改性层状硅酸盐矿物/微生物复合新型絮凝材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国湖泊和水库的富营养化程度已经相当严重,蓝藻水华暴发的面积、频度和强度及藻毒素的产生都呈现迅猛的增加趋势。铜绿微囊藻是我国富营养化水体中的主要水华蓝藻藻种,在富营养化水体中容易导致水华的暴发。絮凝去除藻类和富营养物质是处理水华的有效方法,但目前常用的传统絮凝剂聚合三氯化铝(PAC)和聚丙烯酰胺(PAM)等在水处理中均易产生二次污染,PAC水解后产生的铝离子通过饮用水进入人体会导致贫血、脱发和大脑痴呆等多种疾病,PAM水解后产生的丙烯酸和有机胺等有机污染物同样危害人体健康。因此,如何研制一种二次污染小、絮凝效果好的新型环保型水处理絮凝剂是当前水处理领域急待解决的重要课题。
     本文以资源丰富的层状硅酸盐粘土矿物及各种改性剂为主要原料,制备改性粘土絮凝材料,研究改性粘土对水华优势藻种铜绿微囊藻及富营养水体污染物质的絮凝去除效果,并进行了改性层状硅酸盐矿物/微生物复合新型絮凝材料试验,以及水环境中藻类及富营养物质的吸附絮凝行为与机理研究。本试验取得了较传统絮凝剂更加环保、价廉、高效的应用效果,主要研究内容和成果包括:
     1、采用新的制备工艺,将天然粘土制备成改性粘土絮凝材料,进行铜绿微囊藻絮凝效果对比试验。各种改性粘土投加量为50mg/L时,对于吸光度A_(68nm)=0.100的藻悬液,絮凝沉降4h后铜绿微囊藻的去除率比较:经过各种改性后,除藻能力提高,基本都可以除藻80%以上。改性剂聚硅酸铁改性粘土絮凝铜绿微囊藻效果优于聚硅酸铝、壳聚糖和聚丙烯酰胺改性粘土,其混凝能力强、絮体紧密、颗粒沉降速度快,除藻率都达90%以上,其中改性粘土矿物中累托石、海泡石、凹凸棒石除藻能力较强。因聚硅酸铁改性累托石絮体沉降体积较小,沉降时间短,沉降速度快。实验选择改性粘土累托石,改性材料聚硅酸铁,改性剂与粘土用量配比1:10,聚硅酸铁改性累托石投加量为50 mg/L左右,240min后,藻去除率达到95%以上,浊度由55.0NTU降到3.1 NTU,去除率达94.4%,絮凝效果显著。
     2、通过研究制备改性粘土的影响因素:矿浆浓度、改性剂与粘土配比、酸化pH值、聚硅酸熟化时间、Si/Fe摩尔比、老化时间、投药量等对铜绿微囊藻絮凝效果的影响,本试验确定试验条件为累托石矿浆浓度10%,pH为2,改性剂与累托石质量配比为1:10,聚硅酸熟化45min,硅铁摩尔比约为Si/Fe≈0.4,反应老化90min。充分反应后离心脱水形成改性泥备用,投加量在10mg/L左右,即可达到除藻率89.0%,浊度去除率90.4%。
     3、微生物制剂除藻试验,分别从除藻时间、微生物用量及对藻毒素的去除上进行研究,对比改性粘土,微生物处理所需时间较长、沉降效果较差,投加量5mg/L以上,10天后除藻率可达90%。微生物处理几乎不产生底泥,可分解藻类,将其与改性累托石复配使用,可减少底泥,去除水华危害。复合絮凝材料投加,先加微生物活化液,再添加改性粘土,即方案2效果较好,除藻率89.3%,除浊率90.8%。改性粘土和枯草芽孢杆菌活化液都对微囊藻毒素MC—LR有明显的去除作用。
     4、改性粘土复合微生物在富营养水体中应用研究,随着各种絮凝剂投加量的增加,处理汉江水、南湖水、生活污水的COD、TN、TP的去除率都随之增加,微生物与改性累托石复合絮凝剂效果明显较好,改性累托石处理汉江水效果也较传统絮凝剂PAC要好。处理后水体达到水质标准要求。经三种絮凝剂处理后,改性累托石和复合絮凝材料对自来水中铁离子有一定去除作用,PAC对于水样中的铁含量基本没有去除作用。投加量20mg/L时,改性累托石处理残余铁效果较好;投加量35mg/L时复合絮凝剂处理效果较好;投加量继续增加后,铁含量变化不大。由此可以看出,聚硅酸铁改性累托石及其复合材料在水溶液中溶出铁离子现象不明显,并且有一定继续吸附铁离子的能力,不会造成水体二次污染。
