断层破碎带下穿燃气管隧道围岩变形控制及管道保护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深圳地铁四号线二期工程上(上梅林站)-民(民乐站)区间,隧道于里程K9+105-K9+135(断层破碎带)下穿一次高压燃气管(Φ508×7.9,压力1.6MPa),燃气管埋设于人工填石(填土)层中,埋深约3.5m,距离隧道顶面约16.0m。此外附近还有一条广东大鹏天然气公司中600的燃气管道,DN1100、DN200两条供水管、一根Φ329.9×6.4供油管和地下电缆通过。在软弱富水地层进行隧道施工,如何有效控制围岩变形和地表沉降、减少地下水的流失是保证燃气管安全的重要途径,也是本工程顺利进行的前提。
     本文结合深圳地铁四号线二期工程的实例,通过理论分析、数值模拟(FLAC3D)、现场燃气管应力检测及沉降监测等手段,对断层破碎带下穿燃气管隧道围岩变形、地下水流失及燃气管的综合保护技术进行了较深入的研究,取得如下成果:
     (1)通过有限元软件(FLAC3D)进行围岩变形和位移沉降模拟计算得出:在软弱富水地层采用洞内管棚超前支护、小导管注浆能较好控制围岩变形和地表沉降,同时;结合地面分仓止水措施将地下水隔断于隧道开挖区域,能大大地减少了地下水的流失,有利于隧道掌子面的稳定及洞内施工的连续性。
     (2)由于该地段地处断层破碎带,地下水十分丰富,掌子面前方水头压力较大,若采取单纯的堵水措施,效果有限。超前钻孔引排水可以减少掌子面前方水头压力,同时通过钻孔的岩层探明掌子面前方15-20m范围地层情况,有利于施工的针对性。引排水管采用包有双层土工布滤网、周身开孔的钢管,反滤层能阻止泥砂随清水流入进水孔,有效控制了地层沉降。
     (3)针对次高压燃气管的保护,除了为控制围岩变形及地层沉降而采取的一系列措施外,从燃气管本身出发,对其焊缝及薄弱部位补强,削减管道上部荷载。在隧道施工的过程中,做好长期的监测工作,记录管道的沉降情况,同时;引入了管道无损应力检测技术,及时掌握管道应力变化情况。本技术可为今后类似隧道工程的管线检测提供较好的借鉴。
The subway tunnel underpasses a gas pipline of sub-high presure (Φ508×7.9, pressure 1.6 MPa) located in fault fracture zone in the mileage of K9+105-K9+135 (fracture zone), at Shang (Shangmeilin Station)-Min (Minle Station) Section of StageⅡof Shenzhen Metro Line 4. The pileline buried in the artificial filled solid (rock) zone, about the depth of 3.5m to the surface,16.0m to the tunnel. In addition, a natural-gas pipeline (Φ600) of Guangdong Dapeng Company, two water pipes (DN1100, DN200), a power pipeline (Φ329.9×6.4) and underground cables exit nearby. How to control the surrounding rock deformation & ground settlement, and reduce the loss of groundwater effectively, is the key way to ensure the safety of the gas pipeline and also the prerequisite for the smooth'progress of the project for a tunnel construction in week & water-rich strata.
     The control of the surrounding rock deformation & ground settlement, the loss of groundwater and the pipeline protection technologies are researched and analysed in this paper based on the project of Stage II of Shenzhen Metro Line 4 through theoretical analysis, numerical simulation (FLAC3D), on-site gas pipe testing of stress monitoring and settlement. Some achievments obtained are as follows:
     (1) The simulation results of rock deformation and displacement of settlement conducted by using the finite element software (FLAC3D) show that:the advanced support of pipe roof and the small duct grouting can well control the deformation and the settlement, as well the partition-water-seal can seal the groundwater off the tunnel area, which is conducive to the stability of tunnel face and the construction of continuity.
     (2) As the site is located in the fault zone with rich groundwater and high water pressure, the effect is limited if the sealing measure taken only. Advanced drilling-wate-discharge in the face can reduce the water pressure effectively, reveal the conditions of the strata 15-20m in front as well. The pipe with whole body perforated and double geotextile filters packed can allow the flow of the groundwater while keep the sediment off.
