基于CARS的火焰温度测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾焰温度是火箭发动机性能评估的重要参考依据,推进技术发展的需要对火箭发动机尾焰温度测量提出了越来越高的要求。然而当前固体火箭发动机尾焰温度测量的研究比较多,对液体火箭发动机透明尾焰温度测量的研究还比较少。本课题主要研究可用于液体火箭发动机尾喷焰研究的相干反斯托克斯拉曼散射(CARS: Coherent Anti-Stokes Raman Spectroscopy)火焰温度测量技术,为
     评估液体火箭发动机燃烧效率、分析燃烧机理进而改进发动机设计提供参考。在对CARS信号光强理论、理论光谱计算、测量方法及测量方案设计进行研究的基础上,将结合参考光路的单脉冲双泵浦CARS测量方法应用于燃烧火焰温度测量研究中,并对影响测量准确性的可能因素进行了分析。主要完成了以下几方面的研究工作:
     1.设计了单脉冲双光路双泵浦BOXCARS测量系统,具备对温度梯度大、不稳定燃烧火焰流场进行实时测量的能力,并能够抑制非共振背景信号,提高信噪比。双泵浦方法保证了多组分的测量能力,在适当调整可调谐光源输出频率的前提下,能够同时得到两种成分的CARS光谱,不但可以通过与理论光谱的拟合得到温度信息,理论上还能通过与非共振背景信号的对比得到目标组分浓度信息。以检验CARS测量设备准确性为出发点,提出了CARS校准系统设计方案。
     2.在对CARS基本理论进行深入阐述的基础上,对已有CARS理论模型进行了适度简化和改进。从非线性光学基础理论出发,导出了CARS信号光强度的耦合波方程,给出了CARS光强表达式,对影响到信号光强度的光源线宽、光源线型、相位匹配条件、相干长度以及三阶非线性极化率分别进行了探讨。给出了通过解密度矩阵的方法推导三阶非线性极化率的数学模型的过程。阐述了非共振极化率在信号光形成中的影响及抑制方法,重点讨论了共振极化率的光谱计算。对三阶非线性共振极化率表达式中拉曼线宽、拉曼散射截面及跃迁能级之间的粒子数密度差的计算分别进行了详细讨论。
     3.在CARS经典理论模型的基础上,对基于传统CARS测量方法拓展的多色CARS方法及电子共振增强(ERE: Electronic-Resonance-Enhanced)CARS方法进行了深入讨论。对双泵浦CARS及双宽带CARS方法从原理上进行了探讨,并给出了理论模型。针对双泵浦方法存在的问题,提出了改进方法,扩展了适用范围,并给出了基于双泵浦方法的测量方案。对双宽带方法的相位匹配关系进行了详细计算,证明了在双光束过程相位匹配关系成立的情况下,三光束过程的相位匹配关系也是必然成立的。对ERE-CARS基本原理进行了讨论,对一氧化氮分子的ERE-CARS方法下的三阶非线性极化率模型进行了推导,并设计了可用于极低浓度一氧化碳CARS测量的ERE-CARS测量方案。
     4.以火焰喷枪PT-500产生的丁烷/空气扩散火焰为测量对象,以氮气为探针分子进行了CARS温度测量实验研究,并将测量结果与热电偶测量结果进行了对比,对可能影响两者之前存在差值的因素进行了分析。实验结果表明,CARS温度测量误差在800K以上约为70K,在500K~800K之间约为40K。
     论文研究成果对火箭尾焰温度场测量具有一定的理论意义和实用价值。
Flame temperature is important for rocket engine evaluation. With the development of propulsion technology, higher demand for flame temperature measurement is put forward. This paper is to develop a Coherent Anti-Stokes Raman spectroscopy (CARS) temperature measurement system which can be used for estimating combustion efficienty of the liquid-propellant rocket engine, analyzing combustion mechanism, and providing modified design for rocket engine.
