血瘀证(心肌缺血)动物模型及其相关蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
证候是中医药理论的核心内容,证候科学内涵的揭示是中医基础理论现代化的关键环节,而证候生物学基础研究的突破则是证候科学内涵得以阐明的保障。证候生物学基础的研究同样需要借助动物模型这个必须的工具。目前,证候动物模型的建立和评价存在巨大的争议,缺乏公认的标准,亟待寻找可行的途径。通过在疾病模型的基础上,对模型动物进行动态的观察、评价以确定其证候属性的方法,有可能建立符合中医理论且稳定性较好的病证结合动物模型。
     同时,以往证候的生物学基础研究多致力于寻找可用于证候诊断的金指标,但由于忽略了证候的整体性而遇到了瓶颈。系统生物学研究技术和方法的兴起和发展,为证候生物学基础的研究带来了新的契机。循环系统作为机体各种组织、器官、细胞联系的纽带,在机体的生命活动过程中起着重要的作用,更能反映机体整体的生理病理状态。因此,对于证候相关的血浆蛋白质组学的研究有可能发现证候在蛋白质层面的特征模式。
     血瘀证的是冠心病的最常见的证型,同时有着较好的研究基础,因此血瘀证的研究可作为证候动物模型研究的切入点,即通过对心肌缺血模型动态观察确定血瘀证时间窗的方式来建立血瘀证(心肌缺血)动物模型,并对血瘀证(心肌缺血)动物血浆蛋白质组学进行研究,以探讨将蛋白质组学技术应用于证候生物学基础研究的可行性。
     目的:
     建立稳定的血瘀证(心肌缺血)动物模型,并寻找其相关的血浆蛋白质组学特征。
     方法:
     1小型猪血瘀证(心肌缺血)模型的建立和评价
     中国农业大学育种健康中华小型猪,体重25±4kg,月龄6-10个月,雌雄不限,随机分为模型组和假手术组。模型组动物在麻醉、无菌条件下开胸,分离前降支,在第一对角支远端的前降支主干放置Ameroid缩窄环,关胸。假手术组除不放置缩窄环外,其余均同模型组。
     1.1参考前期动态观察的实验结果,在术后4周采集动物四诊信息,进行心电图、超声心动、冠脉造影等检查,并在前腔静脉采血,检测血液流变学指标以及前列环素(PGI2)、血栓素A2(TXA2)、内皮素(ET-1)、降钙素基因相关肽(CGRP)等血管活性物质的含量。参考上述指征,对模型动物的疾病类型及证候属性进行诊断。
     1.2诊断为心肌缺血血瘀证的模型动物随机分为活血化瘀组及模型组,每组6只。活血化瘀组动物每日喂饲丹七片9g/只,用药4周,饮食及饲养条件同模型组及假手术。
     实验终点采集动物四诊信息,进行心电图、超声心动、冠脉造影等检查,并在前腔静脉采血,检测血液流变学指标以及PGI2、TXA2、ET-1、CGRP等血管活性物质的含量,根据上述信息再次对模型动物的疾病及证候进行诊断,以确定模型动物表现为心肌缺血血瘀证的时间窗。在实验终点对心肌组织采用常规石蜡包埋,HE、Masson染色观察其形态学变化。
     观察丹七片对对上述指标的影响,评价其对心肌缺血以及血瘀证的改善作用,以增加证候诊断的证据。
     2小型猪血瘀证(心肌缺血)的血浆差异蛋白质组学研究
     术后4周,前腔静脉采血,枸橼酸钠抗凝,离心收集上清备用。血浆总蛋白采用Bradford法测定,加样1.3mg。PH范围3-11NL 24cmIPG胶条等电聚焦,1mm、13% SDS-PAGE二相分离。考马斯亮蓝R350染色,凝胶扫描后,采用Imagemaster 2D Platinum 6.0软件进行凝胶的蛋白点检测、匹配。对匹配蛋白点的体积百分比进行比较,确定差异蛋白点。差异蛋白点胰蛋白酶酶切后,MALDI-TOF检测,数据库搜索,确定其相关信息。
     术后8周,分别采集模型组、假手术组、活血化瘀组动物血浆样本,并进行双向凝胶电泳分析及蛋白点的检测、匹配,方法同前。通过与手术4周时凝胶的匹配,观察术后4周存在的差异蛋白点在8周模型中的变化以及活血化瘀药物对这些蛋白的影响。
     结果:
     1小型猪血瘀证(心肌缺血)模型的建立和评价
     1.1术后4周模型评价
     1.1.1四诊信息:模型动物出现精神紧张、易激惹,怕人,不易接近,冲撞笼栏;被毛杂乱、无光泽等表现,舌色略见暗红或青紫;假手术动物精神逐渐恢复正常,进食、饮水量增加,被毛整齐,有光泽,舌色淡红或淡白。
     1.1.2心电图:模型组动物多在V3、V4导联出现ST段水平或斜行向下压低达0.1mV,同时出现多导联的T波倒置;部分动物出现异常Q波。在观察期间模型动物未发现明显的心律失常。
     1.1.3超声心动图:与假手术组相比,模型动物心脏超声的特征主要表现为左室腔结构的变化,即左室舒张末、收缩末内径( P < 0.01)及容积( P <0.05 )的扩大。左室前壁乳头肌及心尖平面收缩末及舒张末厚度的减小,以收缩末的变化更为显著( P <0.01 )。同时,心尖水平的左室前壁收缩期室壁增厚率减小( P <0.01 )。另外,室间隔收缩末厚度减小( P <0.05 )。心脏整体的功能包括SV、EF、FS以及E/A比等均无明显变化,提示其心功能仍处于代偿期。
     1.1.4冠脉造影:模型动物前降支狭窄率在90%以上,甚至完全闭塞,TIMI血流分级多为Ⅰ级和Ⅱ级。假手术组前降支充盈良好,TIMI血流Ⅲ级。
     1.1.5血液流变学:与假手术组相比,模型动物的血液流变学特征主要表现为高(P <0.05)、中(P <0.01)、低(P <0.01)切变率下全血黏度的升高,而其红细胞的聚集以及变形指数等无明显差异。
     1.1.6其它血液理化指标:与假手术组相比,模型组动物的血浆6-K-PGF1α显著降低(P<0.05),TXB2、K/T无显著差异;血浆CGRP、ET、E/C均无明显变化。
     1.2术后8周模型评价
     1.2.1术后第8周,模型动物精神状况有所恢复,饮食、二便接近正常;被毛杂乱、无光泽等表现仍然存在,舌象仍表现为舌色略见暗红或青紫,无明显的瘀点瘀斑。
     1.2.2心电图:模型组动物心电图与术后4周相近。
     1.2.3超声心动图:模型组与假手术组相比,与术后4周存在相似的差异。
     1.2.4血液流变学:模型组动物高、中、低切变率下的全血黏度较假手术组显著增高(P<0.01),红细胞压积较假手术组显著升高(P<0.05)。
     1.2.5其它血液理化指标:术后8周,模型组动物血浆6-K-PGF1α水平较假手术组显著降低(P<0.05)。
     1.3活血化瘀药物丹七片的治疗作用
     1.3.1活血化瘀组动物四诊信息、心电图与模型组相比无显著差异。
     1.3.2超声心动图:模型组室间隔收缩末厚度较假手术组显著减小( P <0.05 ),而活血化瘀组与假手术组相比无显著差异。
     1.3.3血液流变学:与模型组相比,活血化瘀组红细胞压积测定值显著回落(P<0.05),且与假手术组相比无显著差异;活血化瘀组红细胞变形指数较模型组显著增加(P<0.05)。
     1.3.4其它理化指标:与模型组相比,活血化瘀组动物血浆6-K-PGF1α显著回升(P<0.05),与假手术组无显著差异。
     1.3.5病理学观察:HE染色见假手术组动物心肌排列整齐、结构清晰;模型动物病变区表现为心肌细胞排列紊乱,心肌细胞肿胀、变性、坏死,炎细胞侵润;活血化瘀组动物有明显的改善。Masson染色见模型组动物病变区心肌间质胶原组织增多,心肌细胞结构紊乱,细胞核或细胞浆空泡变性,破坏的心肌被胶原组织取代,同时可见炎细胞浸润;活血化瘀组动物心肌胶原沉积区数量和面积均小于模型组。
     2小型猪心肌缺血血瘀证的血浆差异蛋白质组学研究
     在术后4周混合样品的电泳发现模型组有10个明显的上调蛋白点;在单一血浆样品的电泳发现9个明显的上调蛋白点。其中1个蛋白点在两次实验中均有差异。
     质谱鉴定结果提示,部分上调的差异蛋白为α1-酸性糖蛋白、α1-抗胰蛋白酶、胎球蛋白A、载脂蛋白A-I、载脂蛋白A-IV、补体C4、补体细胞溶解抑制因子。
     模型组在术后4周存在的部分差异蛋白点在术后8周仍有差异,但其相对含量与术后4周不同。而活血化瘀药物只对上述部分差异蛋白有影响。
     结论:
     1模型动物在术后4周,可诊断为心肌缺血血瘀证,且该诊断在术后8周仍成立。提示在该时间窗,此类动物模型稳定表现为血瘀证(心肌缺血)。丹七片可以改善心肌缺血及血瘀证的部分表现,在一定程度上佐证了上述诊断。
     2模型组与假手术组相比,已鉴定的差异蛋白质主要为急性期反应蛋白、补体系统以及载脂蛋白等,炎症/抗炎是其互相联系的核心环节,提示在该心肌缺血血瘀证同时存在着炎症反应这一病理进程,炎症反应可能是血瘀证的病理机制之一,但仍有待进一步研究。
     这些蛋白在术后8周则表现为这些蛋白不同的组合模式,但仍维持了其基本特征。提示证候的蛋白质组学特征可能是某些差异蛋白及其组合模式。
     丹七片只对部分血浆差异蛋白有影响,提示这些已鉴定可能的血瘀证差异蛋白并不全是其效应靶点。
Since syndrome is the core theory of Chinese medicine, the revealing of its scientific connotation is considered as the key point to the modernization of Chinese medicine. However it depends on the breakthrough on the biology basis research of syndromes. As other biological researches, animal models are necessary. Considerd to the lack of recognized standards, there is a huge controversy in practical ways to establish or evaluate syndrome animal models. so, an objective and admitted standard is necessary. We will try to determine its syndromes’attributes based on dynamic observation and strict evaluation on a disease animal model, which may be a practical way to establish an integrated disease and sydrome animal model with more reproducibility and better accordance to the theories of Chinese medicine.
     Meanwhile, research on the biological basis of syndromes encountered a bottleneck due to the aims to find single indicator for the diagnosis of syndromes in the past years. However syndrome is an integritical concept and its scientific content may need an overall review of the organism. There is a beam of hope now attributing to development of systematic biology research techniques and methods. Plasma is one of the most informative bodily fluids, as it provides a link between human organs, tissues and cells. Because of its important role in vital movement, there is great information of the overall physiological and pathological conditions in plasma. Therefore, the plasma proteomic research may provide some evidence for the protein patterns of syndrome.
