TA15钛合金热强力旋压组织演化规律及强化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TA15钛合金是一种典型的近α钛合金,具有比强度高、热稳定性好、抗蠕变性能优异和可焊性强等优点,被广泛地应用于航空航天工业中关键零部件的制造。强力旋压是典型的局部加载、局部成形工艺,具有省力、省料和工装简单等优点,是制造大型薄壁筒形件的最有效方法之一,已广泛应用于航空航天及兵器工业领域。本文针对钛合金热强力旋压成形过程中微观组织和性能控制的瓶颈问题,建立了TA15钛合金热强旋微观组织及性能的BP神经网络预测模型,研究了TA15钛合金热强旋微观组织和织构的演化规律,揭示了其对热强旋筒形件性能的强化机理。
     开展了平面应变热压缩和筒形件热强旋对比实验,分析了平面应变热压缩微观组织演化特点。采用图像分析软件对微观组织中的晶粒尺寸和再结晶分数进行定量表征,并通过显微硬度计测试了显微硬度。系统研究了TA15钛合金平面应变热压缩工艺参数、微观组织和力学性能之间的关系,建立了TA15钛合金热强旋微观组织和力学性能的BP神经网络预测模型。该模型预测误差小于13%,表明通过平面应变热压缩实验来模拟热强旋微观组织演化具有可行性,可以用于揭示TA15钛合金热强旋工艺参数对微观组织和力学性能的影响。
     通过TEM和EBSD等手段研究了TA15钛合金热强旋微观组织演化规律。定量分析了不同减薄率强力旋压后,晶粒尺寸、晶粒长径比和晶界密度等的变化规律。结果表明,随着减薄率的增加,TA15钛合金微观组织形状发生显著改变。原始粗大的初生α相晶粒沿轴向显著伸长,形成纤维状组织。次生α相晶粒由原始的板条状演化成细小的等轴状,晶粒得到明显细化。微观组织中不同类型晶界的数量及分布发生显著变化。当减薄率小于19.7%时,小角度晶界和中等角度晶界主要分布在原始粗大的初生α相内及次生α相板条之间。当减薄率增至81.1%时,大量小角度和中等角度晶界转变为大角度晶界,引起旋压微观组织的细化。TA15钛合金热强力旋压过程中,初生α相的变形机制主要是滑移和孪生。当减薄率小于19.7%时,孪晶的主要类型是{1012}<1011>型拉伸孪晶。次生α相板条等轴化引起合金软化,提出了TA15钛合金次生α相在热强旋过程中的球化模型。
     通过压缩实验研究了微观组织和织构对热强旋TA15钛合金力学性能的影响。热强旋TA15钛合金的屈服强度随晶粒尺寸减小而增加,随初生α相长径比增大而增加,随新生细小晶粒的体积分数增大而增加。随着旋压道次及减薄率的增加,TA15钛合金晶粒晶体取向择优分布明显。当减薄率达到81.1%时,TA15钛合金中c轴与ND取向差小于20°的晶粒数超过总数的45%,平均取向差从初始状态67.5°减小到28.1°。粗大的初生α相主要发生回复,晶粒被压扁拉长,形成较强的{0001}型双峰或多峰织构,略沿TD扩散。次生α相晶粒明显细化,发生明显的动态再结晶,晶粒呈现显著的{0001}型再结晶织构,并与初生α相晶体取向分布保持很大程度的一致性。TA15钛合金热强旋筒形件晶体取向有明显的择优方向,轴向{0001}<1120>基面滑移系Schmid因子明显小于环向,导致热强旋TA15钛合金筒形件有明显的各向异性,轴向屈服强度高于环向。
     开展了单向拉伸、双向拉伸和液压胀形实验测试TA15钛合金热强旋筒形件的力学性能。单向拉伸实验表明旋压筒形件具有明显的各向异性:轴向拉伸屈服强度高于环向,延伸率低于环向。双向拉伸实验表明筒形件受轴向应力与环向应力比为1:2时,屈服强度明显高于单向拉伸屈服强度。室温下轴向和环向双向强化效应分别为10.2%和7.0%,500℃下轴向和环向双向强化效应分别为11.7%和8.9%。旋压筒形件液压胀形实验结果与双向拉伸实验结果吻合。通过双向拉伸实验,预测TA15钛合金强旋筒形件在500℃服役时,环向应力达到1106MPa筒形件将发生屈服。
As a typical near-α titanium alloy, TA15titanium alloy exhibits excellentproperties, such as high specific strength, good thermal stability, considerable creepresistance and great weldability. Therefore, it has been widely used to produce the keycomponents in the aviation and aerospace industry. Power spinning is a typicallocal-loading forming technology with many advantages, such as low forming load,high material utilization ratio and simple tooling. As an effective method to manufacturetubes with large diameter and thin thickness, power spinning has been widely applied inmany industries, such as aviation, aerospace, armament, marine and machinery. Thisthesis focused on the control bottlenecks in microstructure and properties of titaniumalloy during hot power spinning process. The BP neural network prediction model ofTA15titanium during hot power spinning was established, and the evolution law of themicrostructure and texture and the strengthening mechanism of TA15titanium alloyduring hot power spinning were systematically investigated.