     Relative theory, methods and theoretical calculations of spectra are systematically studied. On this basis, the single-pulse dual-pump CARS technique combining reference optical system has been successfully applied to the measurement of temperature field for high-temperature combusting flame, with in-depth analysis of the impact of possible factors that may affect the measurement accuracy. The main researches are listed as follows:
     1. For the needs of this research, we have developed a single-pulse double-pumped BOXCARS measuring device include the reference optical circuit, which can perform real-time measurement of high-temperature combusting flame flow field with very high temperature gradient and great instability, and also can conduct effective suppression of non-resonant background noise. Since dual-pump methods ensure a multi-component measurement capability, with the premise of appropriate adjustments in the output frequency of the light source, we can obtain two components of the CARS spectra simultaneously. Then we can not only obtain the temperature information by fitting with the theoretical spectrum, but also can obtain the concentration information by comparing with non-resonant background signal. Finally we proposed to design CARS measurement equipment for testing the accuracy of the equipments.
     2. After in-depth analyzing the basic theory of CARS, we also simplified and developed the theoretical model of CARS appropriately: From the basis of nonlinear optical theory, we have derived the coupled-wave equations of CARS signal intensity, presented the expression of CARS light signal intensity, and also discussed the factors that may affect the light signal intensity such as light source linewidth, light source linetype, phase-matching conditions, coherence length and third-order nonlinear polarizability. Then we derived the mathematical model of third-order nonlinear polarizability by using density matrix. By comparison of resonant polarizability with non-resonant polarizability, the role of non-resonant polarization in the formation of optical signal is analyzed, focusing on the calculation of spectral resonance polarizability. Also we have elaborated the calculation of Raman linewidth, Raman scattering cross section, transitions between energy levels of the particle number density difference that are crucial in the third-order nonlinear susceptibility expressions.
     3. Based on the theoretical model of CARS, we have in-depth discussed the multi-color CARS method extended from the traditional CARS measurement method and the Electronic-Resonance-Enhanced method (ERE). The principles of dual-pump CARS and dual-broadband CARS approaches are investigated, followed by the analysis of its feasibility and advantages over traditional methods before the final theoretical model is given. In terms of the existing problems of dual-pump methods, we have designed the methods to improve the performance and extend the applicable scope, as well as the dual-pump-based measurement methods. Based on the detailed calculation of phase matching based on dual-broadband methods, it is proved that the three-beam phase matching relationship is bound to hold provided that the two-beam phase matching relationship holds. Based on the discussion of principles of ERE-CARS, we have elaborated the advantages and applications of ERE-CARS and also derived the third-order nonlinear polarizability model of nitric oxide molecules based on the ERE-CARS method, as well as designed the scheme of ERE-CARS measurement that can be applied to measuring carbon monoxide in extremely low concentration circumstances based on CARS measurements.
     4. For the experiment object of butane / air diffusion flame that is generated by flame spray gun PT-500, we have carried out the experiments with nitrogen as the probe molecular. The measurement results of the proposed method and that of thermocouple measurement are compared and the factors that may contribute to the difference were analyzed. The experimental results show that, the CARS measurement error of temperature is about 70K when the temperature is higher than 800K and about 40K when the temperature is between 500K and 800K.
     Researches in this paper are valuable for rocket flame temperature distribution determination.