     Blood stasis is the most common syndrome type of coronary heart disease, and there were many related researches before. So the research on the animal model of blood stasis syndrome can be used as the starting point. The time window of blood stasis in a myocardial ischemia model was determined depend on the dynamic observation, and then the characteristics of its plasma proteome was explored.
     Aims:
     To establish a stable blood stasis (myocardial ischemia) animal model, and find the characteristics of its plasma proteome.
     Methods:
     1 Establishment and assessment of a blood stasis model with myocardial ischemia
     Chinese experimental mini swines (25±4 kg) were instrumented with a size-matched Ameroid constrictor on the anterior descending branch under general anesthesia in sterile conditions. And a sham group was also included. Based on early results of dynamic observations, evaluations were performed four weeks after operation. Clinical performances of animals were collected and electrocardiogram, echocardiography, coronary angiography were detected. Meanwhile, blood was obtained from former cava vena to detect blood rheological features and the concentration of prostacyclin, thromboxane A2, endothelin-1 and calcitonin gene-related peptide. Then the diseases of model animals were diagnosed and their syndromes were differentiated.
     Then, blood stasis animals with myocardial ischemia were randomly divided into therapeutic group and control group (n = 6). Nine gram Danqi tablet were administrated once a day to a therapeutic animal for 4 weeks. At the end of experiment, to determine the diagnosis of control animals and the effect of Danqi tablet, all animals were evaluated in the same way as which performed 4 weeks after operation. After sacrificed, myocardial samples destined to histological evaluation were fixed in 4% phosphate buffered paraformaldehyde, routinely dehydrated and embedded in paraffin. Then serial sections were stained with HE stain and Masson’s trichrome stain to evaluate the general morphology.
     2 Research on plasma proteome of swines of blood stasis with myocardial ischemia
     Blood was obtained from the animals with blood stasis syndrome in myocardial ischemia and matched sham operated animals 4 weeks after operation. Plasma samples were centrifuged and then stored at -80℃.All plasma samples were quantitated by Bradford assay, and then separated by two-dimensional electrophoresis (2-DE) to identify differentially expressed proteins. Precast IPG strips (pH3-11 nonlinear, 24 cm) were used in the first dimension, and SDS-polyacrylamide gel electrophoresis (PAGE) was performed using 1 mm thick, 13% SDS-PAGE gels. The Coomassie Brilliant Blue R350-stained 2-DE were scanned with digital scanner and analyzed with ImageMaster 2D Platinum 6.0 software. A cluster of protein spots differentially expressed were selected and identified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).
     After 4 weeks’therapy of Danqi tablet, plasma samples were obtained from animals in therapeutic, control and sham operated group, and then analyzed by 2-DE as described above to evaluate the differentially expressed proteins got from previous experiment.
     Results:
     1 Establishment and assessment of a blood stasis model with myocardial ischemia
     1.1 Evaluations performed 4 weeks after operation
     1.1.1 Clinical performances:
     Model animals appeared mental stress, irritation, fear, violent behaviors, strong self-defense, pilose disorderly and lack of luster, slightly dark red or purple tongue, etc, while sham operated animals’performances gradually returned to normal, with increased appetite, neat and shiny pilose, light red or light white tongue.
     1.1.2 ECG:
     More than 0.1mV ST segment depression and inversion T waves were observed in several leads of surface electrocardiogram of model animals. But no significant arrhythmia was found in experimental period.
     1.1.3 Echocardiography
     The structure and function of left ventricular were evaluated by echocardiography. Compared with sham operated animals, there was great increase of end-systolic volume (P < 0.05), end-diastolic volume (P < 0.05), end-systolic diameter (P < 0.01) and end-diastolic diameter (P < 0.01) in model animals. Anterior wall thickness of both papillary muscle and apex level was decreased at end-diastolic and end-systolic in model animals (P < 0.01). Meanwhile, the apex of the left ventricular anterior systolic wall thickening decreased (P < 0.01). In addition, septal thickness at the end-systolic decreased (P < 0.05). All the results above showed a segmental dysfunction of the left ventricular. There were no significant changes in stroke volume, ejection faction, fraction of shortening and E/A, which suggested that cardiac function was still in compensatory period.
