AZ31镁合金塑性变形机制及再结晶行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有比强度高、导热性能好及容易回收等优点具有广泛的应用前景。但是室温下由于其独立的滑移系少,塑性成型能力差,极大地阻碍了镁合金的普遍应用,因此需要深入研究低温下镁合金的孪生变形行为,探索激活非基面滑移的途径,这对工业生产中镁合金成型能力的提高具有重要的指导意义。
     本文利用电子背散射衍射技术(EBSD)结合显微硬度点法,深入研究了应变状态、应变路径对AZ31镁合金孪生行为的影响,探讨了AZ31镁合金变形机制由孪生向滑移转变的变形条件,并在此基础上深入研究了样品取向对AZ31镁合金静态再结晶行为的影响。
     取得的主要结论如下:(1)利用显微硬度点法测量了试样表面应变分布;深入研究了不均匀变形对孪生分数及显微组织的影响,结果表明,随着宏观应变增加不均匀变形对孪生分数的影响逐渐减小。统计分析了不同应变状态区域变体的斯密特因子(SF)及应变张量,发现{101|-2}拉伸孪生变体激活均满足斯密特定律,提出了考虑局部区域应变状态的SF计算模型。宏观上来说孪生变体与局部区域变形是相协调的。(2)设计了两种压缩路径,跟踪研究了两向压缩路径以及三向压缩路径下的变形行为,发现沿板材横向(TD)压缩中以{101|-2}拉伸孪生为主,中间道次压缩中以基面滑移为主,沿板材法向(ND)压缩中以退孪生为主,且完全退孪生所需应变比原始孪生所需应变要小,而滑移和孪晶的交互作用加速退孪生行为。(3)切取与板材法向成不同角度的样品进行压缩实验,结果表明,在150℃和200℃之间发生了拉伸孪生主导向柱面滑移主导变形转变行为,且80°样品是最敏感取向,文中利用迹线分析法和晶粒内取向差轴分析法确定滑移为柱面,也对此协调转变行为进行了模拟计算;基于应力应变曲线以及平均SF计算,计算得到多晶AZ31镁合金材料拉伸孪生和柱面滑移临界分切应力比值。(4)基于上述变形机制的探讨,采用沿板材ND(N样品)及TD(T样品)切取的两种试样进行形变退火试验。结果表明,由于微观变形机理的差异,与N样品相比,相同压缩应变下T样品形变储存能要小,因而相同退火参数下静态再结晶开始及结束都被推迟。
Magnesium alloys have a wide range of potential applications, on account of theirexcellent mechanical properties, good thermal performance and ease of recycling.However, the plastic formability of magnesium alloys is poor, due to the lack of asufficient number of independent slip systems at room temperature. Therefore, studiesof the twinning behavior of magnesium alloys during low temperature deformation, andof non-basal slip system activation, has an important guiding significance for industrialproduction.
     In this study the effect of strain state and strain path on twinning behavior of the Mgalloy AZ31has been investigated, making use of a micro-grid method to measure localstrains, combined with electron backscatter diffraction (EBSD) measurements tomeasure local changes in orientation. In addition, the effect of sample orientation anddeformation temperature on the transition in dominant deformation mechanism fromtwinning to slip was also investigated. Based on the the results, an attempt was made toinvestigate the effect of sample orientation on the static recrystallization (SRX)behavior of the AZ31magnesium alloy.