引文
1黄玉辉.液体火箭发动机燃烧稳定性理论数值模拟和实验研究.国防科技大学出版社, 2005: 1~7, 54~56
    2夏慧荣,王祖赓.分子光谱学和激光光谱学导论.华东师范大学出版社, 1989: 2~3
    3 W. B. Roh, P. Wschreiber and J. P. E. Taran. Single-Pulser Coherent Anti-Stokes Raman Scattering. Applied Physics Letters. 1976, 29(3): 174~176
    4 R. W. Minck, R. M. Terhune and W. G. Rado. Laser-Stimulated Raman Effect and Resonant Four-Photon Interactions in Gases H2, D2 and CH4. Applied Physics. 1963, 3(10): 181~184
    5朱贵云,杨景和.激光光谱分析法.科学出版社, 1982: 40~87
    6 J. A. Shirley, R. J. Hall and A. C. Eckbreth. Folder BOXCARS for Rotational Raman Studies. Optics Letters. 1980, 5(9): 380~382
    7 J. P. Singh, F. Yueh. An Evaluation of CARS Phaser Matching Techniques for Field Application. AIAA 91-1520, AIAA 22nd Fluid Dynamics, Plasmadynamics & Lasers Conferencek, Honolulu, Hi, 1991
    8 J. P. Singh, F. Yueh. Comparative Study of Temperature Measurement with Folded BOXCARS and Collinear CARS. Combustion and Flame. 1992, 89: 77~94
    9 K. A. Marko, L. Romai. Space- and Time-Resolved Coherent Anti-Stokes Raman Spectroscopy for Combustion Diagnostics. Optics Letters. 1979, 4(7): 211~213
    10 L. C. Davis, K. A, Marko and L. Romai. Angular Distribution of Coherent Raman Emission in Degenerate Four-Wave Mixing with Pumping by a Single Diffraction Coupled Laser Beam: Configurations for High Spatial Resolution. Applied Optics. 1981, 20(9): 1685~1690
    11 P. D. Maker, R. W. Terhune. Study of Optical Effects Due to an Induced-Polarization Third Order in the Electric Field Strength. Physical Review. 1965, 137(3A): A801~A818
    12 S. P. Kearney, R. P. Lucht and Anthony M. Jacobi. Temperature Measurements in Convective Heat Transfer - Ows Usingdual-broadband, Pure-rotational Coherent Anti-Stokes Raman Spectroscopy (CARS). Experimental Thermaland Fluid Science. 1999, 19: 13~26
    13 Y. Prior. Three-Dimensional Phase Matching for Rotational CARS and Stimualted Raman Scattering (SRS). Proceedings of the Seventh International Coference of Raman Spectroscopy, 1980: 702~703
    14 Tai Ahn, Igor V. Adamovich and Walter R. Lempert. Stimulated Raman Scattering Measurements of Nitrogen V-V Transfer. 41st Aerospace Science Meeting and Exhibit. Reno, Nevada, 2003: 1~12
    15 M. D. Duncan, J. Reintjes and T. J. Manuccia. Scanning Coherent Anti-Stokes Raman Microscope. Optics Letters. 1982, 7(8): 350~352
    16 Y. Prior. Three-Dimensional Phase Matching in Four-Wave Mixing. Applied Optics. 1980, 19(11): 1741~1743
    17 A. C. Eckbreth, G. M. Dobbs, J. H. Stulflebeam and P. A. Tellex. CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts. Applied Optics. 1984, 23(9): 1328~1339
    18 M. Fischer, E. Magens, H. Weisgerber, A. Winandy and S. Cordes. CARS Temperature Measurements on an Air Breathing Ram Jet Model. AIAA 98-0961, 36th Aerospace Science Meeting & Exhibit, Reno, NV, 1998
    19 A. C. Eckbreth. BOXCARS: Crossed-Beam Phaser-Matched CARS Generation in Gases. Applied Physics Letters. 1978, 32(7): 421~423
    20 P. O. Hedman, D. L. Warren. Turbulent Velocity and Temperature Measurements from a Gas-fueled Technology Combustor with a Practical Fuel Injector. Combustion and Flame. 1995, 100: 185~192
    21 R. Sukesh, R. M. Terrence, S. B. Michael, et al. Triple-pump Coherent Anti-stokes Raman Scattering (CARS): Temperature and Multiple-species Concentration Measurements in Reacting Flows. Optics Communications. 2003, 224: 131~137
