新型胞外多糖产生菌Phyllobacterium sp. nov. 921F及其多糖结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌胞外多糖由于其化学结构的多样性和新颖性,以及逐渐被发掘的多种新型生物学活性,受到了越来越多的科研工作者的关注。目前所报道的细菌胞外多糖主要有黄原胶、热凝胶和结冷胶三类。其结构不同,功能各异,分别应用于各个不同的领域,如食品工业、纺织工业、石油化工等方面。本论文以获得具有新型、高效且形状稳定的胞外多糖产生菌为基本目的和出发点,期望能够获得一株具有工业生产及应用的新型细菌胞外多糖。
     本文通过定向筛选技术获得一株胞外多糖产生菌。结合生理、生化鉴定和16SrRNA技术确定该菌株为叶杆菌属新种(Phyllobacterium sp.nov.921F)。现已申请国家专利保护——专利申请号:200710167753.1。该产糖菌株已保存于中国典型微生物培养保藏中心。由于目前尚未有相关菌种的产糖的报道,我们采用定向诱导技术和条件优化后,使得该菌株经84 h摇瓶培养后,产糖量达1.8%。在此基础上,进行10 L全自动发酵罐试验,产糖量提升至2%以上。胞外多糖提取工艺的优化方面,通过引入金属盐溶液而有效的减少了有机溶剂的加入量,显著减少了提取工艺的生产成本。以上结果表明:该菌株具有产糖量能力高、产糖性状稳定、多糖提取工艺简单且相比其它细菌胞外多糖提取能耗低等特点。达到了上游发酵工业对菌种的要求水平,具有潜在开发价值。
     胞外多糖理化性质和基本组成分析结果表明该多糖易溶于水,其水溶液呈透明粘稠状;多糖由半乳糖和葡萄糖组成,二者摩尔比为1.07:1;有丙酮酸基团存在;通过GPC分析得到多糖重均分子量为1082 kDa。由于该胞外多糖表现出很强的粘度特性。因此本文考察了多糖溶液浓度、剪切力、pH值、温度、放置时间、恒温加热、无机盐及蔗糖浓度对多糖溶液表观粘度的影响。结果表明该胞外多糖表观粘度受剪切速率、蔗糖浓度等因素影响较小且稳定性好,在pH 3-12之间变化不明显。随着温度的升高粘度下降。多糖的表观粘度受无机盐的影响有一定的下降,但变化程度不大。因此该多糖的粘度特性也展示出较好的应用前景。
     在糖链结构解析方面,本研究采用专一性酶解技术系统、准确的对糖链结构进行解析。以胞外多糖为特异性底物筛选一株降解菌进而制备专一性工具酶,以获得酶解寡糖终产物。经分离纯化制备出四、六、八糖,并通过一级质谱确定了各片段的分子量大小,结合二级质谱、核磁谱图及多糖基本性质,综合对该酶解寡糖进行了结构分析。结果证明该方法制备的寡糖具有保留糖链结构完整、准确,且结果重复性强等特点,为准确解析多糖结构提供保障。本文还对胞外多糖进行了分子水平的表征,通过轻敲模式的原子力显微技术观察到该细菌胞外多糖溶液在云母片上的构象信息,展示了单个胞外多糖分子的立体构象。该胞外多糖的水溶液在低浓度条件下,多糖分子均以单分子链的形态出现,单个分子链的高度为0.7 nm左右,链长约600 nm。
     最后,本文利用专一性酶解技术制备得到的具有简单重复单元的的葡半寡糖进行了一些潜在活性方面的研究,发现该寡糖在吸湿、保湿、草莓保鲜及促进种子萌发具有一定的活性。由于目前尚未有相关寡糖活性方面的报道。通过该研究不仅丰富了当前寡糖的应用前景,而且这种新型寡糖结构在理论研究方面为今后构效关系的研究提供了新的平台资源
Bacteria derived exo-polysaccharides are new kinds of products made by biology technology recently.Their different applications attribute to their different structures. According to currently reports,there are majorly three kinds of products,Xanthan,Gellan and Curdlan applied in industry,for example food,textile or petroleum and chemical indurstry.On the basis of finding and isolating the microb with properties of a new kind of exo-polysaccharide,high yield and stabilization,we tried many ways to isolate and culture it which we hope to hold high productivity and be applied widely in industry.
     A new kind of bacteria holding high exo-polysaccharides yield and stabilization was isolated through the compound screening methods of qualitative and quantitative analysis according to previous reports.The strain 921F was identified as Phyllobacterium sp.by micro-biochemical identification and 16S ribosomal RNA gene sequencing analysis.The medium components and culture conditions are optimized.Results show that the optimal culture medium is as follows:sucrose,3%;beef extract,0.45%;(NH_4)_2SO_4,0.04%; MgCl_2,0.03%.The optimal culture conditions are as follows:initial pH 7.0,temperature 30℃,medium volume 75 ml/250 ml,inoculum volume 8%(v/v),duration,72~96 h.The maximal exo-polysaccharide yield could reach 1.8%.In another hand,an experiment of 10 liter scaled fermentation was performed with the purpose of amplifying culture volume towards industry scale in the coming future.
     Exo-polysaccharides were precipitated with the use of ethanol and salt according to the optimal extracting process.Characters of exo-polysaccharides were investigated, including molecular weights,saccharides composition et al.IR,UV and AFM of exo-polysaccharides were performed to obtain more information about the molecular structure. The exo-polysaccharides we precipitated show highly viscous and translucent.So the experiment of apparent viscosity of exo-polysaccharides under different conditions were assayed,including the effects of substrate concentration,shear velocity,pH,temperature, durations,salts concentration et al.
     Method of enzyme hydrolysis was introduced to produce the final product from exo-polysaccharides. Tetrasaccharides,hexasaccharides and octasaccharides were separated and purified by passing through Bio-Gel P4 column several times.Molecular weights of the purified sections were determinate with MS.With the help of the information from upper charpter,ESI-CID-MS/MS and NMR of oligosaccharides were conducted to analysis its structure.So the structure of exo-polysccharides produced from Phyllobacterium sp.could be primarily illustrated.
     In the final area,we conducted some potential study about bioactivity of the related oligosaccharides,such as moisture absorption,moisture retention and fresh keeping of strawberry.The influence of oligosaccharide was also tested on the seed germination at different concentrations.Compared with the control,results indicate that the rate of seed germination was enhanced by increasing the activities of several enzymes beneficial for germination.
引文
1. Aarons SJ, Sutherland IW, Chakrabarty AM and Gallagher MP. A novel gene, algK, from the alginate biosynthetic cluster of Pseudomonas aeruginosa. Microbiology, 1997, 143: 641-652.
    