     The microstructure evolution features of the plane strain thermal compressionsamples were compared with those of hot power spun tubes to identify their correlations.The grain size and recrystallization ratio of microstructure were quantitativelycharacterized using image processing software, and the microhardness was measured bythe microhardness tester. The relation between the processing parameters of the planestrain thermal compression and the microstructure and mechanical properties of TA15titanium alloy was systematically studied, and then a BP neural network predictionmodel for microstructure and mechanical properties of TA15titanium alloy during hotpower spinning was established. The prediction error were within13%compared toexperimental results. It indicates that it is feasable to simulate the microstructureevolution during hot power spinning using the plane strain thermal compressionexperiment, which can be further used to reveal the effect of the processing parametersof hot power spinning on the microstructure and mechanical properties of TA15titanium alloy.
     The microstructure evolution (i.e. grain size, grain aspect ratio, grain boundarydensity, etc) during hot power spinning in different passes was deeply investigated byTEM and EBSD. The results show significant changes in the microstructure shape ofTA15titanium alloy with the increasing of spinning pass. The coarse grains of theoriginal primary α phase were significantly elongated along the axial direction, resultingin the formation of a fibrous structure. The lamellar grains of the original secondary αphase evolved into a large number of small equaxial grains. Additionally, there werealso significant changes in the number and distribution of the grain boundaries with different angles in microstructure. When the thickness reduction ratio was below19.7%,most small-and medium-angle grain boundaries presented inside the original coarseprimary α phase and between the lamellas of the secondary α phase. When the thicknessreduction ratio increased to81.1%, a large number of small-and medium-angle grainboundaries evolved into large-angle ones, leading to the refinement of as-spunmicrostructure. During the hot power spinning process of the TA15titanium alloy, slipand twinning were the main deformation mechanisms of the primary α phase. When thethickness reduction ratio was below19.7%,{1012}<1011> tensile twinningpredominated the deformation processing. The globularization of the secondary α phaselamellas lead to the softenning of alloy. The spheroidization model of the secondary αphase during hot power spinning process was also proposed.
     The effects of the microstructure and texture on the mechanical properties of TA15titanium alloy during hot power spinning were analysed by compression test. The yieldstrength of TA15titanium alloy during hot power spinning increased with the decreaseof the grain size, the increase of the aspect ratio of the primary α phase and the increaseof the volume fraction of fresh small grains. With the increase of spinning pass andthickness reduction, the grains of TA15titanium alloy showed significantly preferredcrystal orientation distribution. When the thickness reduction ratio reached81.1%, the caxis of more than45%TA15titanium alloy grains rotated to the direction with less than20°difference relative to the ND, and the average misorientation of grains reduced fromoriginal67.5°to28.1°. Recovery happened in the coarse primary α phase, grainselongated and flattened to form the obvious {0001} bimodal or multimodal textureswith slightly diffused distribution along TD. Dynamic recrystallization happened insecondary α-phase finer grains and formed {0001} texture. The crystal orientations ofthe primary α phase grains and small secondary α-phase finer grain size were wellconsistent in some locations. The orientation consistency weakened with the increase ofthe thickness reduction ratio. The TA15titanium alloy tube have prefered orientation,the Schmid factors of the {0001}<1120> basal slip of grains in RD was obviouslysmaller than that in TD, which resulted in anisotropy of the tube, and yield stress in RDwas higher than yield stress in TD.