    22 A. C. Eckbreth, T. J. Anderson. Dual Broadband CARS for Simultaneous, Multiple Species Measurements. Applied Optics. 1985, 24: 3731
    23 A. C. Eckbreth, T. J. Anderson and G. M. Dobbs. CARS Approaches to Simultaneous Measurement of H2 and H2O Concerntration and Temperature in H2-air Combustion Systems. The 23rd JANNAF Combustion Meeting, 1986, 1: 405~415
    24 S. R. Yang, J. R. Zhao, C. J. Sung and G. Yu. Simultanesous Multiplex CARS Measurements of Temperature and Concentrations of H2 and O2 in SupersonicHydrogen-Air Combustion. 1998, AIAA 98-0727
    25 A. D. Culter, P. M. Danehy, R. R. Springer and R. DeLoach. CARS Thermometry in a Supersonic Combustor for CFD Code Validation. 40th AIAA Aerospace Science Meeting & Exhibit, 2002, AIAA 2002-0743
    26 O. J. Jr., M. W. Smith, R. R. Antcliff and G. B. Northam. CARS Temperature Measurements in a Hypersonic Propulsion Test. 1992, N92-12049
    27 C. B. Park, H. N. and N. Sugimoto etc. Algorithm Improvement and Validation of National Institute for Environmental Studies Ozone Differential Absorption Lidar at the Tsukuba Network for Detection of Stratospheric Change Complementary Station. Applied Optics. 2006, 45(15): 3561~3576
    28 S. Roy, G. Ray and R. P. Lucht. Interline Transfer CCD Camera for Gated Broadband Coherent Anti-Stokes Raman-scattering Measurements. Optical Society of America. 2001, 40(33): 6005~6011
    29 D. Bradley, M. Lawes, M. J. Scott, et al. The Structure of Coal-air-ch4 Laminar Flames in a Low-pressure Burner: CARS Measurements and Modeling Studies. Combustion and Flame. 2001, 124: 82~105
    30 S. Roy, W. D. Kulatilaka and R. P. Lucht. Temperature Profile Measurements in the Near-substrate Region of Low-pressure Diamond-forming Flames. Combustion and Flame. 2002, 130: 261~276
    31 S. Roy, T. R. Meyer, R. P. Lucht, et al. Temperature and CO2 Concentration Measurements in the Exhaust Stream of a Liquid-fueled Combustor Using Dual-pump Coherent Anti-stokes Raman Scattering (CARS) Spectroscopy. Combustion and Flame. 2004, 138: 273~284
    32 J. D. Garman, D. Dunn-Rankin. Spatial Averaging Effects in CARS Thermometry of a Nonpremexed Flame. Combustion and Flame. 1998, 115: 481~486
    33 P. M. Danehy, S. O’Byrne and A. D. Culter. CARS as a Probe for Supersonic Hydrogen-Fuel/Air Mixing. JANNAF/APS/CS/PSHS/MSS Joint Meeting, Colorado Springs, 2003
    34 F. Y. Yueh, E. J. Beiting. Simultaneous N2, CO2 Measurements and H2 Multiplex CARS in Combustion Environments Using a Single Dye Laser. Applied Optics. 1988, 27(15): 3233~3243
    35 M. Thiele, J. Warnatz, A. Dreizler, et al. Spark Ignited Hydrogen/Air Mixtures: Two Dimensional Detailed Modeling and Laser Based Diagnostics.Combustion and Flame. 2002, 128: 74~87
    36 T. Seeger, J. Jonuscheit, M. Schenk, et al. Simultaneous Temperature and Relative Oxygen and Methane Concentration Measurements in a Partially Premixed Sooting Flame Using a Novel CARS-technique. Journal of Molecular Structure. 2003, 661-662: 515~524
    37 P. H. Bouma, L. P. H. De Goey. Premixed Combustion on Ceramic Foam Burners. Combustion and Flame. 2004, 119: 133~143
    38 G. W. Baxter, M. J. Johnson, J. G. Haub, et al. Opo CARS: Coherent Anti-Stokes Raman Spectroscopy Using Tunable Optical Parametric Oscillators Injection-seeded by External-cavity Diode Lasers. Chemical Physics Lettrers. 1996, 251: 211~218