     The main conclusions obtained are as follows:(1)The strain distribution on thesample surface can be measured using a micro-grid method. The effect ofinhomogeneous deformation on twinning behavior was thereby investigated and theresults show that the effect on the twin area fraction decreases with increasingmacroscopic strain. A statistical analysis of twin variants at regions experiencingdifferent strain states was made using both a Schmidt factor (SF) and strain tensorapproach. The results indicate that in all regions more than80%of {101ˉ2} twin variantscan be accounted for by a Schmid factor criterion. A SF model based on a considerationof the local stress state has been proposed for explaining the twin variant selectionphenomena physically. An analysis of twin variant selection based on a strain tensorapproach shows that individual twin variants can exhibit a wide range of local straintensor values, though the average values over many grains match well locally measuredvalues.(2) The deformation behavior during two compression paths, designed toinvestigate the process of detwinning, was investigated. In one case compression wasapplied first along the transverse direction (TD) and then along normal direction (ND). In the second case an intermediate deformation along a direction midway between TDand ND was applied. It was found that {101|-2} twinning dominates the deformationprocess during initial deformation along TD, basal slip dominates the paldeformationprocess during the intermediate compression, and detwinning dominates thedeformation process during the final compression along ND. In both cases a smallerstrain is required for detwinning than for the initial twinning. Moreover the interactionbetween slip and twinning accelerates the detwinning behavior.(3) The transition from{101|-2} twinning to prismatic
slip-dominated deformation has been investigatedthrough compression testing of samples cut from the sheet with the compression axisaligned at different angles to the sheet normal direction. The data show a clear transitionbetween twinning-and slip-dominated deformation in the range150℃to200℃forsamples cut with the compression axis at80°to ND. EBSD orientation maps of themicrostructure and slip trace observations have been used to verify the dominantdeformation mode for each sample and test temperature. Model calculations have alsobeen carried out to examine the sensitivity of this transition in deformation mode. Theresults have been used to estimate the critical resolved shear stress (CRSS) values forthe {101|-2} twin and prismatic slip of the AZ31magnesium alloy as a function oftemperature, based on the experimentally collected stress-strain curves and the averageSchmid factors for each sample.(4) A comparative study of the SRX behavior betweensamples compressed along ND and TD has been carried out on the basis of the aboveinvestigations of deformation mechanisms. The results indicate that due to the differentdeformation mechanisms, both the initiation and the completion of SRX aresignificantly retarded in samples compressed along TD compared to samplescompressed along ND.
引文
[1]陈振华.变形镁合金.北京:化学工业出版社,2005.
    [2]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [3]裴颖. AZ31镁合金在中低温压缩变形中的孪生行为研究:[硕士学位论文].北京:清华大学,2009
    [4]蒋佳.初始织构及温度对AZ31镁合金压缩塑性行为影响的研究:[博士学位论文].北京:清华大学,2008
    [5] Christian J W, Mahajan S. Deformation twinning. Prog Mater Sci,1995,39:1-157
    [6] Wang L, Eisenlohr P, Yang Y, et al. Nucleation of paired twins at grain boundaries in titanium.Scripta Mater,2010,63:827-830
