427.
    [48]王慧儒,谢晓竹,吴森.基于逆传系统法的动态载荷识别研究[J].装甲兵工程学院学报,2005,Vol.19(3),pp79-82.
    [49]Wornell G Signal processing with fractals:a wavelet-based approach[J]. Englewood Cliffs, N.J.:Prent ice Hall PTR,1996, ppl-177.
    [50]Ling Yu. Accounting for bridge dynamics loads using moving force identification system [D]. The Hong Kong Polytechnic University.2001.
    [51]Davies P, Sommerville F.K. Low-cost axle load determination. Proceedings of the 13th ARRB/5th REAAA combined conference.1986, pp142-149.
    [52]Cantienti R. Dynamic behaviour of highway bridges under the passage of heavy vehicles. Swiss Federal Laboratories for Materials Testing and Research Report.1992.
    [53]Y.S.Cheng. F.T.K.Au, Y.K.Cheung. Vibration of railway bridges under a moving train by using bridge-traek-vehicle element. Engineering Struetures.2001,Vol.23, pp1597-1606.
    [54]M.A.Foda, Z.Abduljabbar. A dynamic green function formulation for the response of a beam strueture to a moving mass[J]. Journal of Sound and Vibration.1998,Vol.210, pp295-306.
    [55]X.Q.Zhu, S.S.Law. Moving forces identification on a multi-span continuous bridge[J]. Journal of Sound and Vibration.1999,Vol.228, pp377-396.
    [56]X.Q.Zhu, S.S.Law. Dynamics load on continuous multi-lane bridge deek from moving vehicles[J]. Journal of Sound and Vibration.2002, Vol.251(4), pp4697-716.
    [57]Tommy H.T. Chan, Demeke B. Ashebo. Theoretical study of moving force identification on continuous bridges. Journal of Sound and Vibration.2006,Vol.295, pp870-883.
    [58]M.S.Troitsky. Orthotropic bridges theory and design. Cleveland,OH:James F.Lineoln Arc Welding Foundation.1987.
    [59]S.S.Law, J.Q.Bu, X.Q.Zhu, S.L.Chan. Moving load identification on a simply supported or thotropic plate. International Journal of Meehanical Seiences.2007,Vol.49, pp1262-1275.
    [60]L.Yu, Tommy H.T.Chan. Recent research on identification of moving load on bridges[J]. Journal of Sound and Vibration.2007, Vol.305, pp3-21.
    [61]C.Koniditsiotis, R.Buekmaster, P.Fraser. Australian highway speed weigh-in-motion an overview[G]. Road Transport Technology-4, Proeeedings of the Fourth International Symposium on Heavy Vehicle Weights and Dimensions. University of Miehigan. Transportation Research Institute. Ann Arbor,1995, pp 143-151.
    [62]F.Moses. Weigh-in-motion system using instrumented bridges[J]. Journal of Transport Engineering. ASCE 105,1978, pp233-249.
    [63]O.K.Norman, R.C.Hopkins. Weighing vehicles in motion[J]. Public Road.1952, Vol.27(1),pp1-17.
    [64]R.J.Peters. Axway-a system to obtain vehicle axle weights[C]. Proceedings of 12th ARRB Conference. Australia.1984, pp19-29.
    [65]R.J.Peters. Culway-an unmanned and undetectable high speed vehicle weighing system[C]. Proeeedings of 13th ARRB/Fifth REAAA Conferenee, Australia.1986, pp70-83.
    [66]C.OConnor, T.H.T.Chan. Dynamic loads from bridge strains. Journal of Struetural Engineering. ASCE.1988,Vol.114, pp 1703-1723.
    [67]S S Law, T H T Chan. Moving force identification:a time domain method. Journal of Sound and Vibration,1997,201(1), pp1-22.
    [68]T.H.T.Chan, S.S.Law, T.H.Yung, X.R.Yuan. An interpretive method for moving force identification[J]. Journal of Sound and Vibration.1999, Vol.219(3), pp503-524.
    [69]S.S.Law, T.H.T.Chan, Q.H.Zeng. Moving force identification:a time domain method[J]. Journal of Sound and Vibration.1997,Vol.201 (1), pp1-22.
    [70]S.S.Law, T.H.T.Chan, Q.H.Zeng. Moving forces identification:a frequency and time domains analysis[J]. ASME Journal of Dynamic System Measurement and Control.1997, Vol.12(3),pp394-401.
    [71]X Q Zhu, S S Law. Identification of vehicle axle loads from bridge dynamic responses[J]. Journal of Sound and Vibration,2000, Vol.236(4), pp705-724.
    [72]L.Yu. Accounting for bridge dynamic loads using moving force identification system (MFIS)[D]. PhD Thesis. The Hong Kong Polyteehnic University. HongKong,2002.
    [73]L.Yu, Tommy H.T.Chan. Moving force identification based on the frequeney-time domain method[J]. Journal of Sound and vibration.2003, Vol.261, pp329-349.
    [74]L.Yu, T.H.T.Chan. Identification of multi-axle vehicle loads on bridges[J]. Journal of Vibration and Aeousties.2004, Vol.126(1), pp 17-26.