     1.1.4 Coronary angiography
     Exvivo angiography performed more than 90% occlusion or even completely block of the left anterior descending artery by the Ameroid constrictor in model animals. TIMI flow gradeⅠorⅡwere observed in most model animals. There was good filling the in left anterior descending artery with TIMI flow gradeⅢin Sham-operated animals.
     1.1.5 Hemorrheology
     Compared with sham-operated animals, the blood viscosity of model animals increased significantly at a shear rate of high (P < 0.05), mid (P < 0.01), low (P < 0.01). No other changes were observed.
     1.1.6 Other changes
     Compared with sham-operated animals, the concentration of 6-K-PGF_(1α) in plasma decreased significantly(P < 0.05), while other factors observed did not have significant change.
     1.2 Evaluations performed 8 weeks after operation
     Compared with sham-operated group, the most changes of model group detected at 4 week still existed at 8 weeks except the clinic performances. Model animals seemed recovering a little, such as appetite, urine and stool. But the other characters were also persistent such as disorderly and lackluster clothing hair, slightly dark red or purple tongue, low dose of 6-K-PGF1α, changes of ECG, echocardiography and hemorrheology, etc.
     1.3 Effect of Danqi tablet
     Due to treatment of Danqi tablet, red blood cell deformation was improved(P < 0.05), elevated volume of packed red blood cells was decreased(P < 0.05), and the decreased 6-K-PGF1αwas recovered(P < 0.05), when compared with model animals.
     Compared with sham oprated animals, the septal thickness of model animals at the end-systolic decreased (P < 0.05) while that of thearaputic animals didn’t.
     The main lesion of model animal heart observed in HE staining were disarranged, swell, degeneration, necrosis myocardial cells, and infiltrated inflammatory cells. These lesions were improved in slices of therapeutic animals. In the Masson trichrome-stained slices of ischemia region of model animals’heart, increased collagen in intercellular, infiltrated inflammatory cells, injured myocardial cells with vacuolar degeneration, disarranged structure, or displaced by collagen were observed. Meanwhile in the slices of therapeutic animals, the number and size of the collagen hosted region were less.
     2 Differential express of plasma proteome in model animals
     10 up-regulated protein spots were detected in the 2-DE separation of pooled samples, while 9 up-regulated in single plasma sample test. Among these differential expressed proteins, 1 was existed in both tests. MS results suggest that the unregulated proteins includingα1-acid glycoprotein,α1-antitrypsin, fetuin A, apolipoprotein A-IV, apolipoprotein A-I, Complement C4, complement cytolysis inhibitor. Other changes were still unknown.
     Part of the differential expressed proteins detected in 4weeks’animal models were still differential ones with different relative concentration in 8 weeks’models. However, significant improvement was observed only in part of these proteins of Danqi treated animals.
     Conclusions:
     1 The Chinese experimental miniature swine with Ameroid constrictor around the left descending artery were performed as blood stasis syndrome with myocardial ischemia between 4 and 8 weeks after operation. Danqi tablet improved some indexes observed, which provided other evidences of the diagnosis.
     2 The detected differential expressed plasma proteins of animals with blood stasis syndrome were associated with inflammatory reactions. Thus, we supposed that inflammation may be one of the important pathologic processes in blood stasis syndrome. However, their exact relationship was still unknown.
     The proteomic feature of syndrome may be some differential expressed proteins and their different assemblies.
     Danqi tablet only showd effect on part of differential expressed proteins, which suggested that some of these proteins were not effective targets of Danqi tablet.
引文
[1] 贲长恩, 叶百宽. 血虚动物模型初探. 上海中医药杂志, 1981, (6): 38-39
    [2] 王绪辉, 施杞, 郑效文. 慢性损伤的实验研究——风寒湿损伤后诱发M波变化. 中医骨伤科杂志, 1986, 2(1): 36
    [3] 李凤文, 须惠仁, 张问渠, 等. 肝郁气滞血瘀的临床与实验研究. 中医杂志, 1991, (10): 46-48
    [4] 吕志平, 刘承才. “肝郁”大鼠的脂质过氧化反应及逍遥散的保护作用. 山东中医学院学报, 1995, 19(3): 199-201
    [5] 南京医学院中西医结合研究组. 脾虚泄泻证动物模型的研究. 浙江中医杂志, 1982, (8): 355
    [6] 王键, 赵辉, 李净, 等. 多因素复合制作气虚血瘀证脑缺血动物模型的实验研究. 中国实验动物学报2001, 9(4): 216-220
    [7] 陈小野, 邹世洁, 佟彤, 等. 大鼠CAG证病结合模型胃粘膜病理研究(Ⅲ). 实验动物科学与管理, 2001, 18(3): 6-9
    [8] 宋剑南. 中医基础理论学科建设和发展的战略思考. 中国中医基础医学杂志, 2004, 10(9): 13-15, 19
    [9] 傅益群, 吕健. 动物模型与中医证候关系释义. 中医药学刊, 2004, 22(9): 1665-1666
    [10] 莫飞智, 李建强, 赖新生. 大鼠高血压血管性痴呆模型的建立及其证型分析. 广西中医学院学报, 2000, 17(1): 46-49
    [11] 王硕仁, 王振涛, 赵明镜, 李敏. 心气虚病证动物模型及其评价体系的构建. 中国实验动物学报, 2002, 10(1): 33-38
    [1] Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics, 2002, 1(11): 845-867
    [2] Poon TC, Johnson PJ. Proteome analysis and its impact on the discovery of serological tumor markers. Clin Chim Acta, 2001, 313(1-2): 231-239
    [3] Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 2002, 359(9306): 572-577.
    [4] Bast RC Jr, Urban N, Shridhar V, Smith D, Zhang Z, Skates S, et al. Early detection of ovarian cancer: promise and reality. Cancer Treat Res, 2002, 107: 61-97
    [5] Adam BL, Vlahou A, Semmes OJ, Wright GL Jr. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics. 2001, 1(10): 1264-1270
    [6] Rembert Pieper, Christine L. Gatlin, Anthony J. Makusky, Paul S. Russo, Courtney R. Schatz, et al. The human serum proteome: Display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics, 2003, 3(7): 1345-1364
    [7] Harry M Georgiou, Gregory E Rice, Mark S Baker. Proteomic analysis of human plasma: Failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins. Proteomics, 2001, 1(12): 1503-1506
    [8] Ahmed N, Barker G, Oliva K, Garfin D, Talmadge K, Georgiou H, et al. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics, 2003, 3(10): 1980-1987
    [9] 王建东, 任艳, 夏季, 等. 小鼠血浆去除白蛋白前后的双向凝胶电泳分析. 中华实验外科杂志, 2004, 21(11): 1374-1375
    [10] Echan LA, Tang HY, Nadeem AK, Lee KB, Speicher DW. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics, 2005, 5(13): 3292-3303
    [11] Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics, 2003, 2(10): 1096-1103
    [12] Chertov O, Simpson JT, Biragyn A, Conrads TP, Veenstra TD, Fisher RJ. Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery. Expert Rev Proteomics, 2005, 2(1): 139-145.