     5、重复利用研究中,煅烧除去吸附的挥发有机质后,二次使用改性累托石材料,除藻率、除浊率有所下降,投加量在50mg/L时,仍有除藻率89.2%、除浊率74.2%。三次使用改性累托石材料,除藻率80.1%、除浊率65.1%。因此,微生物降解后,改性累托石材料对水华优势藻种铜绿微囊藻,还是具有较好的去除效果,可以进行重复使用。处理效果相同的情况下,改性累托石复合微生物絮凝材料,处理水样单位成本较低,具有明显优势。
     6、复合絮凝材料处理水华主要是两个方面作用协同的效果,改性粘土迅速絮凝沉降水华藻类及其它悬浮物,微生物去除富营养物质和藻毒素。改性粘土絮凝剂在絮凝过程中主要是通过双电层压缩、吸附电中和、吸附架桥和沉淀物网捕等四种絮凝机理来对水中微粒或胶粒进行凝聚、聚沉;枯草芽孢杆菌主要通过微生物营养竞争、反硝化作用和聚磷作用进行脱氮降磷,快速分解水体中的有机质,分泌生物酶,降解藻毒素。因此,改性粘土矿物与微生物协同作用,粘土吸附架桥作用、聚硅铁电中和作用,聚合大分子与粘土共同网捕作用,最终脱稳沉降,不仅可使藻细胞和其它悬浮颗粒发生聚团絮凝沉降,另外微生物去除水体中富营养物质N、P、COD、以及藻毒素Microcystin等,较好的解决水体富营养问题。
The eutrophic state of China's lakes and reservoirs has been very serious. There have been emergencies in the rapid increase trend, with outbreak of algae bloom size, frequency and intensity of algal toxins. Microcystis aeruginosa is the main species of cyanobacteria bloom in the eutrophic water, and with the eutrophication of water bodies in our country easily lead to the outbreak of water bloom. Flocculation is an effective way to remove algae and eutrophic material on water treatment in China. But traditional flocculant commonly used in water treatment, such as polyaluminum chloride (PAC) and polyacrylamide (PAM), etc. are prone to produce secondary pollution. Aluminum ions from hydrolysis of PAC enter human body through drinking water and it will lead to anemia, hair loss and dementia and other brain diseases. Organic pollutants are the same harm to human health by hydrolysis of PAM, such as acrylic acid and organic amine. Therefore, how to prepare a kind of novel environment-friendly water treatment flocculant, which is of less pollution and better flocculating performance, is a very important subject and an urgent task that need to be solved in water treatment field recently.