    [7] Wang L, Yang Y, Eisenlohr P, et al. Twin nucleation by slip transfer across grain boundariesin commercial purity titanium. Metall Mater Trans,2010, A41:421-430
    [8] Wang J, Hoagland R G, Hirth J P, et al. Nucleation of a {10ˉ12} twin in hexagonalclose-packed crystals. Scripta Mater,2009,61:903-906
    [9] Wang J, Beyerlein I J, Tome C N. An atomic and probabilistic perspective on twin nucleationin Mg. Scripta Mater,2010,63:741-746
    [10]杨续跃,姜育培.镁合金热变形下变形带的形貌和晶体学特征.金属学报,2010,46(4):451-457
    [11] Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals. Metal Trans,1981,A12:409-418
    [12]罗晋如. AZ31镁合金板轧制过程中显微组织与织构控制的研究:[博士学位论文].北京:清华大学,2012
    [13] Barnett M R, Keshavarz Z, Beer A G, et al. Non-schmid behaviour during secondary twinningin a polycrystalline magnesium alloy. Acta Mater,2008,56:5-15
    [14] Martin E, Capolungo L, Jiang L A, et al. Variant selection during secondary twinning inMg-3%Al. Acta Mater,2010,58:3970-3983
    [15] Luo J R, Godfrey A, Liu W, et al. Twinning behavior of a strongly basal textured AZ31Mgalloy during warm rolling. Acta Mater,2012,60:1986-1998
    [16]罗晋如,刘庆,刘伟,等. AZ31镁合金板轧制过程中的{101ˉ1}-{101ˉ2}双孪生对板材显微组织、织构、力学性能的影响.金属学报,2011,47:1567-1574
    [17]罗晋如,刘庆,刘伟,等.轧制温度对AZ31镁合金轧制板材中的{101ˉ1}-{10ˉ12}双孪生行为的影响.金属学报,2012,48:717-724
    [18] Boehlert C J, Chen Z, Gutierrez-Urrutia I, et al. In situ analysis of the tensile and tensile-creepdeformation mechanisms in rolled AZ31. Acta Mater,2012,60:1889-1904
    [19] Li M. Constitutive modeling of slip,twinning and untwinning in AZ31b magnesium:[博士学位论文]. Ohio: The Ohio State University,2006
    [20] Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloyAZ31b. Int J Plasticity,2005,21:1161-1193
    [21]刘庆.镁合金塑性变形机理研究进展.金属学报,2010,46(11):1458-1472
    [22] Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane straincompressed magnesium single crystals. Acta Mater,2011,59:1986-1994
    [23] Jain A, Agnew S R. Modeling the temperature dependent effect of twinning on the behavior ofmagnesium alloy AZ31b sheet. Mat Sci Eng,2007, A462:29-36
    [24] Barnett M R. Twinning and the ductility of magnesium alloys part I:"tension" twins. Mat SciEng,2007, A464:1-7
    [25] Barnett M R. Twinning and the ductility of magnesium alloys part II."contraction" twins. MatSci Eng,2007, A464:8-16
    [26] Martin E, Capolungo L, Jiang L A, et al. Variant selection during secondary twinning inMg-3%al. Acta Mater,2010,58:3970-3983
    [27] Ghaderi A, Barnett M R. Sensitivity of deformation twinning to grain size in titanium andmagnesium. Acta Mater,2011,59:7824-7839
    [28] Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size.Scripta Mater,2008,59:696-698
    [29] Brown D W, Agnew S R, Bourke M, et al. Internal strain and texture evolution duringdeformation twinning in magnesium. Mat Sci Eng,2005, A399:1-12
    [30] Clausen B, Tome C N, Brown D W, et al. Reorientation and stress relaxation due to twinning:modeling and experimental characterization for Mg. Acta Mater,2008,56:2456-2468
    [31] Meyers M A, Vohringer O, Lubarda V A. The onset of twinning in metals: a constitutivedescription. Acta Mater,2001,49:4025-4039
    [32] Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressivedeformation of wrought Mg-3Al-1Zn. Acta Mater,2004,52:5093-5103
    [33] Barnett M R, Nave M D, Ghaderi A. Yield point elongation due to twinning in a magnesiumalloy. Acta Mater,2012,60:1433-1443
    [34] Wang B S, Xin R L, Huang G J, et al. Effect of crystal orientation on the mechanicalproperties and strain hardening behavior of magnesium alloy AZ31during uniaxialcompression. Mat Sci Eng,2012, A534:588-593