    [13] Cho SY, Lee EY, Lee JS, Kim HY, Park JM, Kwon MS, et al. Efficient prefractionation of low-abundance proteins in human plasma and construction of a two-dimensional map. Proteomics, 2005, 5(13): 3386-3396
    [14] Huang L, Harvie G, Feitelson JS, Gramatikoff K, Herold DA, Allen DL, et al. Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics, 2005, 5(13): 3314-3328
    [15] Mehta AI, Ross S, Lowenthal MS, Fusaro V, Fishman DA, Petricoin EF 3rd, et al. Biomarker amplification by serum carrier protein binding. Dis Markers, 2003-2004, 19(1): 1-10
    [16] Evtushenko M, Wang K, Stokes HW, Nair H. Blood protein purification and simultaneous removal of nonenveloped viruses using tangential-flow preparative electrophoresis. Electrophoresis, 2005, 26(1): 28-34
    [17] Wasinger VC, Locke VL, Raftery MJ, Larance M, Rothemund D, Liew A, et al. Two-dimensional liquid chromatography/tandem mass spectrometry analysis of Gradiflow fractionated native human plasma. Proteomics, 2005, 5(13): 3397
    [18] Zhou M, Lucas DA, Chan KC, Issaq HJ, Petricoin EF 3rd, Liotta LA, et al. An investigation intothe human serum "interactome". Electrophoresis, 2004, 25(9): 1289-1298
    [19] Granger J, Siddiqui J, Copeland S, Remick D. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics, 2005, 5(18): 4713-4718
    [20] Steel LF, Trotter MG, Nakajima PB, Mattu TS, Gonye G, Block T. Efficient and specific removal of albumin from human serum samples. Mol Cell Proteomics, 2003, 2(4): 262-270
    [21] Jurgens M, Schrader M. Peptidomic approaches in proteomic research. Curr Opin Mol Ther, 2002, 4(3): 236-241
    [22] Scrivener E, Barry R, Platt A, Calvert R, Masih G, Hextall P, et al. Peptidomics: A new approach to affinity protein microarrays. Proteomics, 2003, 3(2): 122-128
    [23] Baussant T, Bougueleret L, Johnson A, Rogers J, Menin L, Hall M, et al. Effective depletion of albumin using a new peptide-based affinity medium. Proteomics, 2005, 5(4): 973-977
    [24] Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis, 1995, 16(6): 1034-1059
    [25] Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev, 1996, 13: 19-50
    [26] Ong SE, Pandey A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng, 2001, 18(5): 195-205
    [27] Steel LF, Shumpert D, Trotter M, Seeholzer SH, Evans AA, London WT, et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics, 2003, 3(5): 601-609
    [28] Tu CJ, Dai J, Li SJ, Sheng QH, Deng WJ, Xia QC, et al. High-sensitivity analysis of human plasma proteome by immobilized isoelectric focusing fractionation coupled to mass spectrometry identification. J Proteome Res. 2005, 4(4): 1265-1273
    [29] Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 1997, 18(11): 2071-2077
    [30] Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003, 3(1): 36-44
    [31] Blackburn JM, Hart DJ. Fabrication of protein function microarrays for systems-oriented proteomic analysis. Methods Mol Biol, 2005, 310: 197-216
    [32] Combaret V, Bergeron C, Brejon S, Iacono I, Perol D, Negrier S, et al. Protein chip array profiling analysis of sera from neuroblastoma patients. Cancer Lett, 2005, 228(1-2): 91-96
    [33] Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol, 2003, 7(1): 55-63
    [34] Janzi M, Odling J, Pan-Hammarstrom Q, Sundberg M, Lundeberg J, Uhlen M, et al. Serum microarrays for large scale screening of protein levels. Mol Cell Proteomics, 2005, 4(12): 1942-1947
    [35] Bischoff R, Luider TM. Methodological advances in the discovery of protein and peptide diseasemarkers. J Chromatogr B Analyt Technol Biomed Life Sci, 2004, 803(1): 27-40
    [36] Angenendt P. Progress in protein and antibody microarray technology. Drug Discov Today, 2005, 10(7): 503-511
    [37] Knezevic V, Leethanakul C, Bichsel VE, Worth JM, Prabhu VV, Gutkind JS, et al. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics, 2001, 1(10): 1271-1278
    [38] Schweitzer B, Predki P, Snyder M. Microarrays to characterize protein interactions on a whole-proteome scale. P roteomics, 2003, 3(11): 2190-2199
    [39] Weng S, Gu K, Hammond PW, Lohse P, Rise C, Wagner RW, et al. Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology. Proteomics, 2002, 2(1): 48-57
    [40] Beyer M, Felgenhauer T, Ralf Bischoff F, Breitling F, Stadler V. A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials. 2006, 27 (18): 3505-3514
    [41] Guilleaume B, Buness A, Schmidt C, Klimek F, Moldenhauer G, Huber W, et al. Systematic comparison of surface coatings for protein microarrays. Proteomics, 2005, 5(18): 4705-4712
    [42] Kolker E, Higdon R, Hogan JM. Protein identification and expression analysis using mass spectrometry. Trends Microbiol, 2006, 14(5): 229-235
    [43] Petricoin EF, Ornstein DK, Liotta LA. Clinical proteomics: Applications for prostate cancer biomarker discovery and detection. Urol Oncol, 2004, 22(4): 322-328
    [44] Geho DH, Liotta LA, Petricoin EF, Zhao W, Araujo RP. The amplified peptidome: the new treasure chest of candidate biomarkers. Curr Opin Chem Biol, 2006, 10(1): 50-55
    [45] Lee HJ, Lee EY, Kwon MS, Paik YK. Biomarker discovery from the plasma proteome using multidimensional fractionation proteomics. Curr Opin Chem Biol, 2006, 10(1): 42- 49