     In this paper, a kind of novel high-effect environment-friendly flocculant had been prepared by using the natural resources mineral. It used layered silicate clay minerals of sufficient source, microbe and various modifiers as the main raw materials, prepared modified clay flocculation. The flocculation effects were studied and the advantage of modified clay flocculation was analyzed. Algal bloom of Microcystis aeruginosa and the kinds of nutritious substances in water pollution were removed by the new modified layered silicate mineral / microbial flocculation materials. The adsorption behavior and mechanism of flocculation were also studied. Compares with the conventional flocculant, this new flocculant has more environmentally friendly function, lower price, higher effect and efficient application. The main research contents and results of this paper are included as following:
     1. By adopting the novel process, it took comparative test for the flocculating effect of Microcystis aeruginosa, on the preparation of natural clay material into modified clay flocculants. When modified clays dosage of 50 mg/L, the absorbance A_(680nm) = 0.100 of the algal suspension, flocculating 4h after the removal of microcystis aeruginosa comparison, the removal capacity of clay mineral after a variety of modification can be more than 80% basically. Polysilicate iron modified clay flocculant had better effect than polysilicate aluminum, chitosan or polyacrylamide modified clay, flocculating of microcystis aeruginosa together. It had stronger coagulation ability, more compact flocs, faster particle settling velocity, and removal rate of more than 90%. Modified clay minerals had better flocculating affect, of which ferric polysilicate modified rectorite, sepiolite, palygorskite had better removal ability of microcystis aeruginosa. Modified rectorite by ferric polysilicate, had stronger coagulation ability, more compact flocs, faster particle settling velocity, and excellent removal ability of microcystis aeruginosa. It chose modified rectorite clay to do next research in the experiment, using ferric polysilicate as modifying agent, dosage ratio 1:10 of modifier and clay, ferric polysilicate modified rectorite dosage 50 mg/L or so, keeping flocculating for 240min, the removel rate of algae up to more than 95%, turbidity value from 55.0 NTU down to 3.1 NTU, removal rate of turbidity reached 94.4%. The flocculating efficiency increased dramatically.
     2. The preparation of modified rectorite was studied by analysing the affect factors, such as slurry concentration, ratio of clay and modifier, acid pH, ripening time of polysilicate, molar ratio of Si/Fe, aging time, dosage and so on. The experimental condition was confirmed by studying flocculation efficiency of microcystis aeruginosa, the concentration of rectorite pulp 10%, pH value 2, modifier weight ratio of rectorite 0.1, polysilicate ripening 45min, the molar ratio of Ferric-polysilicate about Si/Fe≈0.4, the aging reaction 90min. After full reaction, the mixed pulp was prepared into modified slurry through centrifugal dehydration to form standby mud. With the dosage of 10mg/L or so, it could achieve the algae removal rate of 89.0%, turbidity value removal of 90.4%.
     3. Removing algae using microorganism were studied by means of removal time experiment, microbial dosage experiment, and mcrocystins removal experiment. Compared to modified clay, the time required for microorganisms was longer, and the removal behavior had less effective, the flocculation to deal with algae didn't work. In the other side, microorganism had its own advantage of no organism left and complete catabolism. When the microorganism dosage was more than 5mg/L, the removal rate was up to 90% ten days later. Microorganism catabolism almost had no sediment, and modified rectorite compound had excellent flocculating efficiency, which were both required of water bloom removal. Flocculation composite material 2, adding microbial activation solution firstly, then adding the modified clay, algae removal rate of 89.3%, turbidity removal rate 90.8%. Modified clay and bacillus subtilis have a clear role in the removal microcystins MC-LR.
     4. The new flocculant applied in the eutrophic water, with a variety of flocculant dosage to deal with the Han River, South Lake, and domestic wastewater. COD, TN, TP removal rates were significantly increased following the increasing dosage of composite flocculant. The removal rates are also better than the conventional flocculant PAC, treated water up to quality standards. Treated by three types of flocculants, Dosage of 20mg/L, the modified rectorite was better with the residual iron; when dosage was 35mg/L, the composite flocculant was better; dosage continue to increase, little change in the iron content. It can be seen, ferric polysilicate modified rectorite and composite materials in the dissolution of ions in aqueous solution are not obvious, and some continue to ion adsorption capacity of water bodies. It will not cause secondary pollution.
     5. The underside of sediment was calcined to remove the volatile organic matter adsorption for the secondary use of modified rectorite material. In dosage of 50mg/L, the removal rate was 89.2%, turbidity removal rate 74.2%; three times using modified rectorite material removal rate was 80.1%, turbidity removal rate 65.1%. Therefore, the modified rectorite has a good removal efficiency of the water bloom after microbial degradation, and it can be reused. The cost of new flocculant materials was lower than conventional flocculant, which have obvious advantages.