    [35] Barnett M R. Influence of deformation conditions and texture on the high temperature flowstress of magnesium AZ31. Journal of Light Metals,2001,1:167-177
    [36] Ono N, Nowak R, Miura S. Effect of deformation temperature on hall-petch relationshipregistered for polycrystalline magnesium. Mater Lett,2004,58:39-43
    [37] Jonas J J, Mu S J, Al-Samman T, et al. The role of strain accommodation during the variantselection of primary twins in magnesium. Acta Mater,2011,59:2046-2056
    [38] Yang P, Yu Y, Chen L, et al. Experimental determination and theoretical prediction of twinorientations in magnesium alloy AZ31. Scripta Mater,2004,50:1163-1168
    [39] Jiang L, Jonas J J, Luo A A, et al. Influence of {10ˉ12} extension twinning on the flowbehavior of AZ31Mg alloy. Mat Sci Eng,2007, A445:302-309
    [40] Jiang L, Jonas J J, Luo A A, et al. Twinning-induced softening in polycrystalline am30Mgalloy at moderate temperatures. Scripta Mater,2006,54:771-775
    [41] Knezevic M, Levinson A, Harris R, et al. Deformation twinning in AZ31: influence on strainhardening and texture evolution. Acta Mater,2010,58:6230-6242
    [42]杨续跃,张雷.镁合金温变形过程中的孪生及孪晶交叉.金属学报,2009,45(11):1303-1308
    [43] Pei Y, Godfrey A, Jiang J, et al. Extension twin variant selection during uniaxial compressionof a magnesium alloy. Mat Sci Eng,2012, A550:138-145
    [44] Godet S, Jiang L, Luo A A, et al. Use of schmid factors to select extension twin variants inextruded magnesium alloy tubes. Scripta Mater,2006,55:1055-1058
    [45] Beyerlein I J, Capolungo L, Marshall P E, et al. Statistical analyses of deformation twinning inmagnesium. Philos Mag,2010,90:2161-2190
    [46] Gharghouri M A, Weatherly G C, Embury J D, et al. Study of the mechanical properties ofMg-7.7at.%al by in-situ neutron diffraction. Philos Mag,1999, A79:1671-1695
    [47] Bingert J F, Mason T A, Kaschner G C, et al. Deformation twinning in polycrystalline zr:insights from electron backscattered diffraction characterization. Metall Mater Trans,2002,A33:955-963
    [48] Wu B L, Zhang Y D, Wan G, et al. Primary twinning selection with respect to orientation ofdeformed grains in ultra-rapidly compressed AZ31alloy. Mat Sci Eng,2012, A541:120-127
    [49] Capolungo L, Marshall P E, Mccabe R J, et al. Nucleation and growth of twins in zr: astatistical study. Acta Mater,2009,57:6047-6056
    [50] Jiang L, Jonas J J, Mishra R K, et al. Twinning and texture development in two Mg alloyssubjected to loading along three different strain paths. Acta Mater,2007,55:3899-3910
    [51] Jiang J, Godfrey A, Liu W, et al. Identification and analysis of twinning variants duringcompression of a Mg-Al-Zn alloy. Scripta Mater,2008,58:122-125
    [52] Koike J, Sato Y, Ando D. Origin of the anomalous {101ˉ2} twinnning during tensiledeformation of Mg alloy sheet. Mater Trans,2008,49:2792-2800
    [53] Hong S G, Park S H, Lee C S. Role of {10ˉ12} twinning characteristics in the deformationbehavior of a polycrystalline magnesium alloy. Acta Mater,2010,58:5873-5885
    [54] Park S H, Hong S G, Lee C S. Activation mode dependent {101ˉ2} twinning characteristics ina polycrystalline magnesium alloy. Scripta Mater,2010,62:202-205
    [55] Xin Y C, Wang M Y, Zeng Z, et al. Tailoring the texture of magnesium alloy by twinningdeformation to improve the rolling capability. Scripta Mater,2011,64:986-989
    [56] Xin Y C, Zhou X J, Liu Q. Suppressing the tension-compression yield asymmetry of Mg alloyby hybrid extension twins structure. Mat Sci Eng,2013, A567:9-13