    [46] 钟小兰, 吕志平, 钱令嘉, 等. 肝郁证模型大鼠血清蛋白质组的差异表达研究. 中华中医药杂志, 2006, 21(7): 399-401
    [47] 谢文光, 马晓昌, 邵宁生, 等. 赤芍治疗热毒血瘀证的血清蛋白质组变化的初步研究. 中国中西医结合杂志, 2005, 25(6): 520-524
    [1] 郭志华. 冠心病心绞痛2432例中医辨证分型综合统计分析. 湖南中医杂志, 1998, 14(2): 7 -8
    [2] 衷敬柏, 董绍英, 王阶, 等. 2689例冠心病心绞痛证候要素的文献统计分析. 中医药信息学, 2006, 13(5): 100-101
    [3] 陈可冀, 张之南, 梁子钧, 等. 血瘀证与活血化瘀研究. 1990, 上海: 上海科学技术出版社; 127-128
    [4] Wang Y, Wang DH. Prevention of endothelin-1-induced increases in blood pressure: role of endogenous CGRP. Am J Physiol Heart Circ Physiol. 2004, 287(4): H1868- H1874
    [5] Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev, 2004, 84(3): 903-934
    [6] 丘瑞香. 心脉通胶囊对冠心病患者血管活性因素的调节作用. 中国医药学报, 1999, 14(1): 29-32
    [7] 贺敬波, 丘瑞香. 内皮素、降钙素基因相关肽与冠心病中医辨证的关系. 实用中西医结合杂志, 1998, (7): 581
    [8] 袁肇凯, 黄献平, 谭光波, 等. 冠心病血瘀证血管内皮细胞功能的检测分析. 中国中西医结合杂志, 2006, 26(5): 407-410
    [9] 高积慧, 何军锋. ET、A-II及其基因表达与兔冠心病血瘀证模型相关性研究. 新中医, 2004, 36(4): 77
    [10] 王佑华, 王国维, 张宏考, 等. 冠心病血瘀证39例患者血浆DD、vWF改变研究. 中医研究, 2003, 16(6): 23-25
    [11] 林桂永, 王子健. 冠心病血瘀证气血辨证与内皮细胞损伤的关系. 中西医结合心脑血管病杂志, 2005, 3 (10): 856-858
    [12] 宋建新. PGI2/TXA2在缺血性心脏痛发病机理中的作用. 心血管病学进展, 1990, 11(3): ll
    [13] 方建伟, 黄源鹏, 林求诚. 冠心病中医证型与血浆ET、TXA2-PGI2的关系. 实用中医药杂志, 2005, 21(9): 519-521
    [14] 李泓. 血浆TXA2、PGI2水平与血瘀证及活血化瘀研究. 中国中西医结合杂志, 1995, 15(11): 701-704
    [15] 张兰凤, 王阶. 血瘀证的细胞学和分子学研究进展. 中国中医基础医学杂志, 2003, 9(1): 71-72, 76
    [16] 沈庆乐, 张存琪. 血瘀证冠心病的GMP-140、VWF和NO的变化及临床意义. 现代中西医结合杂志, 2000, 9(10): 1855-1856
    [17] 吕中, 施赛珠. 冠心病血瘀证单核细胞凝血与纤溶活性研究. 辽宁中医杂志, 2000, 27(3): 106-108
    [18] 徐宗佩, 陈克奇, 张伯礼, 等. 冠心病血瘀证患者单核细胞趋化游走能力的检测. 中国中西医结合杂志, 2000, 20(10): 724
    [19] 王强, 黄绍湘, 刘钧超, 等. 冠心病血瘀证与超敏C-反应蛋白关系的临床探讨. 广西中医药, 2005, 28(3): 7-8
    [20] 刘剑刚, 许勇钢, 苏庆民. 冠心病血瘀证的T细胞亚群、血脂和血液流变性改变及其相互关系. 中国微循环杂志, 1999, 3(4): 254
    [21] 张志玲, 李惠林. 血府逐瘀汤对冠心病血瘀证血液流变学的影响. 陕西中医函授, 2000, (3): 13-14
    [22] 毛秉豫, 范纪明. 应用激光衍射法测定冠心病血瘀证患者红细胞变形能力. 国医论坛, 2002, 17(5): 16-17
    [23] 丘瑞香, 罗致强, 朱稚宜, 等. 冠心病血瘀证血液理化特性与中医证型相关性研究. 中医杂志, 2002, 43(5): 378-380
    [24] 马晓昌, 尹太英, 陈可冀, 等. 冠心病中医辨证分型与冠脉造影所见相关性比较研究. 中国中西医结合杂志, 2001, 21(9): 654-656
    [25] 丁邦晗, 马长生, 张敏州, 等. 胸痹心痛患者375例的冠脉病变程度及证型分析. 中医药学刊, 2004, 22(6): 1096-1097, 1104
    [26] 杨保林, 王阶, 姜燕. 应用差异显示筛查冠心病血瘀证相关基因及分析. 北京中医药大学学报, 2006, (2): 62-64, 70
    [27] 陈鹏. 基因多态性与中医辨证关系研究的回顾与思考. 中国中西医结合杂志, 2003, (12): 53-55
    [28] 董昌武, 高尔鑫. 从易感基因多态性探讨原发性高血压病中医证候实质的思考. 中医杂志, 2006, (12): 4-6
    [29] 黄献平, 袁肇凯, 谭光波等. 冠心病血瘀证患者血管紧张素转换酶基因多态性的检测分析. 中医杂志, 2007, (1): 66-69
    [30] 欧阳涛, 宋剑南, 苗阳, 等. 冠心病痰瘀证与载脂蛋白E基因多态性关系的研究. 中西医结合学报, 2005, (6): 23-27
    [31] 欧阳涛, 宋剑南, 李林等. 冠心病痰瘀证候与载脂蛋白E第一内含子增强子基因多态性关系的研究. 中国中医基础医学杂志, 2005, 11(6): 414-417
    [32] 欧阳涛, 宋剑南, 林谦等. 冠心病体质表型和低密度脂蛋白受体基因Ava II位点多态性关系的研究. 中国中医基础医学杂志, 2005, 11(7): 521-524
    [33] 吴红金, 马增春, 高月, 等. 蛋白质组学技术对冠心病血瘀证相关蛋白的研究. 中西医结合心脑血管病杂志, 2005, 3(3): 189-191
    [34] 杨水挥. 冠心病血瘀证患者血小板脂质过氧化物与血粘素A2-前列环素平衡的研究. 中国中西医结合杂志, 1993, 13(11): 661-662
    [35] 韩 涛. 速效救心丸治疗冠心病心绞痛临床疗效及机理研究. 中医杂志, 2000, 41(12): 733-734
    [36] 孙锡印, 杨雯琳. 冠心病气滞血瘀与气虚血瘀证型间血载脂蛋白的异同及辨证影响. 江苏中医, 1997, 18(6): 40-41
    [37] 何永恒. 冠心病血瘀证25例红细胞变形性与外周微循环的同步检测分析. 辽宁中医杂志, 1991, 18(9): 7
    [38] 丘瑞香. 冠心病血瘀证微循环障碍与气病致瘀的研究. 中医杂志, 1991, 32(10): 36
    [39] 赖世隆. 血瘀证患者的血液动力学观察. 广州中医学院学报, 1992, 9(4): 192
    [40] 瞿虹燕. 冠心病气病致瘀症候血液流变学及心功能特征临床实验观察. 贵阳中医学院学报, 1997, 19(1): 19
    [41] 张忠水. 117例冠心病血瘀分型与血清甲状腺激素的关系. 宁波医学, 1996, 8(5): 299
    [42] 杨忠奇, 冼绍祥, 杜志民, 等. 活血化瘀法治疗冠心病(血瘀证)后行经皮冠状动脉介入的临床观察. 新中医, 2006, 38(8): 42-43
    [43] 贺运河, 陈镜合, 梁健球. 开心胶囊防治气虚血瘀证急性心肌梗死缺血再灌注损伤临床观察. 中国中医急症, 2005, 14(12): 1137-1139
    [44] 顾健霞. 香丹注射液治疗心肌缺血血瘀证32例. 安徽中医学院学报, 2001, 20(3): 9-11
    [45] 刘剑刚, 徐 浩, 董国菊, 等. 血府逐瘀口服液对冠心病心绞痛血瘀证病人血管内皮功能及血液流变学的影响. 中西医结合心脑血管病杂志, 2006, 4(8): 659-661
    [46] 朱秋玲, 陈祥君. 化瘀胶囊对冠心病血瘀证患者血液流变学及体外血栓形成的影响. 现代中西医结合杂志, 2005, 14(10): 1268-1269
    [47] 李创鹏, 杨慧珊, 刘培中, 等. 加味瓜蒌薤白汤对冠心病气滞血瘀证C 反应蛋白、内皮素、血液流变学的影响. 中国中医药信息杂志, 2004, 11(12): 1041-1042
    [48] 马湖蕊, 贾云, 龙凤昌. 川芎素对冠心病血瘀证患者的疗效及对血液流变学的影响. 中国中医药信息杂志, 2001, 8(12) : 53-54
    [49] 吴时达, 王 静, 陈守春, 等. 香丹注射液对冠心病血瘀证内皮源性血管活性因子基因表达的影响. 中西医结合学报, 2004, 2(2): 94-96
    [50] 徐睿, 李源, 黄熙, 等. 川芎嗪对冠心病血瘀证患者血浆内皮素的影响及其动态变化. 广东药学院学报, 2001, 17(4): 264-266
    [51] 任自力, 吕中, 楼正青. 补气活血方药对冠心病血瘀证单核细胞凝血、纤溶活性作用研究. 浙江中医学院学报, 2002, 26 (3): 18-20
    [52] 周晓玲. 速效救心丸对血栓素B2和6-酮-前列腺素F1α比值的影响. 天津药学, 2000, 12(增刊): 9-10
    [53] 丘瑞香, 贺敬波. 心脉通胶囊对冠心病患者内皮素和降钙素基因相关肽的调节作用. 中国中医基础医学杂志, 2001, 7(1): 47-49
    [54] 蒋海平, 吴艳涛, 陈景刚. 丹参对缺血心肌的保护作用. 微循环学杂志, 2006, 16(1): 40- 41
    [55] 莫测, 刘志胜, 黄嵘, 等. 雷氏丹参片治疗冠心病心绞痛的临床研究. 中成药, 2006, 28(10): 1463-1465
    [1] 贲长恩, 叶百宽. 血虚动物模型初探. 上海中医药杂志, 1981, (6): 38-39
    [2] 王绪辉, 施杞, 郑效文. 慢性损伤的实验研究——风寒湿损伤后诱发M波变化. 中医骨伤科杂志, 1986, 2(1): 36
    [3] 南京医学院中西医结合研究组. 脾虚泄泻证动物模型的研究. 浙江中医杂志, 1982, (8): 355
    [4] 王键, 赵辉, 李净, 等. 多因素复合制作气虚血瘀证脑缺血动物模型的实验研究. 中国实验动物学报2001, 9(4); 216-220
    [5] 陈小野, 邹世洁, 佟彤, 等. 大鼠CAG证病结合模型胃粘膜病理研究(Ⅲ). 实验动物科学与管理, 2001, 18(3): 6-9
    [6] Smart SC, Sa wada S, Ryan T, et al. Low- dose dobutamine echocardiography detects reversible dysfunction after thrombolysis therapy of acute myocardial infarction. Circulation, 1993, 88: 405- 415
    [7] Arnese M, Cornel J H, Salustri A, et al. Prediction of improvement of regional left ventricular function after surgical revascularization: a comparison of Low - dose dobutamine echocardiography with 201T1 single - photon emission computes tomography. Circulation, 1995, 91: 2748- 2752