     6. The flocculatin of removal algae show mainly two aspects of synergistic effect, micro-organisms consumed nutritious substances and removed algal toxins, modified clay flocculated and adsorbted solid particle quickly. Modified clay flocculant in the flocculating process is mainly through the double-layer compression, electrochemistry adsorption, adsorption bridgework, netting capture sediment and so on. Bacillus subtilis consumed nutritious substances mainly through microbial competition, denitrification to get nitrogen off, polyphosphazenes to get phosphorus off, and the rapid decomposition of organic matter in water, enzyme secretion, and degradation of algal toxin. Therefore, the new flocculant not only enable the algal cells coagulation and other suspended particles agglomerate, but also consume and adsorb other nutritious substances in water to microbial remove N, P, COD, and Microcystin-LR, consequently solve the eutrophication problem of water bodies.
引文
[1]冯玉琦.我国水环境的现状、存在问题及治理方略.农业与技术,2003,23(2):12-15
    [2]金相灿.中国湖泊环境.北京:海洋出版社,1995
    [3]王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998
    [4]李春青.汉江“水华”的影响因素分析与研究:[硕士论文].昆明:昆明理工大学,2007
    [5]李新民.长江中游地区水资源可持续利用研究.武汉:华中师范大学出版社,2002
    [6]常青.水处理絮凝学.北京:化学工业出版社,2003
    [7]曾维华.国内外水环境管理体制对比分析.重庆环境科学.2003,25(1):2-5
    [8]王九思.水处理化学.北京:化学工业出版社,2002
    [9]苏腾,陈中兴,陆柱.絮凝剂的研究应用现状与开发动向(一).净水技术,2000,18(3):7-8
    [10]周毅,黄君敏.无机絮凝剂在工业废水处理中的应用现状及发展趋势分析.内蒙古石油化工,2005,31(2):23-25
    [11]汤鸿霄.无机高分子絮凝剂的几点新认识.工业水处理,1997,17(4):1-5
    [12]栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划,工业水处理,2000,20(11):1-6
    [13]Ohno K,Uchiyama M,Kamei T,et al.Practical design of flocculator for new polymeric inorganic coagulant-PSI.Water Sci.Technol,2004,4(1):67-75
    [14]王强.聚合铝铁复合无机高分子絮凝剂及其在水处理应用中的探讨.技术研究,2006,23(1):80-83
    [15]谢娟.复合絮凝剂聚硅酸铝铁的制备及应用.工业安全与环保,2006,32(9):18-19
    [16]陈平.絮凝剂的开发进展.污染防治技术,2006,19(1):20-21
    [17]黄海金.改性天然高分子絮凝剂的研究与应用进展.江西化工,2006,22(1):57-60
    [18]石宝友,汤鸿霄.聚合铝与有机高分子复合絮凝剂的絮凝性能及其吸附特性.环境科学,2000,(1):18-22
    [19]汪玉庭.壳聚糖及其衍生物在水处理中的应用.污染防治技术,2000,13(1):51-53
    [20]刘宇程,万里平.水处理絮凝剂研究进展.化工时刊,2005,19(6):63-66
    [21]胡筱敏,邓述波,牛力东等.一株芽孢杆菌所产絮凝剂的研究.环境科学研究,2001,14(1):36-40
    [22]柴晓利,赵由才.微生物絮凝剂用于垃圾填埋场渗滤液后处理的研究.黑龙江科技学院学报,2003,12(3):6-9
    [23]尹华,彭辉.微生物絮凝剂产生菌筛选及其絮凝除浊性能.城市环境与城市生态,2000,13(1):10-12
    [24]邱忠平,杨立中,刘丹.垃圾渗滤液COD降解菌株的筛选及其降解特性初探.四川环境,2007,26(1):5-8
    [25]庄源益,戴树桂,李彤.生物絮凝剂对水中染料絮凝效果探讨.水处理技术,1997,23(6):349-353
    [26]陈坚,堵国成.环境友好材料的生产与应用.北京:化学工业出版社,2002.314-343
    [27]江锋,黄晓武,胡勇有.胞外生物高聚物絮凝剂的研究进展.给水排水,2002,28(9):88-91
    [28]郑怀礼.生物絮凝剂与絮凝技术.北京:化学工业出版社,2004,91-232
    [29]刘杏.生物絮凝剂的研究现状及发展趋势.孝感学院学报,2001,21(6):39-42