    39 F. Y. Yueh, J. P. Singly, G. Zikratov, H. Zhang and R. L Cook. Gas Temperature Measurement by Spontaneous Raman Spectroscopy (SRS) and Coherent Anti-Stokes Raman Spectroscopy (CARS). Proceedings of 47th International Instrumentation Symposium, Denver, CO. 2001, 409
    40 D. M. Guthals, K. P. Gross J. W. Nibler. Resonant CARS Spectra of NO2, J. Chem. Phys. 1979, 70(5): 2393~2398
    41 J. I. Kim, J. Y. Hwang, J. Lee, et al. Numerical and Experimental Study on Silica Generating Counter Flow Diffusion Flames. International Journal of Heat and Mass Transfer. 2005, 48: 75~81
    42 A. V. Mokhov, H. B. Levinsky. Noformation in the Burnout Region of a Partially Premixed Methane-air Flame with Upstream Heat Loss. Combustion and Flame. 1999, 118: 733~740
    43 R. D. Hancock, K. E. Bertagnolli, et al. Nitrogen and Hydrogen CARS Temperature Measurements in a Hydrogen/Air Flame Using a Near-adiabatic Flat-flame Burner. Combustion and Flame. 1997, 109: 323~331
    44 M. J. Papac, D. Dunn-Rankin, C. B. Stipe, et al. N2 CARS Thermometry and O2 Lif Concentration Measurements in a Flame under Electrically Induced Microbuoyancy. Combustion and Flame. 2003, 133: 241~254
    45 J. Hwang, Y. S. Gil, J. I. Kim, et al. Measurements of Temperature and OH Radical Distributions in a Silica Generating Flame Using CARS and PLIF. Aerosol Science. 2001, 32: 601~613
    46 N. I. Kim, J. I. Seo, K. C. Oh, et al. Lift-off Characteristics of Triple Flame with Concentration Gradient. Proceedings of the Combustion Institute. 2005,30: 367~374
    47 K. P. Geigle, Y. Schneider-Kuhnle, M. S. Tsurikov, et al. Investigation of Laminar Pressurized Flames for Soot Model Validation Using SV-CARS and LII. Proceedings of the Combustion Institute. 2005, 30: 1645~1653
    48 S. Roy, J. Dubois, R. P. Lucht, et al. Hydroxyl Radical Concentration Measurements Near the Deposition Substrate in a Low-pressure Diamond-forming Flames. Combustion and Flame. 2004, 138: 285~294
    49 P. Joubert, X. Bruet, J. Bonamy, et al. H2 Vibrational Spectral Signatures in Binary and Ternary Mixtures: Theoretical Model, Simulation and Application to CARS Thermometry in High Pressure Flames. C. R. Acad. Sci. 2001, 4: 989~1000
    50 C. M. Roland, W. A. Steele. Intensity in Pure Rotational CARS of Air, J. Chem. Phys. 1980, 73(12): 5919~5923
    51 J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi and S.H. Chung. Measurement of Temperature and OH Radical Distributions in a Silica Generating Flame Using CARS and PLIF. Aerosol Science. 2001, (32):601~613
    52 J. P. Singh, F. Y. Yueh. Study of N2 CARS Spectra of a Coal-Fired Flow Facility, AIAA 93-3216, AIAA 24th Plasmadynamics & Lasers Conference, Orlando, FL, 1993
    53 F. Grisch, A. Bresson, P. Bouchardy and B. Attal-Tretout. Advanced Optical Diagnostics Applied to Dynamic Flames and Turbulent Jets. Aerospace Science and Technology. 2002, (6): 465~479
    54 F. Chaussard, X. Michaut, R. Saint-Loup etc. Optical Diagnostic of Temperature in Rocket Engines by Coherent Raman Techniques. C.R.Physique. 2004, (5): 249~258
    55 W. B. Roh, P. W. Schreiber. Pressure Dependence of Integrated CARS Power. Applied Optics. 1978, 17(9): 1418~1424
    56闫军,徐更光. Theoretical Calculation of Nitrogen Q-branch CARS Spectra. Jour. of Beijing Institute of Technology. 2001, 10(1): 109~112
    57李春喜,赵鸣,张蕊娥等.双基推进剂燃烧火焰温度CARS测定技术.火炸药学报. 2003, 26(1): 65~67