    [8] 饶莉编著. 实用超声心动图手册. 北京: 人民军医出版社, 2001;17
    [9] Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/ non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA, 2000, 284 (7): 876-878
    [10] Schwartz RS, Holmes DR. Pigs, dogs, Baboons, and man: lessons for stenting from animal studies. J Interv Cardiol, 1994, 7(4): 355 - 368
    [11] White FC, Carroll SM, Magnet A, et al. Coronary collateral development in swine after coronary artery occlusion. Cir Res, 1992, 71(6): 1490 - 1500
    [12] 智光主编. 冠心病超声诊断学. 北京: 人民军医出版社, 2001; 54-59
    [13] 饶莉编著. 实用超声心动图手册. 北京: 人民军医出版社, 2001;102-107
    [14] 宋建新. PGI2/TXA2在缺血性心脏痛发病机理中的作用. 心血管病学进展, 1990, 11(3): 11
    [15] 方建伟, 黄源鹏, 林求诚. 冠心病中医证型与血浆ET、TXA2-PGI2的关系. 实用中医药杂志, 2005, 21(9): 519-521
    [16] 李泓. 血浆TXA2、PGI2水平与血瘀证及活血化瘀研究. 中国中西医结合杂志, 1995, 15(11): 701-704
    [17] 张兰凤, 王阶. 血瘀证的细胞学和分子学研究进展. 中国中医基础医学杂志, 2003, 9(1): 71-72, 76
    [18] Youping Wang, Donna H Wang. Prevention of endothelin-1-induced increases in blood pressure: role of endogenous CGRP. Am J Physiol Heart Circ Physiol, 2004, 287: H1868–H1874
    [19] 袁肇凯, 黄献平, 谭光波, 等. 冠心病血瘀证血管内皮细胞功能的检测分析. 中国中西医结合杂志, 2006, 26(5): 407-410
    [20] Susan D. Brain, Andrew D. Grant. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev, 2004, 8: 903–934
    [21] 丘瑞香. 心脉通胶囊对冠心病患者血管活性因素的调节作用. 中国医药学报, 1999, 14(1):29-32
    [22] 贺敬波, 丘瑞香. 内皮素、降钙素基因相关肽与冠心病中医辨证的关系. 实用中西医结合杂志, 1998, (7): 581
    [23] 季海刚, 司亮. 丹参对心肌缺血再灌注损伤保护作用的研究进展. 光明中医, 2006, 21(3): 52-54
    [24] 孙小玲. 三七的研究进展. 云南中医中药杂志, 2005, 26(6): 44-46
    [25] Smart SC, Sawada S, Ryan T, et al. Low - dose dobutamine echocardiography detects reversible dysfunction after thrombolytis therapy of acute myocardial infarction . Circulation , 1993 , 88 : 405 -415
    [26] 田金洲, 王永炎, 时晶, 等. 证候模型研究的思路. 北京中医药大学学报, 2006, (5): 24-27
    [27] 贾春华, 王永炎, 黄启福等. 以方测证法不可行论. 辽宁中医杂志, 2006, 33(12): 1549-1550
    [1] Poon TC, Johnson PJ. Proteome analysis and its impact on the discovery of serological tumor markers. Clin Chim Acta, 2001, 313(1-2): 231-239
    [2] Bast RC Jr, Urban N, Shridhar V, Smith D, Zhang Z, Skates S, et al. Early detection of ovarian cancer: promise and reality. Cancer Treat Res, 2002, 107: 61-97
    [3] Adam BL, Vlahou A, Semmes OJ, Wright GL Jr. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics. 2001, 1(10): 1264-1270
    [4] Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics, 2002, 1(11): 845-867
    [5] Rembert Pieper, Christine L. Gatlin, Anthony J. Makusky, Paul S. Russo, Courtney R. Schatz, et al. The human serum proteome: Display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics, 2003, 3(7): 1345-1364
    [6] Zhou M, Lucas DA, Chan KC, Issaq HJ, Petricoin EF 3rd, Liotta LA, et al. An investigation into the human serum "interactome". Electrophoresis, 2004, 25(9): 1289-1298
    [7] Granger J, Siddiqui J, Copeland S, Remick D. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics, 2005, 5(18): 4713-4718
    [8] 朱正炎, 胡大一, 史旭波, 等. 检测冠心病患者α1-酸性糖蛋白和C一反应蛋白的意义. 临床荟萃, 2005, 20(7): 374-376
    [9] Mori T, Sasaki J, Kawaguchi H, Handa K, Takada Y, Matsunaga A, et al. Serum glycoproteins and severity of coronary atherosclerosis. Am Heart J, 1995, 129(2): 234-238
    [10] Lind P, Hedblad B, Stavenow L, et al. Influence of plasma fibrinogen levels on the incidence of myocardial infarction and death is modified by other inflammation-sensitive proteins: a long-term cohort study. Arterioscler Thromb Vasc Biol, 2001, 21: 452–458
    [11] Stankusheva G, Chaushev A, Nikolov K, Baleva M, Nachev Ch. Ischemic heart disease--clinical, biochemical and immunobiological parallels. Vutr Boles, 1988, 27(4): 88-91
    [12] Adams C, Roncato M, Rymer JC, Maurice C, Paris M, Leheuzey JY, Guize L. Biological profile in acute coronary insufficiency: study of blood myoglobin, enzymes and inflammatory proteins. Sem Hop, 1984, 60(8): 525-528
    [13] Siegel RJ, Fishbein C, Said JW, Tokes ZA, Shell WE. Localization of alpha-1 acid glycoproteins in human myocardium. Lab Invest, 1985, 52(1): 107-112
    [14] Poland DC, Garcia Vallejo JJ, Niessen HW, Nijmeyer R, Calafat J, et al. Activated human PMN synthesize and release a strongly fucosylated glycoform of alpha1-acid glycoprotein, which is transiently deposited in human myocardial infarction. J Leukoc Biol, 2005, 78(2): 453-46
    [15] Perlmutter DH, Cole FS, Kilbridge P, Rossing TH, Colten HR. Expression of the alpha 1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci, 1985, 82: 795–799
    [16] Tilg H, Vannier E, Vachino G, et al. Anti-inflammatory properties of hepatic acute phase proteins: preferential induction of interleukin 1 (IL-1) receptor antagonist over IL-1 beta synthesis by human peripheral blood mononuclear cells. J Exp Med. 1993;178: 1629–1636
    [17] Janciauskiene S, Lindgren S, Wright HT. The C-terminal peptide of alpha-1-antitrypsin increases low density lipoprotein binding in HepG2 cells. Eur J Biochem. 1998; 254: 460–467
    [18] Smith EB. Molecular interactions in human atherosclerotic plaques. Am J Pathol. 1977; 86:665–674