    [30]Thomas C R,et al.Micromanipulation measurements of biological materials.Biotechnology Letters,2000,22(7):531-537
    [31]Fujita Masanori,et al.Characterization of a bioflocculant produced by Citrobacter sp.from acetic and propionic acids.Bio-science.Bio-engineering,2000,89(1):40-46
    [32]Saleh H.Extracellular biopoly-meric flocculants recent trends and biotechnological importance.Biotechnolo-gy Advances,2001,19:371-385
    [33]张景来,王剑波.环境生物技术及应用.北京:化学工业出版社,2002.30-34
    [34]李桂娇,尹华,彭辉.生物絮凝剂的研究与开发.工业水处理,2002,22(3):9-12
    [35]顺宇飞,罗屿,马文漪等.温度、碳、氮、磷对一株芽孢杆菌生长的影响.应用与环境生物学报,2000,6(1):86-89
    [36]I.L.Shih,Y.T.Vna.Production of a biopolymer flocculant from Bacillus licheniformis and its flocculant properties.Bioresource Technology.2001,78:267-272
    [37]朱艳彬,杨基先,马放等.复合型生物絮凝剂产生菌筛选及絮凝机理研究.哈尔滨工业大学学报,2004,136(6):761-764
    [38]Wang Z,Wang K.X.Studies on bioflocculant producing microrganisms.Acta Microbiologica Sinica,1995,35(2):121-129
    [39]陶然,杨朝晖,曾光明等.微生物絮凝剂及其絮凝微生物的研究进展.微生物学杂志,2005,25(4):84-88
    [40]Labille,E,Milas M,Vanhaverbeke C.Flocculantion of colloidal clay by bacterial polysaccharides effect ofmacromolecule charge and structure.Journal of colloid and interface science,2005,284(1):149-156
    [41]张宏梅.生物絮凝剂在环境废水处理中的应用.化工技术与开发,2007,36(7):41-44
    [42]董军芳,林金清,曾颖等.微生物/硫酸铝复合絮凝剂在自来水原水中的应用.应用化工,2002,31(2):35-38
    [43]韩长秀,林徐明.生物絮凝剂及其在水处理中的应用进展.水处理技术,2006,32(9):6-11
    [44]林文銮,黄惠莉,李天仁等.微生物絮凝剂的制备及其对净化水的研究.福建化工,2001,32(2):50-53
    [45]何宁,李寅,陈坚等.生物絮凝剂的最新研究进展及其应用.微生物学通报,2005,32(2):104-108
    [46]唐星华,陈孝娥,万诗贵.壳聚糖及其衍生物在水处理中的研究.水处理技术,2005,31(11):12-15
    [47]王晓蓉,吴顺年,李万山.有机粘土矿物对污染环境修复的研究进展.环境化学,1997,16(1):1-13
    [48]B.Bolto,D.Dixon,R.Eldridge,et al.Catinic polymer and clay or metal oxide combinations for natural organic matter organic matter removal.Wat.Res.,2001,35(11):2669-2676
    [49]L.Huang,H.N.Xiao,Y.H.Ni.Cationic-modified microporous zeolites/anionic polymer system for simultaneous removal of dissolved and colloidal substances from waste water.Separation and Purification Technology,2006,49(4):264-270
    [50]须藤俊男(日).粘土矿物学.北京:地质出版社,1981.235-258
    [51]姚书典.非金属矿加工及利用.北京:科学出版社,1992.201-220
    [52]张乃娴.粘土矿物研究方法.北京:科学出版社,1990,8:118-215
    [53]栾文楼,李明路.膨润土的开发应用.北京:地质出版社,1998
    [54]王琼,吴翠玲.改性蒙脱石复合材料在污水处理中的研究与应用.环境科学与技术,2004,27(1):87-90
    [55]湖北省地质矿产局编著.累托石.武汉:湖北科学技术出版社,1989
    [56]黄韵,马晓燕,袁莉等.改性累托石吸附水溶液中苯酚的研究.矿业研究与开发,2004,24(5):48-50
    [57]孙家寿,张泽强,沈静等.交联累托石在废水处理中的应用研究.武汉化工学院学报,2002,24(1):51-54
    [58]王萍,李国昌.凹凸棒石粘土吸附脱色性能对比实验研究.非金属矿,2005,28(3):54-56
    [59]彭书传,魏凤玉,周元祥等.有机凹凸棒粘土吸附水中苯酚的试验.城市环境与城市生态,1999,12(2):14-16
    [60]邹华,潘纲,陈灏.壳聚糖改性粘土对铜绿微囊藻的絮凝去除.环境科学,2004,25(6):40-43