    58胡志云,刘晶儒,张振荣等. Single-pulse CARS Spectra in Solid Propellant Combustion at Atmosphere Pressure. Chinese Optics Letters. 2003, 1(7): 395~397
    59刘欧子,胡欲立,蔡元虎等.超声速燃烧凹槽火烟稳定的研究动态.推进技术. 2003, 24(3): 265~271
    60李麦亮.激光光谱诊断及其在发动机燃烧研究中的应用.博士学位论文.国防科技大学. 2004
    61 F. Grisch, P. Bouchardy and W. Clauss. CARS Thermometry in High Pressure Rocket Combustors. Aerospace Science and Technology. 2003, 7: 317~330
    62 P. Beaud, H. M. Frey, T. Lang, et al. Flame Thermometry by Femtosecond CARS. Chemical Physics Letters. 2001, 344: 407~412
    63 H. K. Kammler, S. E. Pratsinis, P. W. Morrison, et al. Flame Temperature Measurements During Electrically Assisted Aerosol Synthesis of Nanoparticles. Combustion and Flame. 2002, 128: 369~381
    64 W. D. Kulatilaka, N. Chai, S. V. Naik, et al. Effects of Pressure Variations on Electronic-resonance-enhanced Coherent Anti-Stokes Raman Scattering of Nitric Oxide. Optics Communications. 2007, 274: 441~446
    65 J. Mantzaras, T. H. V. Meer. Coherent Anti-stokes Raman Spectroscopy Measurements of Temperature Fluctuations in Turbulent Naturel Gas-fueled Poloted Jet Diffusion Flames. Combustion and Flame. 1997, 110: 39~53
    66杨新园,孙建平,张金涛.材料线热膨胀系数测量的近代发展与方法比对介绍.计量技术. 2008, (7): 33~36
    67岡路正博,山田修史. Precise, Versatile Interferometric Dilatometer for Room-temperature Operation: Measurements on Some Stadard Reference Materials. High-Temp.High-Press. 1997, 29(1): 89~95
    68 R. E. Taylor. Heat-pulse Thermal Diffusivity Measurements. High-Temp. High-Press. 1979, 11: 43~58
    69 D. L. Balageas. Thermal Diffusivity Measurement by Pulsed Methods. High-Temp. High-Press. 1989, 21: 85~96
    70 L. Vozár. Flash Method of Measuring the Thermal Diffusivity - a Review. High-Temp.High-Press. 2003/2004, 35/36: 253~264
    71 F. Cernuschi, P. G. Bison, A. Figari, et al. Thermal Diffusivity Measurements by Photothermal and Thermographic Techniques. Int. J. Thermo., 2004, 25(2): 439~457
    72邹英华,孙陶亨.激光物理学.北京大学出版社, 1991: 294~311
    73杨仕润. CARS在超音速燃烧研究中的应用.中国科学院力学研究所博士学位论文. 1998
    74 G. Fujimoto, T. K. YEE. Diagrammatic Analysis of Third Order Nonlinear Optical Processes. IEEE Journal of Quantum Electronics. 1983, 19(5): 861~872
    75 A. C. Eckbreth. Laser Diagnostics for Combustion Temperature and Species. Abacus, Kent, Uk, 1988: 162~300
    76 Y. Prior. A Complete Expression for the Third-order Susceptibility-Perturbative and Diagrammatic Approaches. IEEE J.Quant.Elec. 1984, (20): 37~42
    77 P. Bouchardy, G. Collin, M. Lefebvre, M. Pealat, J. P Taran and B. Tretou. Diagnostics of Reactive Media by CARS. European Propulsion Forum. 1989, A89-45189
    78 P. Magre, G. Collin, etc. Temperature Measurements by CARS and Intrusive Probe in an Air-Hydrogen Supersonic Combustion. 1998, AIAA 98-1621
    79 G. Marowsky, G. Lupke. CARS-Background Suppression by Phase-Controlled Nonlinear Interferometry. Applied Physics 1990, 51: 49~51
    80 E. Diebel, T Dreier, B Lange and J. Wolfram. Parameter Studies in Practical Nitrogen CARS Thermometry Using Standard and Advanced Fitting Codes. Applied Physics. 1990,50: 29~46
    81 J. C. Luthe, E. J. Beiting and F. Y. Yueh. Algorithms for Calculating Coherent Anti-Stokes Raman Spectra: Application to Several Small Moleculars. Computer Physics Communications. 1986, (42): 73~92