    [19] Shinichi Mashiba, Youichiro Wada, Motohiro Takeya, Akira Sugiyama, Takao Hamakubo, Akio Nakamura, et al. In Vivo Complex Formation of Oxidized {alpha}1-Antitrypsin and LDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21: 1801
    [20] Takashi Murakami, Yutaka Komiyama, Midori Masuda, Masahiro Karakawa, Toshiji Iwasaka, Hakuo Takahashi. Evaluation of Factor XIa–{alpha}1-Antitrypsin in Plasma, a Contact Phase–Activated Coagulation Factor–Inhibitor Complex, in Patients With Coronary Artery Disease. rteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15: 1107-1113
    [21] Marc A. R. C. Daemen, Vincent H. Heemskerk, Cornelis van ’t Veer, Geertrui Denecker, Tim G. A. M. Wolfs; Peter Vandenabeele, et al. Functional Protection by Acute Phase Proteinsα1-Acid Glycoprotein and α1-Antitrypsin Against Ischemia/Reperfusion Injury by Preventing Apoptosis and Inflammation. Circulation. 2000;102: 1420
    [22] 杨坤, 谭张森, 袁昌锦. α1-抗胰蛋白酶与肺部相关疾病研究进展. 中华临床医学杂志, 2006, 7(5): 27-29
    [23] Irina Petrache, Iwona Fijalkowska, Terry R. Medler, Jarrett Skirball, Pedro Cruz, Lijie Zhen, et al. α-1 Antitrypsin Inhibits Caspase-3 Activity, Preventing Lung Endothelial Cell Apoptosis. American Journal of Pathology, 2006, 169: 1155-1166
    [24] Peter Nawratil Dagger, Sabine Lenzen Dagger, Josef Kellermann, Heinz Haupt, Thorsten Schinke par, Werner Müller-Esterl. Limited Proteolysis of Human alpha 2-HS Glycoprotein/Fetuin. 271, (49): 31735-31741
    [25] Melanie Szweras, Danmei Liu, Emily A Partridge, Judy Pawling, Balram Sukhu, Cameron Clokie, et al. alpha 2-HS Glycoprotein/Fetuin, a Transforming Growth Factor-beta /Bone Morphogenetic Protein Antagonist, Regulates Postnatal Bone Growth and Remodeling. J. Biol. Chem. , 2002, 277(22): 19991-19997
    [26] Alexander HeissDagger, Alexander DuChesne, Bernd DeneckeDagger, Joachim Gr?tzinger, Kazuhiko Yamamoto, Thomas Renné. Structural Basis of Calcification Inhibition by alpha 2-HS Glycoprotein/Fetuin-A. J. Biol. Chem. , 278(15): 13333-13341
    [27] Lebreton, J. P. , Joisel, F. , Raoult, J. P. , Lannuzel, B. , Rogez, J. P. , and Humbert, G. (1979) J. Clin. Invest. 64, 118-129
    [28] Green PH, Glickman RM, Riley JW, Quinet E. Human apolipoprotein A-IV: Intestinal origin and distribution in plasma. J Clin Invest, 1980, 65(4): 911-919
    [29] Elena Dvorin, Nancy L Corder, Douglas M Benson, Antonio M Gotto. Apolipoprotein A-IV: a determinant for binding and uptake of high density lipoproteins by rat hepatocytes. J. biological chemistry, 1986, 261(33): 15714-15718
    [30] Arnold von Eckardstein, A. , Y. Huang, S. Wu, A. S. Sarmadi, S. Schwarz, A. Steinmetz, and G. Assmann. Lipoproteins containing apolipoprotein A-IV but not apolipoprotein A-I take up and esterify cell-derived cholesterol in plasma. Arterioscler, Thromb. , 1995, 15: 1755-1763
    [31] Robert D. Cohen, Lawrence W. Castellani, Jian-Hua Qiao, Brian J. Van Lenten, Aldons J. Lusis, and Karen Reue. Reduced Aortic Lesions and Elevated High Density Lipoprotein Levels in Transgenic Mice Overexpressing Mouse Apolipoprotein A-IV. J. Clin. Invest. , 1997, 99: 1906-1916
    [32] Nicolas Duverger, Günter Tremp, Jean-Michel Caillaud, Florence Emmanuel, Graciela Castro, Jean-Charles Fruchart, et al. Protection Against Atherogenesis in Mice Mediated by Human Apolipoprotein A-IV. Science, 1996, 273 (5277): 966 - 968
    [33] Recalde, D. , M. A. Ostos, E. Badell, A. L. Garcia-Otin, J. Pidoux, G. Castro, M. M. Zakin, and D. Scott-Algara. Human apolipoprotein A-IV reduces secretion of proinflammatory cytokines and atherosclerotic effects of a chronic infection mimicked by lipopolysaccharide. Arterioscler. Thromb. Vasc. Biol. , 2004, 24: 756–761
    [34] Thorsten Vowinkel, Mikiji Mori1, Christian F Krieglstein, Janice Russell1, Fumito Saijo, Sulaiman Bharwani, et al. Apolipoprotein A-IV inhibits experimental colitis. J. Clin. Invest, 2004, 114: 260-269
    [35] Kerry-Anne Rye, Philip J. Barter. Formation and Metabolism of Prebeta-Migrating, Lipid-Poor Apolipoprotein A-I. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24: 421
    [36] Philippe G Frank, Yves L Marcel. Apolipoprotein A-I: structure–function relationships. Journal of Lipid Research, 2000, 41, 853-872
    [37] Brian J. O’Connell, Jacques Genest. High-Density Lipoproteins and Endothelial Function. Circulation, 2001, 104: 1978
    [38] Arnold von Eckardstein, Jerzy-Roch Nofer, Gerd Assmann. High Density Lipoproteins and Arteriosclerosis: Role of Cholesterol Efflux and Reverse Cholesterol Transport. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21: 13
    [39] WD Blackburn, Jr, JG Dohlman, YV Venkatachalapathi, DJ Pillion, WJ Koopman, JP Segrest, and GM Anantharamaiah. Apolipoprotein A-I decreases neutrophil degranulation and superoxide production. J. Lipid Res. , 1991, 32: 1911
    [40] R. W. James, A. C. Hochstrasser, I. Borghini, B. Martin, D. Pometta, D. Hochstrasser. Characterization of a Human High Density Lipoprotein- Associated Protein, NA1/NA2 Identity With SP-40, 40, an Inhibitor of Complement-Mediated Cytolysis. Arterioscler. Thromb. Vasc. Biol. 1991, 11(3): 645-652
    [41] Seifert PS, Hansson GK. Complement receptors and regulatory proteins in the atherosclerotic plaque. Atherosclerosis, 1989, 9: 802-811