    [61]潘纲,张明明,阎海等.黏土絮凝沉降铜绿微囊藻的动力学及其作用机理.环境科学,2003,24(5):1-11
    [62]金相灿.湖泊和湿地水环境生态修复技术与管理指南.北京:科学出版社2007,7
    [63]国家环境保护总局科技标准司.中国湖泊富营养化及其防治研究.北京:中国环境科学出版社.2001,12
    [64]范成新,王春霞.长江中下游湖泊环境地球化学与富营养化.北京:科学出版社,2007
    [65]刘玉生,郑丙辉.滇池富营养化及其综合治理技术研究.北京:海洋出版社,2004
    [66]谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁.北京:科学出版社.2005
    [67]韩博平,林桂花,钟秀英.水库蓝藻和蓝藻毒素分布与检测-广东省典型供水水库研究.北京:中国环境科学出版社,2006
    [68]瞿建宏,刘韶斌.水体中芽孢杆菌和微囊藻的生长及其资源竞争.湛江海洋大学学报,2002,22(3):13-18
    [69]Morris R J,Williams D E,et al.The adsorption of microcystin-LR by natural clay particles.Toxicon,2000,38:303-308
    [70]刘振儒,安娣.矿物助凝除藻及其对残余铝形态的影响.供水技术,2008,2(1):8-11
    [71]Yoram A.et al.Mutual Flocculation og Algae and Clay:Evidence and Implications.Science,1982,216(2):63-65
    [72]Moo Young Han,Wontae Kim.A theoretical consideration of algae removal with clays.Microchemical Journal,2001,68(1):157-161
    [73]高健,赵春禄.传统PAC混凝除藻方法的改进.青岛科技大学学报,2005,26(2):120-123
    [74]罗岳平,施周,王仕汇等.用粘土作助凝剂提高聚合氯化铝除藻效果的研究.中国给水排水,2007,23(17):61-66
    [75]曹西华,宋秀贤,俞志明等.有机改性粘土去除赤潮生物的机制研究.环境科学,2006,27(8):1523-1530
    [76]曹西华,俞志明.季铵盐类化合物灭火赤潮异弯藻的实验研究.海洋与湖沼,2003,34(2):201-20
    [77]邹华,潘纲,陈灏.离子强度对粘土和改性粘土絮凝去除水华铜绿微囊藻的影响.环境科学,2005,26(2):148-151
    [78]M.S.Tsai.The study of formation colloidal silica via sodium silicate.Materials Science and Engineering,2004,B106:52-55
    [79]王炳建,高宝玉.无机高分子絮凝剂聚合硅酸铝铁的研究.环境化学,2002,21(6):533-538
    [80]甘莉,甘光奉.铝铁复合混凝剂的研究新进展.工业用水与废水,2003,34(1):63-65
    [81]方月梅.含硅多核无机高分子絮凝剂的形貌结构、混凝性能及混凝机理研究:[硕士学位论文].武汉:武汉科技大学,2005
    [82]栾兆坤.无机高分子絮凝剂聚合氯化铝的基础理论与应用研究[D].北京:中国科学院生态环境研究中心,1997,5
    [83]尹承龙.聚硅酸复合絮凝剂的制备研究:[博士学何论文].北京:中国矿业大学,2000
    [84]陈伟红,李明玉,唐启红等.聚硅酸盐混凝剂的性能研究.化学研究,2000,11(4):28-30
    [85]钟惠萍,陈文纳,陈宇俭等.混凝剂聚硅氯化铝中有机稳定助剂应用研究.广西化工,2002,31(1):5-6
    [86]J.Z.Yuan,Q.X.Yan,et al.Experimental Research on Purification of High-purity Rectorite.The ⅩⅩⅣ International Mineral Processing Congress 2008.2008,9:3351-3356
    [87]国家环境保护总局编.水利废水监测分析方法(第四版).北京:中国环境科学出版社,2002:111-213
    [88]Kujbida P,Hatanaka E,et al.Effects of microcystins on human polymorphonuclear leukocytes.Biochem Biophys Res Commun,2006,341(1):273-277
    [89]Y.Chen,A.A.Randall,T.Mccue.The Efficiency of Enhanced Biological Phosphorus Removal from Real Wastewater Affected By Different Ratios of Acetic to Propionic Acid.Water Research,2004,38(1):27-36
    [90]Y.Seida,Y.Nakano.Removal of phosphate by layered double hydroxides containing iron.Water Research,2002,36:1306-1312
    [91]P.L.Clech,E.K.Lee,V.Chen.Hyhrid photocatalysis/membrane treatment for surface water containing low concentrations of natural organic matters.Water Research,2006,40:323-330