     Uniaxial, biaxial tensile tests and hydraulic bulging test were carried out to test themechanical properties of TA15titanium alloy tubes after hot power spinning. The axialtensile test showed that as-spun tubes exhibited obvious anisotropic properties: thetensile yield strength along the axial direction was higher than that along thecircumferential direction, while the elongation along the axial direction was lower thanthat along the circumferential direction. Biaxial tensile test showed that the yieldstrength of tubes under biaxial tensile test were significantly higher than that under uniaxial tensile test when the ratio between the axial stress and the circumferential stresswas1:2, and the values of bixial strengthening effect in axial and circumfentialdierection were10.2%and7.0%at room temperature,11.7%and8.9%at500℃,respectively. The result of hydraulic bulging test of as-spun tubes coincided with thebiaxial tensile test result. Therefore, the service mechanical property of TA15titaniumalloy hot power spun tubes at500℃was predicteded using the biaxial tensile test,which showed that the tube would yield with a circumferential stress of1106MPa.
引文
[1] Boyer R R. An Overview on the Use of Titanium in the Aerospace Industry[J].Materials Science and Engineering A,1996,213(1-2):103-114.
    [2] Gorynin I V. Titanium Alloys for Marine Application[J]. Materials Science andEngineering A,1999,263(2):112-116.
    [3]赵树萍,吕双坤.钛合金在航空航天领域的应用[J].钛工业进展,2002,(6):18-21.
    [4]莱茵斯C,皮特尔斯M.钛与钛合金[M].陈振华,译.北京:化学工业出版社,2005:1-2.
    [5]王向东,郝斌,逯福生,等.钛的基本性质、应用及我国钛工业概况[J].钛工业进展,2004,(1):6-10.
    [6]莫畏,邓国珠,罗方承.钛冶金[M].北京:冶金工业出版社,1998:34-41.
    [7]王金友,葛志明.航空用钛合金[M].上海:上海冶金出版社,1985:11-18.
    [8]亚历山大B K.钛合金半成品生产[M].宁兴龙,译.北京:稀有金属材料与工程出版社,1996:5-13.
    [9] Wood R A, Favor R J.美国钛合金手册(上册)[M].刘静安,译.重庆:科学技术文献出版社重庆分社,1983:1-20.
    [10]王金友.论钛合金的分类[J].稀有金属材料与工程,1982,1:3-10.
    [11]上海市机械制造工艺研究所.金相分析技术[M].上海:上海科学技术出版社,1987:35-36.
    [12]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(III)—常用检测方法[J].钛工业进展,2008,25(3):26-33.
    [13]周义刚,曾卫东,俞汉清.近β锻造推翻陈旧理论发展了三态组织[J].中国工程科学,2001,3(5):61-66.
    [14] Mazeau C., Beylat L, Longere P, et al. On the Quantitative Evaluation of AdiabaticShear Banding Sensitivity of Various Titanium Alloys[J]. Journal de Physique IVFrance,1997,7(3):429-434.
    [15] Grady D E. Properties of an Adiabatic Shear Band Process Zone[J]. Journal of theMechanics and Physics of Solids,1992,40(6):1197-1215.
    [16] Peters J O, Lutjering G. Comparison of the Fatigure and Fracture of α+β and βTitanium Alloys[J]. Metallurgical and Materials Transactions,2001,32A:2085-2818.
    [17]李兴无,沙爱学,张旺峰,等. TA15合金及其在飞机结构中的应用前景[J].钛工业进展,2003,20(4-5):90-94.
    [18] Donachie M J. Titanium: A Technical Guide[M]. Ohio: ASM International,2000:485-500.
    [19] Sun Z C, Yang H, Han G J, et al. A numerical model based oninternal-state-variable method for the microstructure evolution during hot-workingprocess of TA15titanium alloy[J]. Materials Science and Engineering: A,2010,527(15):3464-3471.
    [20] Ouyang D L, Lu S Q, Cui X, et al. Modeling of Grain Growth for DynamicRecrystallization of TA15Titanium Alloy[J]. Rare Metal Materials Engineering,2010,39(7):1162-1165.
    [21] Sun Z C, Yang H. Microstructure and mechanical properties of TA15titaniumalloy under multi-step local loading forming[J]. Materials Science andEngineering: A,2009,523(1-2):184-192.