    [57] Wang H, Wu P D, Tome C N, et al. A constitutive model of twinning and detwinning forhexagonal close packed polycrystals. Mat Sci Eng,2012, A555:93-98
    [58] Yin S M, Yang F, Yang X M, et al. The role of twinning-detwinning on fatigue fracturemorphology of Mg-3%Al-1%Zn alloy. Mat Sci Eng,2008, A494:397-400
    [59] Mann G E, Sumitomo T, Caceres C H, et al. Reversible plastic strain during cyclicloading-unloading of Mg and Mg-Zn alloys. Mat Sci Eng,2007, A456:138-146
    [60] Huppmann M, Lentz M, Chedid S, et al. Analyses of deformation twinning in the extrudedmagnesium alloy AZ31after compressive and cyclic loading. J Mater Sci,2011,46:938-950
    [61] Liu Y, Xie Z, Van Humbeeck J, et al. Some results on the detwinning process in niti shapememory alloys. Scripta Mater,1999,41:1273-1281
    [62] Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior inhot-extruded Mg-al-Zn alloy. Acta Mater,2007,55:897-905
    [63] Lou X Y, Li M, Boger R K, et al. Hardening evolution of AZ31b Mg sheet. Int J Plasticity,2007,23:44-86
    [64] Wu L, Jain A, Brown D W, et al. Twinning-detwinning behavior during the strain-controlledlow-cycle fatigue testing of a wrought magnesium alloy, zk60a. Acta Mater,2008,56:688-695
    [65] Proust G, Tome C N, Jain A, et al. Modeling the effect of twinning and detwinning duringstrain-path changes of magnesium alloy AZ31. Int J Plasticity,2009,25:861-880
    [66] Barnett M R. A taylor model based description of the proof stress of magnesium AZ31duringhot working. Metall Mater Trans,2003, A34:1799-1806
    [67] Barnett M R, Keshavarz Z, Ma X. A semianalytical sachs model for the flow stress of amagnesium alloy. Metall Mater Trans,2006, A37:2283-2293
    [68] Muranskya O, Carr D G, Barnett M R, et al. Investigation of deformation mechanismsinvolved in the plasticity of AZ31Mg alloy: in situ neutron diffraction and epsc modelling.Mat Sci Eng,2008, A496:14-24
    [69] Agnew S R, Brown D W, Tome C N. Validating a polycrystal model for the elastoplasticresponse of magnesium alloy AZ31using in situ neutron diffraction. Acta Mater,2006,54:4841-4852
    [70] Hutchinson W B, Barnett M R. Effective values of critical resolved shear stress for slip inpolycrystalline magnesium and other hcp metals. Scripta Mater,2010,63:737-740
    [71] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamicrecovery at room temperature in fine-grained AZ31b magnesium alloys. Acta Mater,2003,51:2055-2065
    [72] Koike J, Ohyama R. Geometrical criterion for the activation of prismatic slip in az61Mg alloysheets deformed at room temperature. Acta Mater,2005,53:1963-1972
    [73] Keshavarz Z, Barnett M R. EBSD analysis of deformation modes in Mg-3Al-1Zn. ScriptaMater,2006,55:915-918
    [74] Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understandingmechanical behavior of Mg and solid solution alloys containing li or y. Acta Mater,2001,49:4277-4289
    [75] Sandlobes S, Zaefferer S, Schestakow I, et al. On the role of non-basal deformationmechanisms for the ductility of Mg and Mg-Y alloys. Acta Mater,2011,59:429-439
    [76] Styczynski A, Hartig C, Bohlen J, et al. Cold rolling textures in AZ31wrought magnesiumalloy. Scripta Mater,2004,50:943-947
    [77] Perez-Prado M T, Del Valle J A, Contreras J M, et al. Microstructural evolution during largestrain hot rolling of an am60Mg alloy. Scripta Mater,2004,50:661-665
    [78] Piao K, Chung K, Lee M G, et al. Twinning-slip transitions in Mg AZ31b. Metall Mater Trans,2012, A43:3300-3313
    [79] Stanford N, Sotoudeh K, Bate P S. Deformation mechanisms and plastic anisotropy inmagnesium alloy AZ31. Acta Mater,2011,59:4866-4874