    [92]E.L.Sharp,S.A.Parsons,B.Jefferson.Seasonal wariations on natural organic matter and its impact coagulation in water treatment.Science of the Total Environment,2006,363:183-194
    [93]E.L.Sharp,S.A.Parsons,B.Jefferson.The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts.Environmental Pollution,2006,140:436~443
    [94]A.T.Pikkarainen ,S.J.Judd,J.Jokela ,et al.Pre-coagulation for microfiltration of upland surface water.Water Res,2004,38:455~465
    [95]A.V.Ritter,J.Rose,A.Masion,et al.Chemistry and structure of aggregatesformed with Fe-salts natural organic matter.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,147:297~308
    [96]K.Yamahara,K.Okazaki.Molecular dynamics simulation of the structural development in sol-gel process for silica systems.Fluid Phase Equilibria,1998,144:449~459
    [97]B.A.Bolto,D.R.Dixon,R.J.Eldridgeand,et al.The use of cationic polymers as primary coagulants in water treatment.Springer,Berlin,1998,175~185
    [98]V.Kancharla,H.H.Ngo,S.Vigneswaran,et al.The use of polyelectrolyte in downflow filtration in a dual system of floating medium and sand.Proceedings Australian WWA 17th Federal Convention,Australian Water and Wastewater Association.Sydney,1997,1:506~512
    [99]Robert J.Morris,David E.Williams,et al.The adsorption of microcystin-LR by natural clay particles.Toxicon,200,38:303~308
    [100]Li.Tao,Zhu.Zhe.et al.Characterization of floc size,strength and structure under various coagulation mechanisms.Powder Technology,2006,168(2):104~110
    [101]Wu.K.L,Lai.S.K.Theoretical studies of the early stage coagulation kinetics for a charged colloidal dispersion.Langmuir,2005,21(8):3238~3246
    [102]Sheng.W.Y,Peng.X.F.et al.Coagulation of particles through rapid mixing [J].Drying Technology,2006,24(10):1271~1276
    [103]Fitzpatrick.C.S.B,Gregory.J,et al.Temperature effects on f locculation,using different coagulants.Water Science and Technology,2004,50(12):171~175
    [104]C.Volk,K.Bell,E.Ibrahim,et al.Lechevallier.Impact of enhanced and optimised coagulation on the removal of organic matter and its biodegradable fraction in drinking water.Water Res.,2000,34(12) :3247~3257
    [105]Frank GV,Jameson GJ.PH-Sensitive flocculation:Settling rates and sediment densities.Aiche Journal,2006,52 (8) :2774~2782
    [106]Rawlings MM,Fitzpatrick.C.S.B,Gregory.J,et al.The influence of polymeric flocculants on floe strength and filter performance.Water Science and Technology,2006,53 (7) :77~85
    [107]黄韵,马晓燕,梁国正等.累托石的有机改性及其对凝胶聚合物电解质的影响.硅酸盐学报,2006,34(4):465~469
    [108]Doelsch E,Masion A,Rose J,et al.Chemistry and structure of colloids obtained by hydrolysis of Fe( Ⅲ )in the presence of SiO_4ligands.Colloids and Surfaces A:Physicochem.Eng.Aspects.2003,217 :121~128