    [22] Wang Y, Zhu J C, Liu Y, et al. Application of processing map in TA15titaniumalloy[J]. J Cent South Univ T,2007,14(S2):90-93.
    [23]刘黎明,杜鑫,张兆栋,等. TA15钛合金接头活性剂补焊的组织特征[J].中国有色金属学报,2005,15(12):1910-1916.
    [24] Zhou L, Luo G Z. Research and development of titanium in China[J]. MaterialsScience and Engineering A,1998,224:294-298.
    [25] Co J R, Dye D, Conlon K T, et al. Intergranular strain accumulation in a near-alphatitanium alloy during plastic deformation[J]. Acta Materialia,2002,50(19):4847-4864.
    [26] Li S K, Hui S X, Xiong B Q. Effects of Cooling Rate on the Fracture Properties ofTA15ELI Alloy Plates[J]. Rare Metals,2007,26(1):30-40.
    [27]曹京霞,方波,黄旭,等.微观组织对TA15钛合金力学性能的影响[J].稀有金属,2004,28(2):357-370.
    [28]舒滢,曾卫东,周军,等. BT20合金高温变形行为的研究[J].材料科学与工艺2005,13(1):60-70.
    [29] Liu Y, Zhu J C, Yang Y, et al. Effects of Strain Rate on Dislocation for TA15Alloyduring Hot Compressive Deformation[J]. Journal of WuHan University ofTechnology,2011,26(2):187-190.
    [30] Zhao Z L, Guo H Z, Chen L, et al. Superplastic Behavior and MicrostructureEvolution of a Fine-grained TA15titanium alloy[J]. Rare Metals,2009,28(5):523-527.
    [31]徐文臣,单德彬,李春峰,等. TA15钛合金的动态热压缩行为及其机理研究[J].航空材料学报,2005,25(4):10-15.
    [32]陈小杰. TA15合金最佳变形速率超塑性及其应用研究[D].南昌:南昌航空大学学位论文,2012:63-64.
    [33]王锋. TA15合金热变形组织和性能研究[D].合肥:合肥工业大学学位论文,2008:71-72.
    [34]左书鹏,孙志超,杨合,等. TA15钛合金大型复杂整体构件预锻成形微观组织演化研究[J].稀有金属材料与工程,2012,41(3):413-418.
    [35]张晶宇,杨延清,陈彦,等.退火对TA15钛合金组织与性能的影响[J].金属热处理,2003,28(3):46-48.
    [36]岳洋. TA15钛合金热变形过程中微结构变化与力学性能预测[D].哈尔滨:哈尔滨工业大学学位论文,2008:77-78.
    [37]李淼泉,李晓丽,龙丽,等. TA15合金的热变形行为及加工图[J].稀有金属材料与工程,2006,35(9):1354-1358.
    [38]王洋,朱景川,尤逢海,等.基于BP神经网络的TA15钛合金加工图[J].材料热处理学报,2009,30(2):195-197.
    [39]王洋,朱景川,尤逢海,等. TA15钛合金的变形热处理[J].材料热处理学报,2007,28(S1):106-109.
    [40] Wang Y, Zhu J C, Lai Z H, et al. Hot Compressive Deformation Behavior andMicro-structural Variation of TA15Titanium Alloy[J]. Materials Science andTechnology,2005,21(12):1450-1466.
    [41]郜阳,孙志超,杨合.基于改进BP神经网络的TA15钛合金近β锻造组织预测模型[J].塑性工程学报,2012,19(2):49-55.
    [42]王成和,刘克璋.旋压技术[M].北京:机械工业出版社,1986:3-5.
    [43]杨国平.纯钛和BT20钛合金筒形件旋压织构及在热处理中的演化[D].哈尔滨:哈尔滨工业大学学位论文,2010..
    [44]叶山益次郎.回转塑性加工学[M].东京:近代编辑社,1981:76-80.
    [45]赵宪明.筒形件强力旋压三维弹塑性有限元分析及实验研究[D].哈尔滨.哈尔滨工业大学学位论文.1995.
    [46]张喻琳,孙彩霞,许翠芳,等.旋压力算法对比实验研究[J].航空制造技术,2010,22:98-100.