    [75]H.T.Chan, S.S.Law, T.H.Yung.Moving force identification using an existing prestressed conerete bridge[J]. Engineering Struetures.2000,vol.22, ppl261-1270.
    [76]Tommy H.T.Chan, Ling Yu, S.S.Law. comparative study on moving force identification from bridge strains in laboratory[J]. Journal of Sound and Vibration.2000, Vol.235(1), pp87-104.
    [77]X.Q.Zhu, S.S.Law. Dynamic axle and wheel loads identification:laboratory studies. Journal of Sound and Vibration.2003, Vol.268, pp855-879.
    [78]许峰.动荷载识别若干前沿理论及应用研究.南京:南京航空航天大学,2003.
    [79]Lars Nordstrom, Patrik Nordberg. A critical comparsion of time domain load identification methods. Proceedings 6th international conference on motion and vibration control. Saitama, Japan.2002, Vol.2, pp1151-1156.
    [80]Jens C.O. Nielsen. High-frequency vertical wheelrail contact forces validation of a prediction model by field testing. Wear.2008, Vol.265, pp1465-1471.
    [81]Nordstrom LJL, Johansson H, Larsson F. A strategy for input estimation with sensitivity analysis. International Journal for Numerical Methods in engineering,2007, Vol.69, pp2219-2246.
    [82]T. Patrik Nordberg, Ivar Gustafsson. Dynamic regularization of input estimation problems by explicit block inversion. Comput. Methods Appl. Mech. Engrg.,2006, Vol. 195, pp5877-5890.
    [83]Ekke J. Oosterhuis, Wouter B. Eidhof, Peter J. M. etc. Force prediction via the inverse FRF using experimental and numerical data from a demonstrator with tuneable nonlinearithies. The thirteenth international congress on sound and vibration. Vienna, Austria, July 2-6,2006.
    [84]Lars Nordstrom, T. Patrik Nordberg. A time delay method to solve non-collocated input estimation problems. Mechanical System and Signal Processing.2004, Vol.18, pp1469-1483.
    [85]T. Patrik Nordberg, Ivar Gustafsson. Using QR factorization and SVD to solve input estimation problems in structural dynamics. Comput. Methods Appl. Mech. Engrg.,2006, Vol.195,pp5891-5908.
    [86]Nordstrom Lars. Load identification using time domain methods. Licentiate thesis, Department of Applied Mechanics, Chalmers University of Technology, Sweden,2003.
    [87]Tadeusz Uhl. Identification of operational loading forces for mechanical structures[C]. Proceedings of the 11th world congress in mechanism and machine science. April 1-4. 2004. Tianjin, China.
    [88]Tadeusz Uhl. The inverse identification problem and its technical application [J]. Arch Appl Mech,2007(77), pp325-337.
    [89]F Xia, S Bleakley, P Wolfs. The estimation of wheel rail interaction forces from wagon accelerations[C].4th Australasian Congress on Applied Mechanics, Institute of Materials Engineering Australasia Ltd 2005, pp333-338.
    [90]Fujie Xia, Colin Cole, Peter Wolfs. An inverse railway wagon model and its applications [J]. Vehicle System Dynamics,2007, Vol.45(6):583-605.
    [91]Fujie Xia, Colin Cole, Peter Wolfs. Grey box-based inverse wagon model to predict wheel-rail contact forces from measured wagon body responses[J]. Vehicle System Dynamics (Supplement),2008, Vol.46, pp469-479.
    [92]Hamed Ronasi, Hakan Johansson. A numerical framework for load identification with application to wheel-rail contact forces[C]. ECCOMAS International Symposium IPM 2009.
    [93]Hamed Ronasi, Hakan Johansson, Fredrik Larsson. A numerical framework for load identification and regularization with application [C]. Computers and Structures.2011, Vol(89), pp38-47.
    [94]张运良.冰载荷的识别及冰激振动的实验与数值模拟.大连:大连理工大学.2002.
    [95]T. Shim, C. Ghike. Understanding the limitations of different vehicle models for roll dynamics studies, Veh. Sys. Dyn..2007 (45), pp191-216.
    [96]M. Doumiati, G. Baffet, D. Lechner, et al. Embedded Estimation of the Tyre/Road Forces and Validation in a Laboratory Vehicle.9th International symposium on Advanced Vehicle Control. Kobe, Japan, October 2008.
    [97]T.A. Wenzel, K.J. Burnham, M.V. Blundell, et al. Estimation of the nonlinear suspension tyre cornering forces from experimental road test data.. Veh. Syst. Dyn.44 (2006),pp153-171.
    [98]J. Dakhlallah, S. Glaser, S. Mammar, et al. Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation. American Control Conference, Seattle,WA, June 2008.
    [99]L.R. Ray. Nonlinear tyre force estimation and road friction identification:simulation and experiments, Automatica 1997,33(10), pp1819-1833.
    [100]G. Baffet,A. Charara and G. Dherbomez. An observer of tyre road forces and friction for active-security vehicle systems, Mechatronics, IEEE/ASME 2007 (12), pp651-661.