    [109]Doucet FJ,Rotov ME,Exley C.Direct andindirect identification of the formation of hydroxyaluminosilicates in acidic solutions.Journal of Inorganic Biochemistry.2001,87:71-79
    [110]Hasegawa T,Hashimoto T,et al.Characteristics of metal-polysilicate coagulants.Water Sci.Technol,1991,23(7):1713-1223
    [111]郑晓虹,王维钬,孙小花等.硫酸铝渣研制聚合硅酸硫酸铝絮凝剂.吉林化工学院学报,2004,21(2):39-42
    [112]夏爽,李进,张琼.聚铁混凝剂的形态分布及分析方法.中国给水排水,2006,22(10):9-12
    [113]Gao B Y,Hahnb H H,Hoffmann E.Evaluation of aluminum-silicate polymer composite as a coagulant for water treatment.Water Research,2002,36:3573-3581
    [114]A.G.Samrania,B.S.Lartiges.Clarification of municipal sewage with ferric chloride:the nature of coagulant species.Water Research,2004,38:756-768
    [115]胡忠于,罗道成.用废铁渣制备高效絮凝剂聚硅酸铁及其絮凝性能研究.湖南科技大学学报(自然科学版),2006,21(2):77-80
    [116]陈宗淇,王光信等.胶体与界面化学.北京:高等教育出版社,2001
    [117]J.M.Duan,J.Gregory.Coagulation by hydrolyzing metal salts.Advances in Colloid and Interface Science,2003,100-102:475-502
    [118]卢涌泉,邓振华.实用红外光谱分析.北京:电子工业出版社,1989
    [119]吴谨光,许振华,李琼瑶.近代傅立叶变换红外光谱图技术及应用.北京:科学技术文献出版社,1994
    [120]洪汉烈,铁丽云,边秋娟等.湖北钟祥累托石的电子显微研究.电子显微学报,2005,24(2):124-128
    [121]MetoshDickey C A,Davis T M.Improving Biotreatment for Textile Waster Decolorization and COD Reduction.American Dyestuff Reporter,1999,88(7):28-38
    [122]朱晓江,尹双凤,桑军强.微生物絮凝剂的研究和应用.中国给水排水,2001,17(6):19-22
    [123]Reim R L.The characterization of a Bacillus capable of blue-green bactericidal activity.Can.J.Microbiol,1974,20:981-986
    [124]Iamura N,I Motoike,N Noda,et al.A novel anti-cya-nobacterial compound produced by an algae-lying bacterium.J Antibiotics,2000,53(11):1317-1319
    [125]N.Sahal.Calculation of 29Si NMR shifts of silicate complexes with carbohydrates,amino acids,and Mutlicarboxylic acids:Potential role in biological silica utilization,Geochimica et Cosmochimica Acta,2004,68(2):227-237
    [126]C.Exley.Silicon in life:A bioinorganic solution to bioorganic essentiality.Journal of Inorganic Biochemistry,1998,69:139-144
    [127]Jeong S Y,Ishid A K,Ito Y,et al.Bacillamide,a novel algicide from the marine bacterium,Bacillus sp.SY21,against the harmful dinoflagellate,Cochlodinium polykrikoides.Tetrahedron letters,2003,44:8005-8007
    [128]Valin S D,Sutherland D J.Predicting bioflocculation:new developments in the application of flocculation theory.Environ.Technol.Lett.,1982,3:363-374
    [129]Sanz Y.Purification and characterization of an arginine aminopeptidase fromLactobacillus sakei.Applied and Environmental Microhiology,2002,68(4):1980-1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700