    [80] Couret A, Caillard D. An in situ study of prismatic glide in magnesium-I. The rate controllingmechanism. Acta Metall,1985,33:1447-1454
    [81] Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mgalloys at room temperature. Metall Mater Trans,2005, A36:1689-1696
    [82] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamicrecrystallization in magnesium alloy ZK60. Acta Mater,2001,49:1199-1207
    [83] Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development ofmicrostructure during the high-temperature deformation of magnesium. Acta Metall,1982,30:1909-1919
    [84] Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation ofmagnesium. Mat Sci Eng,2008, A490:411-420
    [85] Barnett M R. Recrystallization during and following hot working of magnesium alloy AZ31.Mater Sci Forum,2003,419:503-508
    [86] Martin E, Jonas J J. Evolution of microstructure and microtexture during the hot deformationof Mg-3%Al. Acta Mater,2010,58:4253-4266
    [87] Liu Z Y, Bai S, Kang S. Low-temperature dynamic recrystallization occurring at a highdeformation temperature during hot compression of twin-roll-cast Mg-5.51Zn-0.49Zr alloy.Scripta Mater,2009,60:403-406
    [88] Yang X Y, Miura H, Sakai T. Dynamic nucleation of new grains in magnesium alloy duringhot deformation. Mater Sci Forum,2003,419:515-520
    [89] Galiyev A, Kaibyshev R, Sakai T. Continuous dynamic recrystallization in magnesium alloy.Mater Sci Forum,2003,419:509-514
    [90] Myshlyaev M M, Mcqueen H J, Mwembela A, et al. Twinning, dynamic recovery andrecrystallization in hot worked Mg-Al-Zn alloy. Mat Sci Eng,2002, A337:121-133
    [91] Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31magnesium alloy. Mat Sci Eng,2007,A456:52-57
    [92] Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stagedeformation of Mg-3Al-lZn alloy sheet. Mat Sci Eng,2003, A339:124-132
    [93] Sitdikov O, Kaibyshev R, Sakai T. Dynamic recrystallization based on twinning incoarse-grained Mg. Mater Sci Forum,2003,419:521-526
    [94] Xu S W, Kamado S, Matsumoto N, et al. Recrystallization mechanism of as-cast az91magnesium alloy during hot compressive deformation. Mat Sci Eng,2009, A527:52-60
    [95] Jin Q L, Shim S Y, Lim S G. Correlation of microstructural evolution and formation of basaltexture in a coarse grained Mg-Al alloy during hot rolling. Scripta Mater,2006,55:843-846
    [96] Ma Q, Li B, Marin E B, et al. Twinning-induced dynamic recrystallization in a magnesiumalloy extruded at450degrees c. Scripta Mater,2011,65:823-826
    [97] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamicrecrystallization in magnesium alloy zk60. Acta Mater,2001,49:1199-1207
    [98] Beer A G, Barnett M R. Microstructure evolution in hot worked and annealed magnesiumalloy AZ31. Mat Sci Eng,2008, A485:318-324
    [99] Robson J D, Henry D T, Davis B. Particle effects on recrystallization inmagnesium-manganese alloys: particle-stimulated nucleation. Acta Mater,2009,57:2739-2747
    [100] Li X, Yang P, Wang L N, et al. Orientational analysis of static recrystallization at compressiontwins in a magnesium alloy AZ31. Mat Sci Eng,2009, A517:160-169
    [101] Yi S B, Schestakow I, Zaefferer S. Twinning-related microstructural evolution during hotrolling and subsequent annealing of pure magnesium. Mat Sci Eng,2009, A516:58-64
    [102] Jager A, Lukac P, Gartnerova V, et al. Influence of annealing on the microstructure ofcommercial Mg alloy AZ31after mechanical forming. Mat Sci Eng,2006, A432:20-25
    [103] Huang X S, Suzuki K, Chino Y. Annealing behaviour of Mg-3al-1Zn alloy sheet obtained by acombination of high-temperature rolling and subsequent warm rolling. J Alloy Compd,2011,509:4854-4860