    [42] Koji Yasojima, Claudia Schwab, Edith G. McGeer, Patrick L. McGeer. Human Heart Generates Complement Proteins That Are Upregulated and Activated After Myocardial Infarction. Circulation Research, 1998, 83: 860-869
    [43] Tada T, Okada H, Okada N, Tateyama H, Suzuki H, Takahashi Y, Eimoto T. Membrane attack complex of complement and 20 kDa homologous restriction factor (CD59) in myocardial infarction. Virchows Arch, 1997, 430: 327–332
    [44] Remco Nijmeijer, Wim K. Lagrand, Yvonne T. P. Lubbers, Cees A. Visser, Chris J. L. M. Meijer, Hans W. M. Niessen, et al. C-Reactive Protein Activates Complement in Infarcted Human Myocardium. American Journal of Pathology, 2003, 163: 269-275
    [45] B. B. Rubin, A. Smith, S. Liauw, D. Isenman, A. D. Romaschin, P. M. Walker. Complement activation and white cell sequestration in postischemic skeletal muscle. Am J Physiol Heart Circ Physiol, 1990, 259(2): H525-H531
    [46] Dieter E. Jenne, J. Tschop. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: Identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proc. Nadl. Acad. Sci, 1989, 86 (18): 7123-7127
    [47] Diemer V. , Hoyle M. , Baglioni C. , Millis A. J. Expression of porcine complement cytolysis inhibitor mRNA in cultured aortic smooth muscle cells. Changes during differentiation in vitro. J. Biol. Chem, 1992, 267 (8), 5257-5264
    [48] Robert W. Bailey, Bruce Aronow, Judith A. K. Harmony, Michael D. Griswold. Heat Shock-Initiated Apoptosis Is Accelerated and Removal of Damaged Cells Is Delayed in the Testis of Clusterin/ApoJ Knock-Out Mice. Biology of reproduction, 2002, 66: 1042-1053
    [49] Tuajuanda C. Jordan-Starck, S. Diane Lund, David P. Witte, Bruce J. Aronow, Catherine A. Ley, William D. Stuart, et al. Mouse apolipoprotein J: characterization of a gene implicated in at herosclerosis. Journal of Lipid Research, 1994, 35: 194-210
    [50] Vakeva A, Laurila P, and Meri S. Co-deposition of clusterin with the complement membrane attack complex in myocardial infarction. Immunology, 1993, 80: 177–182
    [51] Silkensen JR, Hirsch AT, Lunzer MM, Chmielewski D, Manivel JC, Muellerleile MR, and Rosenberg ME. Temporal induction of clusterin in the peri-infarct zone after experimental myocardial infarction in the rat. J Lab Clin Med, 1998, 131: 28–35
    [52] P. A. J. Krijnen, S. A. G. M. Cillessen, R. Manoe, A. Muller, C. A. Visser, C. J. L. M. Meijer, et al. Clusterin: a protective mediator for ischemic cardiomyocytes? Am J Physiol Heart Circ Physiol, 2005, 289: H2193-H2202
    [53] Lea McLaughlin, Guang Zhu, Meenakshi Mistry, Cathy Ley-Ebert, William D. Stuart, Carolyn J. Florio, et al. Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. The Journal of Clinical Investigation, 2000, 106 (9): 1105-1113
    [54] Viard I, Wehrli P, Jornot L, Bullani R, Vechietti JL, Schifferli JA, Tschopp J, and French LE. Clusterin gene expression mediates resistance to apoptotic cell death induced by heat shock and oxidative stress. J Invest Dermato, l 1999, 112: 290–296
    [55] McGeer PL, Kawamata T, and Walker DG. Distribution of clusterin in Alzheimer brain tissue. Brain Res, 1992, 579: 337–341
    [56] Lars E. French, Arcadio Chonn, Dominique Ducrest, Brigitte Baumann, Dominique Belin, Annelise Wohlwend, et al. Murine Clusterin: Molecular Cloning and mRNA Localization of a Gene Associated with Epithelial Differentiation Processes during Embryogenesis. The Journal of Cell Biology,1993, 122(5): 1119-1130
    [57] Weerapan Khovidhunkit, Min-Sun Kim, Riaz A. Memon, Judy K. Shigenaga, Arthur H. Moser, Kenneth R. Feingold, and Carl Grunfeld. Thematic review series: The Pathogenesis of Atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. J. Lipid Res. , 2004, 45: 1169 – 1196
    [58] 徐宗佩, 陈克奇, 张伯礼, 等. 冠心病血瘀证患者单核细胞趋化游走能力的检测. 中国中西医结合杂志, 2000, 20(10): 724
    [59] 王强, 黄绍湘, 刘钧超, 等. 冠心病血瘀证与超敏C-反应蛋白关系的临床探讨. 广西中医药, 2005, 28(3): 7-8
    [60] 刘剑刚, 徐 浩, 董国菊, 等. 血府逐瘀口服液对冠心病心绞痛血瘀证病人血管内皮功能及血液流变学的影响. 中西医结合心脑血管病杂志, 2006, 4(8): 659-661
    [61] 张红霞, 刘剑刚, 马鲁波, 等. 气血并治方及方中理气药、活血药对高脂血症血瘀大鼠炎症因子的干预作用. 北京中医药大学学报, 2004, 27(4): 27-30
    [62] Liselotte E. Jensen, Alexander S. Whithead. Regulation of serum amyloid A protein expression during the acute-phase response. Biochem. J, 1998, 334: 489–503
    [63] 祝美珍. 缺血性中风病证本质的客观化研究与探讨. 中西医结合心脑血管病杂志, 2006, 4(9): 775-776
    [64] 王大伟, 张宏业, 罗翌, 等. 益气活血法对缺血性脑卒中急性期(气虚血瘀证)神经保护作用的影响. 新中医, 2006, 38(9): 31-32
    [65] 孙丰雷, 郎江明, 魏爱生, 等. 糖尿病血瘀证病人血清IL一6和sIL2R水平的研究. 中西医结合心脑血管病杂志, 2004, 2(12): 683-684
    [66] 沈庆法, 杨爱东. 温病气分证与微观血瘀相关性的实验研究. 中国中医药科技, 2002, 8(4): 209-210
    [67] 梁爱华, 丁晓霜, 李文, 等. 血瘀证与血栓形成病证结合动物模型的研究. 中国中药杂志, 2005, 30(20): 1613-1616 [ 68 ] Echan LA, Tang HY, Nadeem AK, Lee KB, Speicher DW. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics, 2005, 5(13): 3292-3303 [ 69 ] Wasinger VC, Locke VL, Raftery MJ, Larance M, Rothemund D, Liew A, et al. Two-dimensional liquid chromatography/tandem mass spectrometry analysis of Gradiflow fractionated native human plasma. Proteomics, 2005, 5(13): 3397
    [70] Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 1997, 18(11): 2071-2077
    [71] Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003, 3(1): 36-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700