     (3) For the protection of subhigh-pressure gas pipeline, besides the means of the control of rock deformation and settlement taken, the gas pipe itself is considered, the weak parts are reinforced, combining with the upper load reduction of the pipe. In the process of tunnel construction, long-term monitor of the pipe is conducted to record the settlement while a new technique of non-destructive stress measurement is introducd to inspect the pipe stress situation. This technique of pipeline detection can provide reference for the similar projects in future.
引文
[1]李迎春.富水砂层大跨度平顶浅埋暗挖隧道施工技术[J].国防交通工程与技术,2007,4:61-63.
    [2]彭振华,闫朝涛,孟庆军.井点降水在富水粉砂地层隧道施工中的应用[J].西部探矿工程,2004,12:118-120.
    [3]吴全立,刘招伟,张文强.富水粉砂土层超浅埋近距离双洞隧道施工[J].施工技术,2004,33(10):18-20.
    [4]梁云生.城市地铁旋喷桩施工技术[J].隧道建设,2007,27(3):84-87.
    [5]张帆.富水砂层隧道围岩止水施工技术[J].石家庄铁道学院学报,2005,18(1):99-102
    [6]任伟新.二重管无收缩双液注浆在饱和动态含水砂层浅埋暗挖隧道中的应用[J].施工技术,2009,38(6):84-87.
    [7]李德章.复杂环境下超浅埋地下通道施工技术研究[J].安徽建筑工业学院学报,2009,17(2):1-3.
    [8]朱新华.中深孔注浆技术在饱和富水砂层浅埋暗挖地道中的应用[J].铁道标准设计,2005(4):56-58.
    [9]南深,张民庆.饱和动态含水砂层浅埋隧道施工中的注浆技术[J].世界隧道,2000,1:14-18.
    [10]商崇伦.隧道高压富水断层信息化跟踪注浆技术[J].铁道建筑技术,2010(8)
    [11]王国际,王公忠.新大瑶山隧道砂岩区高压突水的注浆技术[J].现代隧道技术,第47卷,第2期,2010,58-62
    [12]李建军,杨鲜明,黄水亮.大相岭隧道涌水塌方处理技术[J].路基工程,第6期,2010,204-206
    [13]王玉松.富水地段浅埋暗挖地铁隧道施工技术研究[J].铁道标准设计,第12期,2003,30-32
    [14]朱鹏飞.宜万铁路别岩槽隧道岩溶及岩溶水治理技术[J].铁道标准设计,第3期,2008,102-107
    [15]崔华林.综合降排水技术在富水极软弱围岩隧道中的作用[J].铁道工程学报,第4期,1999,58-61
    [16]Braun, Bernd and Nash, William R. (1982) Water control in tunneling using ground freezing. Proceedings of 1982 ASCE National Convention
    [17]Richards, D.P. (Parsons Brinckerhoff); Pennington, T.W.; Fischer, J.A.; Garcia, G. (2009) A review of tunneling difficulties in carbonate sedimentary rocks, Proceedings of Rapid Excavation and Tunneling Conference, p 215-230Steven,LEmmerich. National ventilation review and plan for design and analysis tools. National Institute of Standards and Technology. August 2001.
    [18]Attewell P.B.,et al. Soil movements induced by tunneling and the effects on pipelines and structures[M], Blackie, London,1986.
    [19]Kristin M. Molnar, Richard J. Finno, Edwin C. Rossow. Analysis of effects of deep beaced excavations on adjacent buried utilities [R].
    [20]School of Civil and Environmental Engineering, Northwestern University, December,2003.
    [21]A.p.Moser.地下管设计[M].北京市市政工程设计研究总院《地下管设计》翻译组译,北京,机械工业出版社,2003.
    [22]王绍周,关文吉,王维新.管道工程设计施工与维护[M].北京,中国建材工业出版社,2000.
    [23]蒋洪胜,候学渊.盾构掘进对隧道周围土体扰动的理论与实测分析[J].岩石力学与工程学报, 2003,(9):1514-1520.
    [24]高文华.基坑变形预测与邻近建筑及设施的保护研究[博士后出站报告D].长沙,湖南大学,2001.