    [104] Perez-Prado M T, Ruano O A. Texture evolution during annealing of magnesium AZ31alloy.Scripta Mater,2002,46:149-155
    [105] Jiang J, Godfrey A, Liu W, et al. Microtexture evolution via deformation twinning and slipduring compression of magnesium alloy AZ31. Mat Sci Eng,2008, A483:576-579
    [106] Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloycrystals. Trans Metall Soc AIME,1968,242:5-13
    [107] Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena (secondedition). Pergamon: Oxford,2004
    [108] Humphreys F J, Brough I. High resolution electron backscatter diffraction with a fieldemission gun scanning electron microscope. J Microsc,1999,195:6-9
    [109] Humphreys F J, Huang Y, Brough I, et al. Electron backscatter diffraction of grain andsubgrain structures-resolution considerations. J Microsc,1999,195:212-216
    [110] Bate P S, Knutsen R D, Brough I, et al. The characterization of low-angle boundaries by ebsd.J Microsc,2005,220:36-46
    [111] Chun Y B, Davies C. Investigation of prism
slip in warm-rolled AZ31alloy. MetallMater Trans,2011, A42:4113-4125
    [112] Yamasaki M, Hagihara K, Inoue S, et al. Crystallographic classification of kink bands in anextruded Mg–Zn–Y alloy using intragranular misorientation axis analysis. Acta Mater,2013,61:2065-2076
    [113] Chun Y B, Battaini M, Davies C, et al. Distribution characteristics of in-grain misorientationaxes in cold-rolled commercially pure titanium and their correlation with active slip modes.Metall Mater Trans,2010, A41:3473-3487
    [114] Wang Y, Huang J C. Texture analysis in hexagonal materials. Mater Chem Phys,2003,81:11-26
    [115] Kock U K, Tome C N, Wenk H R. Texture and anisotropy. Cambridge: Cambridge University,1998
    [116] Werner E, Prantl W. Statistical treatment of measured orientation relationships in orientationspace. J Appl Crystallogr,1988,21:311-316
    [117] Dunne F, Petrinic N. Introduction to computational plasticity. New York: Oxford University,2005
    [118] Allais L, Bornert M, Bretheau T, et al. Experimental characterization of the local strain field ina heterogeneous elastoplastic material. Acta Metall. Mater,1994,42:3865-3880
    [119] Barnett M R, Jacob S, Gerard B F, et al. Necking and failure at low strains in a coarse-grainedwrought Mg alloy. Scripta Mater,2008,59:1035-1038
    [120] Lineau C, Rey C, Delesegno P V. Experimental analysis of plastic deformation of steel grains-comparison with polycrystal models predictions. Mat Sci Eng,1997, A234:853-856
    [121] Chapelle D, Darrieulat M. The occurrence of shear banding in a millimeter scale (1ˉ2ˉ3)[634]grain of an Al-4.5%Mg alloy during plane strain compression. Mat Sci Eng,2003, A347:32-41
    [122] Ghadbelgi H, Bradbury S R, Pinna C, et al. Determination of micro-scale plastic strain causedby orthogonal cutting. Int J Mach Tool Manu,2008,48:228-235
    [123] Carbonneau X, Thollet G, Olagnon C, et al. Development of high temperature extensometricmicrogrids. J Mater Sci Lett,1997,16:1101-1103
    [124] Clair A, Foucault M, Calonne O, et al. Strain mapping near a triple junction in strainedni-based alloy using ebsd and biaxial nanogauges. Acta Mater,2011,59:3116-3123
    [125] Kang J D, Ososkov Y, Embury J D, et al. Digital image correlation studies for microscopicstrain distribution and damage in dual phase steels. Scripta Mater,2007,56:999-1002
    [126] Niendorf T, Dadda J, Canadinc D, et al. Monitoring the fatigue-induced damage evolution inultrafine-grained interstitial-free steel utilizing digital image correlation. Mat Sci Eng,2009,A517:225-234