    [47]梅瑛,李瑞琴,张晨爱,等.筒形件强力反旋的数值模拟及旋压力分[J].机械设计与研究,2007,23(4):65-68.
    [48]韩冬,杨合,詹梅,等.工艺参数对Ti75合金筒形件旋压成形的影响[J].宇航材料工艺,2011,4:48-50.
    [49]薛克敏,江树勇,康达昌.带纵向内筋薄壁筒形件强旋成形[J].材料科学与工艺,2002,10(3):287-290.
    [50]田辉,黄海青,陈国清,等.强选择工艺参数对TC4钛合金筒形件旋压成形的影响[J].航天制造技术,2009,5:14-17.
    [51] Molladvaoudi H R, Djavanroodi F. Experimental Study of Thickness ReductionEffects on Mechanical Properties and Spinning Accuracy of Aluminum7570-Oduring Flow Forming[J]. International Journal of Advanced ManufacturingTechnology,2011,52:949-957.
    [52]汪发春,彭心意,沈健,等.5A06铝合金筒形件变薄旋压的实验研究[C].第十一届全国旋压技术交流大会论文集,北京:机械工业出版社2008:137-140.
    [53] Murata M, Kuboki T, Murai T. Compression Spinning of Tubes MagnesiumCanister using Heated Roller Tool[J]. Journal of Materials Pressing Technology,2005,162-163:540-545.
    [54] Parsa M H, Pazooki A M A, Ahmadabadi M N. Flow-forming and FlowFormability Simulation[J]. International Journal of Advanced ManufacturingTechnology,2009,42:463-473.
    [55]宛琼,李付国,李超玲,等.钛合金筒形件强力旋压工艺模拟[J].金属铸锻焊技术,2012,41:98-100.
    [56] Pasoli M A, Abdullah A, Farzin M, et al. Influence of Ultrasonic Vibrations onTubes Spinning Process[J]. Journal of Materials Processing Technology,2012,212:1443-1524.
    [57]李克智,李贺军,吕炎.筒形件强力旋压变形中的应力应变分布[J].应用基础与工程科学学报,1997,5(1):12-17.
    [58] Hua F A, Yang Y S, Zhang Y N, et al. Three-dimensional Finite Element Analysisof Tubes Spinning[J]. Journal of Materials Processing Technology,2005,168:68-74.
    [59]詹梅,马上官.筒形件旋压有限元分析中芯模和旋轮相对运动的处理方法[J].精密成形工程,2011,3(6):107-111.
    [60]杨国平,徐文臣,陈宇,等.筒形件强旋变形流动规律研究[J].塑性工程学报,2008,15(6):48-52.
    [61]王浩然,杨志,周文龙,等.筒形件模环旋压隆起和旋压力的有限元模拟分析[J].航天制造技术,2007,(6):20-24.
    [62] D. G. Brandon, P. Ari-Gur, Z. Bratt, et al. Texture inhomogeneity and the straindistribution in shear-spun steel tubes, Materials Science and Engineering.1980,44:185-194.
    [63]徐文臣,单德彬,杨国平,等. BT20钛合金大型薄壁筒形件热旋解决方案[J].锻造与冲压,2006,(10):54-56.
    [64]徐文臣,单德彬,陈宇,等.钛合金薄壁筒形件热旋成形技术研究[J].锻造技术,2008,33(3):56-59.
    [65]毛柏平,沈健.旋压变形对铝合金筒形件组织和性能的影响[J].热加工工艺,2008,37(11):49-50.
    [66]韩冬,杨合,张立武,等.3A21铝合金热处理及旋压温度对其组织性能的影响[J].固体火箭技术,2010,33(2):225-228.
    [67]牟少正,韩冬,杨英丽,等.铸造钛合金管坯的旋压成形及性能研究[J].锻压装备与技术,2009,44(2):98-100.
    [68]李启军,吕宏军,王琪.旋压成形TC4钛合金组织性能及成分分析[C].第十一届全国旋压技术交流大会论文集,北京:机械工业出版社2008:177-182.
    [69]赵云豪,汪发春,沈健. TB2钛合金管形件旋压变形组织性能的研究[J].锻压技术,2007,32(6):87-94.
    [70] M. Jahazi, G. Ebrahim. The Influence of Flow-forming Parameters andMicrostructure on the Quality of a D6ac Steel. Journal of Materials ProcessTechnology,2000,103(3):362-366.