    [25]廖少明,刘建航.邻近建筑及设施的保护技术,基坑工程手册[M].北京,中国建筑工业出版社,1997.
    [26]高田至郎等.受地基沉降影响的地下管线的设计公式及应用[A].地下管线抗震[C],北京,学术书刊出版社,1990.
    [27]段光杰.地铁隧道施工扰动对地表沉降和管线变形影响的理论和方法研究[博士学位论文D].北京,中国地质大学(北京),2002.
    [28]李大勇.软土地基深基坑工程邻近地下管线的性状研究[博士学位论文D].杭州,浙江大学,2000学报,2001,23
    [29]李大勇,龚晓南,张土乔.软土地基深基坑周围地下管线保护措施的数值模拟[J].岩土工程(6):736-740.
    [30]李大勇,龚晓南.软土地基深基坑工程邻近柔性接口地下管线的性状分析[J].土木工程学报,2003,36(2):77-80.
    [31]吴波,高波.地铁区间隧道施工对邻近管线影响的三维数值模拟[J].岩石力学与工程学报,2002,21(增2):2451-2456.
    [32]Loganathan, N., Poulos, H.G., Analytical prediction for tunneling induced ground movements in clays. J. Geotech. and Envir. Engrg., ASCE,1998,124(9),846-856.
    [33]Wei-I. Chou, Antonio Bobet. Predictions of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology,17 2002 3-19.
    [34]刘建航,侯学渊.盾构法隧道[M].北京,中国铁道出版社,1991.
    [35]徐永福,孙钧.隧道盾构掘进施工对周围土体的影响[J].地下工程与隧道,1999,(2):9-13.
    [36]孙钧,袁金荣.盾构施工扰动与地层移动及其智能神经网络预测[J].岩土工程学报,2001,(3):261-267.
    [37]阳军生,刘宝琛.城市隧道施工引起的地表移动及变形[M].北京,中国铁道出版社,2002
    [38]孙胜臣.地铁施工中既有管线综合保护技术[J].铁道建筑,2009,(04):58-60
    [39]张云.深圳地铁益田站市政管线保护设计方案[J].隧道建设,2000,(01):75-79
    [40]姚海波.热力隧道下穿地面建筑物的安全评价与对策[J].岩土力学,2006年27卷1期P.112-116
    [41]白伟,梁新权,张学民等.复杂环境条件下地铁隧道下穿燃气管线加固技术[J].交通科学与工程,2010,(04):30-34
    [42]Queen, David J., Felber, Andreas, Scarborough, Clark, Taylor, Peter. Liquefied natural gas pipeline suspension bridge design. Proceedings of the Biennial International Pipeline Conference, Vol.1, p 599-608,2007
    [43]王建新,陈寿根,王靖华(2010)深圳地铁4号线二期某段燃气管保护技术[J].隧道建设,第30卷,第3期,pp.331-335
    [44]邓稀肥,陈寿根,张恒,王靖华(2010)富水流砂地层中下穿立交桥及燃气管线围岩变形控制技术[J].现代隧道技术,第47卷,第4期,pp.101-107
    [45]应金星(2009)袖阀管注浆加固设计与施工工艺研究[J].吉林水利,第7期,总第326期,pp.22-25
    [46]王建新,邓稀肥,陈寿根(2009)下穿立交桥地铁隧道袖阀管加固技术研究[J].隧道建设,第29卷,第3期,pp.267-271
    [47]李兆连,应金星,邓稀肥(2010)富水流砂地层隧道全断面注浆加固施工技术研究[J].四川建筑,第30卷,第4期,pp.212-214
    [48]谭信荣,陈寿根,闫超平,应金星(2009)地铁隧道施工全过程模拟技术研究[J].四川建筑,第29卷,增刊,pp.233-235
    [49]王靖华,陈寿根,王建新(2010)超前大管棚在地铁区间隧道施工中的应用[J].四川建筑,第30卷,增刊,pp.137-139
    [50]王建新,闫超平,陈寿根(2010)大管棚在浅埋暗挖施工中的应用[J].四川建筑,第30卷,第5期,pp.101-103
    [51]祁世亮(2010)中隔墙台车在隧道施工中的应用[J].四川建筑,第30卷,第2期,pp.192-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700