    [127] Sanchez-Arevalo F M, Pulos G. Use of digital image correlation to determine the mechanicalbehavior of materials. Mater Charact,2008,59:1572-1579
    [128] Tatschl A, Kolednik O. A new tool for the experimental characterization of micro-plasticity.Mat Sci Eng,2003, A339:265-280
    [129] Tschopp M A, Bartha B B, Porter W J, et al. Microstructure-dependent local strain behavior inpolycrystals through in-situ scanning electron microscope tensile experiments. Metall MaterTrans,2009, A40:2363-2368
    [130] Xu Z H, Sutton M A, Li X D. Mapping nanoscale wear field by combined atomic forcemicroscopy and digital image correlation techniques. Acta Mater,2008,56:6304-6309
    [131] Zdunek J, Brynk T, Mizera J, et al. Digital image correlation investigation of portevin-lechatelier effect in an aluminium alloy. Mater Charact,2008,59:1429-1433
    [132] Sachtleber M, Zhao Z, Raabe D. Experimental investigation of plastic grain interaction. MatSci Eng,2002, A336:81-87
    [133] Becker R, Panchanadeeswaran S. Effects of grain interactions on deformation and local texturein polycrystals. Acta Metall. Mater,1995,43:2701-2719
    [134] Raabe D, Sachtleber M, Zhao Z, et al. Micromechanical and macromechanical effects in grainscale polycrystal plasticity experimentation and simulation. Acta Mater,2001,49:3433-3441
    [135] Delaire F, Raphanel J L, Rey C. Plastic heterogeneities of a copper multicrystal deformed inuniaxial tension: experimental study and finite element simulations. Acta Mater,2000,48:1075-1087
    [136] Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed inplane-strain compression. Scripta Mater,2004,51:881-885
    [137] Wu L, Agnew S R, Brown D W, et al. Internal stress relaxation and load redistribution duringthe twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy,ZK60A. Acta Mater,2008,56:3699-3707
    [138] Sarker D, Chen D L. Detwinning and strain hardening of an extruded magnesium alloy duringcompression. Scripta Mater,2012,67:165-168
    [139] Pond R C, Serra A, Bacon D J. Dislocations in interfaces in the hcp metals-II. Mechanisms ofdefect mobility under stress. Acta Mater,1999,47:1441-1453
    [140] Capolungo L, Beyerlein I J, Tome C N. Slip-assisted twin growth in hexagonal close-packedmetals. Scripta Mater,2009,60:32-35
    [141] Capolungo L, Beyerlein I J, Kaschner G C, et al. On the interaction between slip dislocationsand twins in hcp Zr. Mat Sci Eng,2009, A513:42-51
    [142] Agnew S R, Tome C N, Brown D W, et al. Study of slip mechanisms in a magnesium alloy byneutron diffraction and modeling. Scripta Mater,2003,48:1003-1008
    [143] Muransky O, Barnett M R, Luzin V, et al. On the correlation between deformation twinningand luders-like deformation in an extruded Mg alloy: in situ neutron diffraction and epsc.4modelling. Mat Sci Eng,2010, A527:1383-1394
    [144] Stanford N, Geng J, Chun Y B, et al. Effect of plate-shaped particle distributions on thedeformation behaviour of magnesium alloy AZ91in tension and compression. Acta Mater,2012,60:218-228
    [145] Wang M Y, Xin R L, Wang B S, et al. Effect of initial texture on dynamic recrystallization anddeformation mechanisms in AZ31Mg alloy extruded at573K. Mat Sci Eng,2011, A528:2941-2951
    [146]李萧,杨平,孟利,等. AZ31镁合金中拉伸孪晶静态再结晶的分析.金属学报,2010,46(2):147-154
    [147] Al-Samman T, Molodov K D, Molodov D A, et al. Softening and dynamic recrystallization inmagnesium single crystals during c-axis compression. Acta Mater,2012,60:537-545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700