    [101]G. Baffet, A. Charara, D. Lechner, et al. Experimental evaluation of observers for tyire-road forces, sideslip angle and wheel cornering stif fness. Veh. Syst. Dyn.2008 (45), pp191-216.
    [102]M.A.Wilkin, W.J. Manning, D.A. Crolla, et al. Use of an extended Kalman filter as a robust tyre force estimator. Veh. Syst. Dyn.2006 (44), pp50-59.
    [103]Adam D. Steltzner. Input force estimation, inverse structural system and inverse structural filter. University of wisconsin-madision.1999.
    [104]Juang J-N. Applied system identification. Englewood Cliffs, New Jersey 07632:Pretice Hall PTR.394.
    [105]Kreitingen T J. Force Identification from Structural Response. WL-TR-89-81,1990.
    [106]吴淼,黄民.机械系统的载荷识别方法与应用.中国矿业大学出版社.1990.
    [107]林家浩,智浩,郭杏林.平稳随机振动载荷识别的逆虚拟激励法(一).计算力学学报.1998,15(2):127-136.
    [108]智浩,郭杏林,林家浩.平稳随机振动载荷识别的逆虚拟激励法(二).计算力学学报.1998,15(4):395-400.
    [109]张之胚,李建德编著.动态规划及其应用.国防工业出版社.1994.
    [110]R. Bellman. Dynamic Programming. London:Oxford University Press.1957.
    [111]Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems. Berlin: Springer,1996.
    [112]Kammerer W J, Nashed M Z. Iterative methods for best approximate solutions of integral equations of the first and second kinds. J. Math. Anal. Appl.,1972,40:547-573.
    [113]N.Tikhonov. On solving incorrectly posed problems and method of regularization. Doklady Akadmii Nauk USSR.1963.
    [114]L.Landweber. An iteration formula for Fredholm integral equations of the first kind. American Journal of Mathematies.1951, Vol.73(3), pp615-624.
    [115]Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems, V. H. Winston and Sons. Washington, DC-New York,1977.
    [116]M.Z.Nashed. Generalized inverses and applications. NewYork:Academic Press.1976.
    [117]V.A.Morozov. Methods for solving incorrectly posed problems. NewYork:Springer. 1984.
    [118]M.Hanke. Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Numerical Functional Analysis and Optimization.1997. Vol.18, pp971-993.
    [119]T.Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal on Numerical Analysis.1983. Vol.20(3), pp626-637.
    [120]E.H.Moore. On the reciprocal of the general algebraic matrix. Bulletin of the Almerican Mathematical Society.1920. Vol.26, pp394-395.
    [121]R.Penrose. Ageneralized inverse for matrices. Proeeeding of the Cambridge Philosophical Soeiety.1955.Vol.51,pp406-413.
    [122]P.C.Hansen. Rank-deficient and discete ill-posed problems:numerical aspects of linear version. SIAM, philadelphia.1998.
    [123]Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics.21,215, May 1979.
    [124]Wahba G. spline medels for observational data. Society for industrial and applied mathematics. Philadelphia.1990.
    [125]Woltring H J. On optimal smoothing and derivative estimation from noisy displacement data in biomechanics. Hum. Move. Sci.4,3,229, September 1985.
    [126]P.C.Hansen. The L-curve and its use in the numerical treatment of inverse problems.
    [127]Beck.J.V, Blackwell.B, St. Clair, and Jr. C.R. Inverse heat conduction ill-posed problems. Wiley Interscience. New York.1985.
    [128]Ory.H, Glaser.H, and Holzdeppe.D. The reconstruction of forcing function based on aeroelasticity and structural dynamics. Proceedings of 2nd int. symp. on aeroelasticity and structural dynamics, Aschen FRG,1985:164-168.
    [129]文祥荣,缪龙秀.由实测应变响应识别结构动态载荷.铁道学报.2000,12(6),pp36-69.
    [130]徐倩,文祥荣,孙守光.结构动态载荷识别的精细逐步积分法.计算力学学报.2002,Vol.19(1),pp53-57.
    [131]钟万勰.结构动力方程的精细时程积分.大连理工大学学报.1994,Vol.32(2), pp131-136.
    [132]翟婉明著.车辆-轨道耦合动力学.北京:中国铁道出版社,2001.
    [133]Lechowicz S., Hunt C. Monitoring and managing wheel condition and loading. In: Proceeding of International Symposium for transportation recorders, Arlington.1999, pp. 205-239.
    [134]Nielsen, J., Johansson, A. Out of round railway wheels—literature survey, In: Proceedings Of the Institute of Mechanical Engineers-part F.2002, vol.214, pp.79-91.
    [135]Chudzikiewicz, A. Selected elements of the contact problems necessary for investigating the rail vehicle system In:Kisilowski, J., Knothe, K. (eds.) Advanced railway vehicle system dynamics, WNT, Warszawa,1991.
    [136]Chudzikiewicz, A. Elements of vehicle diagnostics, (in Polish) ITE, Radom,2002.
    [137]王福天.车辆动力学.北京:中国铁道出版社.1981.
    [138]Garg V K, DukkiPati R V. Dynamics of Railway Vehiele Systems. Canada:Academic Press,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700