    [71] Shan D B, Yang G P, Xu W C. Deformation History and the ResultantMicrostructure and Textture in Backward Tube Spinning of Ti-6Al-2Zr-1Mo-1V[J].Journal of Materials Processing Technology,2009,209(17-19):5713-5719.
    [72] Bunge H J. Quantitative Texture Analysis[M]. Oberursel: DGM-Informationsgesells chaft-Verlag,1981:1-4.
    [73]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007:65-82.
    [74] Bunge H J. Texture Analysis in Materials Science: Mathematical Methods[M].Boston: Butterworth,1983:178-220.
    [75] Engler O. Introduction to texture analysis: macrotexture, microtexture, andorientation mapping[M]. Boca Raton: CRC Press,2010:423-445.
    [76]李萍,段园培,薛克敏,等. TB8钛合金的热变形组织与织构[J].中国有色金属学报,2010,20(5):872-877.
    [77]朱知寿,顾家琳,陈南平,等.钛的织构与力学性能各向异性关系研究[J].机械工程材料,1994,18(2):23-55.
    [78] Chun Y B, Yu S H, Semiatin S L, et al. Effect of Deformation Twinning onMicrostructure and Texture Evolution during Cold Rolling of CP-titanium[J].Material Science and Engineering A,2002,398(5):209-219.
    [79] Bhatacharyya D, Viswanathan G B, Robb D, et l. The Role of Crystallographicand Geogetrical Relationships Between α and β Phase in an α/β Titanium Alloy[J].Acta Materialis,2003,51:4679-4691.
    [80] Bhatacharyya D, Viswanathan G B, Vogel S C. A Study of the Mechanism of α toβ Phase Transformation by Tracking Texture Evolution with Temperature inTi-6Al-4V using Neutron Diffraction[J]. Scripta Materialia,2006,54:231-236.
    [81] Bhatacharyya D, Viswanathan G B, Hamish F L. Crystallographic andMorphological Relationships between β Phase and the Widmanstatten andAllotriomorphic α Phase at Special β Grain Boundaries in an α/β TitaniumAlloy[J]. Acta Materialia,2007,55:6765-6778.
    [82]薛超,胡建军,陈国清,等.冷加工态Ti6Al4V合金的回复和再结晶行为研究[J].稀有金属材料与工程,2012,41(3):472-476.
    [83]吕庆功,陈光南,周家琮,等.深冲钢板的主要织构对塑性应变比的影响[J].钢铁研究.2000,5(116):40-43.
    [84] Hutchinson W B, Development and control of annealing textures in low-carbonsteel[J]. International Metals Reviews.1984,29(1):25-33.
    [85]王超群.织构强化[J].稀有金属.1979,3:54-59.
    [86]尤世武,蒙良. Zr-4板材的织构强化[J].上海有色金属.1995,16(4):199-202.
    [87]常亚喆,刘楚明,詹从堃,等.高应变率下纯钛动态压缩力学性能各向异性[J].湖南有色金属.2008,24(4):33-36.
    [88]张小明.纯钛板的塑性变形与冲压成形性[J].金属学快报.2006,25(9):43-44.
    [89]张德荣.织构强化计算及在钛制压力容器设计中的应用[J].压力容器.1990,7(5):28-33.
    [90]李冈陵,曾晓英,殷翀,等.各向异性钛制压力容器的强化效应研究[J].压力容器.1989,6(3):27-30.
    [91]曾晓英,豆志武,殷翀,等.各向异性钛板双向拉伸的胡克定律屈服条件和强化效应研究[J].力学与实践,2012,14(3):25-29.
    [92]任家陶,李冈陵,豆志武,等.双向拉伸实验的进展与钛板双向拉伸的强化研究[J].实验力学,2001,16(2):197-206.
    [93]陈健.钛板双向强化效应研究[J].现代机械,2004,2:35-36.
    [94] David L, Arwen S, Hugo S, John V, Danny V H. Mixed numerical–experimentaltechnique for orthotropic parameter identifcation using biaxial tensile tests oncruciform specimens[J]. International Journal of Solids and Structures,2007,44:1643–1656
    [95]丁信伟,高光藩,由宏新.一种金属箔材双向拉伸实验方法[J].塑性工程学报,2002,9(3):51-54.