    82 R. E. Teets. Accurate Convolutions of Coherent Anti-Stokes Raman spectra. Optics Letters. 1984, 9(6): 226~228
    83 A. C. Eckbreth, T. J. Anderson. Dual Broadband CARS for Simultaneous, Multiple Species Measurements. Optical Society of America. 1985, 24(16): 2731~2736
    84 J. P. Kuehner. Experimental and Theoretical Investigations of Coherent Anti-Stokes Raman Scattering as a Nonintrusive Diagnostic for Gas-phase Systems. Graduate College of the University of Illinois Doctorial Thesis. 2003
    85 W. D. Kulatilaka. Development of Advanced Laser Systems and Spectroscopic Techniques for Combustion Diagnostic Applications. Purde University Doctorial Thesis. 2006
    86戴景民.多光谱辐射测温理论与应用.高等教育出版社. 2002
    87 C. J. Rieck, B. Bodefeld, R. Noll etc. Development of a Transfer Standard forLaser Thermometry. SPIE. 1997, 3107:74~85
    88 R. Paetzold, E. Voss, T. de Vries, H. Darpel and A. Anders. Advantages of the Coherent Antistokes Raman Scattering (CARS) in Environmental Monitoring. SPIE. 1999, 3821: 75~82
    89 G. I. Petrov, V. V. Yakovlev. Broadband CARS Microscopy: Principles and Applications. Proc. of SPIE. 2006, 6089(0E): 1~8
    90杨仕润,赵建荣,俞刚等.氢/空气平面预混火焰中CARS温度测量.激光技术. 2000, 24(5): 277~280
    91 J. M. Seitzman, P. Paul and R. Hanson. PLIF Imaging Analysis of OH Structures in a Turbulent Nonpremixed H2-Air Flames, AIAA 90-0160, 28th Aerospace Sciences Meeting, Reno, NV, 1990
    92 M. J. Papac, D. Dunn-Rankin, C. B. Stipe and D. Lucas. N2 CARS Thermometry and O2 LIF Concentration Measurements in a Flame Under Electrically Induced Microbuoyancy. Combustion and Flame. 2003,133(3): 241~254
    93 R. P. Houwing, M. R. Karmel, C. I. Morris, S. D. Wehe, R. R. Boyce and R. K. Hanson. PLIF Imaging and Thermometry of NO/N2 Shock Layer Flows in an Expansion Tube, AIAA 96-0537, 34th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1996
    94 C. Heinrich, S. Bernet, and M. Ritsch-Marte. CARS Imaging with a Single Laser Pulse. Proc. of SPIE. 2005, 5959(02): 1~5
    95 B. V. Anikeev, S. A. Kutsenko and I. N. Ulchenko. Quantitative Analysis of Composition of Organic Compounds by CARS Spectroscopy Method. Proc. of SPIE. 2007, 6594(0W): 1~8
    96 M. D. Duncan, J. Reintjes and T. J. Manuccia. Scanning Coherent Anti-Stokes Raman Microscope. Opt. Lett. 1982, 7: 350~352
    97 J. F. Cormier, A. Ko, L. P. Choo-Smith. Broadband Coherent Anti-Stokes Raman Scattering (CARS): a Potential Tool for Atherosclerosis Diagnostic Imaging. Proc. of SPIE, 2007, 6424(1X): 1~12
    98 H. A. Rinia, M. Bonn, E. M. Variainen, C. B. Schaffer and M. Muller. Spectroscopic Analysis of the Oxygenation State of Hemoglobin Using Coherent Anti-Stokes Raman Scattering. Journal of Biomedical Optics. 2006, 11 (0505):1~3
    99 J. D. Koch and R. K. Hanson. Ketone Photophysics for Quantitative PLIFImaging, AIAA 2001-0413, 39th Aerospace Sciences Meeting & Exhibit, Reno, NV, 2001
    100 T. R. Meyer, R. P lucht and J. C. Dutton. Dual-Tracer PLIF Measurements of Entrainment and Mixing in a Driven Axisymmetric Jet, AIAA 98-3018, 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, 1998
    101 R. J. Hall, A. C. Eckbreth. Combustion Diagnostics by CARS. Optical Engineering. 1981, 20(4): 100~112
    102 G. Herzberg. Molecular Spectra and Molecular Structure. Science Press. 1983: 49~86
    103虞海平,王庆宇,李郁芬.测温技术中CARS谱的模拟计算.中国激光. 1986, 14(12): 725~734

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700