    [96] Grolleau V, Gary G, Mohr D. Biaxial Testing of Sheet Materials at High StrainRates Using Viscoelastic Bars[J]. Experimental Mechanics,2008,48(3):293-306.
    [97] Abu-Farha F, Hector L.G, Khraisheh M. Cruciform-Shaped SpecimensforElevated Temperature Biaxial Testing of Lightweight Materials[J]. The Journalof The Minerals, Metals&Materials Society,2009,61(8):48-56.
    [98]吴向东,万敏,周贤宾.十字形双向拉伸实验有限元模拟及分析[J].塑性工程学报,2001,8(2):57-59.
    [99]韩非,万敏,吴向东,等.基于极限应力分析的十字形双向拉伸试件设计[J].北京航空航天大学学报,2007,33(5):600-604.
    [100]M'Saoubi R, Ryde L. Application of the EBSD Technique for the Characterisationof Deformation Zones in Metal Cutting[J]. Materials Science and Engineering A,2005,405(1-2):339-349.
    [101]Humphreys F J. Characterisation of Fine-scale Microstructures by ElectronBackscatter Diffraction (EBSD)[J]. Scripta Materialia,2004,51(8):771-776.
    [102]Wisniewski W, V lksch G, Rüssel C. The Degradation of EBSD-patterns as a Toolto Investigate Surface Crystallized Glasses and to Identify Glassy SurfaceLayers[J]. Ultramicroscopy,2011,111(12):1712-1719.
    [103]黄洪涛, Godfrey Andrew,刘伟,等.多向压缩中AZ31镁合金变形行为的EBSD跟踪研究[J].金属学报,2013,49(8):932-938.
    [104]Mu R, Flores A, Ortiz J, et l. Tharacterization by EBSD of Antimonycalcium RichPhases Formed during Purification of Aluminum Scrap[J]. Journal of WuhanUniversity of Technology,2013,28(4):647-649.
    [105]崔桂彬,鞠新华,严春莲,等. DP590双相钢不同工艺下组织与微观织构的EBSD研究[J].中国冶金,2012,20(11):15-20.
    [106]杨平. EBSD技术在微织构分析中的应用[J].中国体视学与图像分析,2005,10(4):211-214.
    [107]Wu G, Juul J D. Automatic Determination of Recrystallization Parameters Basedon EBSD Mapping[J]. Materials Characterization,2008,59(6):794-800.
    [108]Tarasiuk J, Gerber P, Bacroix B. Estimation of Recrystallized Volume Fractionfrom EBSD data[J]. Acta Materials,2002,50(6):1467-1477.
    [109]Xun Y, Tan M J. EBSD Characterization of8090Al–Li Alloy During Dynamicand Static Recrystallization[J]. Materials Characterization,2004,52(3):187-193.
    [110]Sinclair C W, Embury J D, Weatherly G C, Conlon K T, Engler O. HeterogeneousDeformation of a Two Phase Nickel-Tungsten Alloy. Journal of Materials Scienceand Technology,2003,19(10):1321–1329.
    [111]Gee M, Mingard K, Roebuck B. Application of EBSD to the Evaluation of PlasticDeformation in the Mechanical Testing of WC/Co Hardmetal[J]. InternationalJournal of Refractory Metals and Hard Materials,2009,27(2):300-312.
    [112]Masayuki K. Characterization of Microstructural Damage due to Low-cycleFatigue by EBSD Observation[J]. Materials Characterization,2009,60(12):1454-1462.
    [113]Mingard K P, Roebuck B, Bennett E G, et al. Comparison of EBSD andConventional Methods of Grain Size Measurement of Hardmetals[J]. InternationalJournal of Refractory Metals and Hard Materials,2009,27(2):213-223.
    [114]Fujiyama K, Mori K, Kaneko D, et al. Creep Damage Assessment of10Cr-1Mo-1W-VNbN Steel Forging Through EBSD Observation[J]. InternationalJournal of Pressure Vessels and Piping,2009,86(9):570-577.
    [115]Seshacharyulu T, Medeiros S C, Morgan J T, et al. Hot Deformation andMicrostructural Damage Mechanisms in Extra-low Interstitial (ELI) GradeTi-6Al-4V[J]. Materials Science and Engineering A,2000,279(1-2):289-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700