    2. Amimi A, Mouradi A, Givernaud T, Chiadmi N, Lahaye M. Structural analysis of Gigartina pistillata carrageenans (Gigartinaceae, Rhodophyta). Carbohydrate Research, 2001, 333: 271-279.
    
    3. Aoki T., Kameko Y., Stefanski M., et al. Curdlan sulfate and HIV-1. In vitro inhibitory effects of curdlan sulfate on HIV-I infection [J]. AIDS. Res. HUM. Retroviruse. 1991 7(4): 409-515
    
    4. Atkins EDT, Attwool PT, Miles MJ, et al. Effect of acetylation of the molecular interactions and gelling properties of a bacterial polysaccharide. International Journal of Biological Macromolecules, 1987, 9: 115-117.
    
    5. Ayer AR, Ebel J, Finelli F, et al. Host-pathogen interactions: EX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extraccellular medium of cultures of phytophthara megasperma var. sojae. Plant Physiol. 1976, (57): 751-759.
    
    6. Becker A, Kuester H, Niehaus K and et al. Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster. Molecular and General Genetics, 1995, 249: 487-497.
    
    7. Betlach MR, Capage MA, Doherty DH and et al. Pseudomonas aeruginosa in cystic fibrosis: Role of mucC in the regulation of alginate production of stress sensitivity. Microbiology, 1997,143:3473-3480.
    
    8. Bittinger MA, Handelsman J. Identification of genes in the RosR regulon of Rhizobium etlt. Bacteriol., 2000, 182: 1706-1713.
    
    9. Conti E, Flaibani A, O'Regon M and et al. Alginate from Pseudomonas fluorescens and Pseudomonas putida: Production and properties. Microbiology, 1994, 140: 1128-1132.
    
    10. Cowman MK, Li M and Dyal A. Tapping mode atomic force microscopy of the hyaluronan derivative, hylan A. Carbohydrate Polymers, 2000, 41: 229-235.
    
    11. De Souza AM and Sutherland IM. Exopolysaccharide and storage polymer production in Enterobacter aerogenes type 8 strains. Jouranl of Applied Bacteriology, 1994, 76: 463-468.
    
    12. De Vuyst L, De Vin F, Vaningelgem F and et al. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal, 2001,11:687-707.
    
    13. De Vuyst L. Technology aspects related to the application of functional starter cultures. Food Technology and Biotechnology, 2000, 38, 105-112.
    14. Donati I, Gamini A, Skjk-Brk G, et al. Determination of the dyadic composition of alginate by means of circular dichroism: a fast and accurate improved method. Carbohydr Res, 2003, 338 (10): 1139-1142.
    
    15. Ekeberg D, Knutsen SH, Sletmoen M. Negative-ion electrospray ionization-mass spectrometry (ESI-MS) as a tool for analyzing structural heterogeneity in kappa-carageenan oligosaccharides. Carbohydrate Research, 2001, 334: 49-59.
    
    16. Falshaw R, Furneaus RH. Structural analysis of carrageenans from the tetrasporic stages of the red algae, Gigartina lanceata and Gigartina chapmanii. Carbohydrate Research, 1998, 3(7): 325-331.
    
    17. Gacesa P. Bacterial alginate biosynthesis-recent progress and future prospects. Microbiology, 1998, 144: 1133-1143.
    
    18. Guerreiro N, Ksenzenko VN, Djordjevic MA and et al. Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA. Bacteriol., 2000, 182: 4521-4532.
    
    19. Gunning AP, Kirby AR and Morris VJ. Imaging xanthan gum in air by ac tapping mode atomic force microscopy. Ultramicroscopy, 1996, 63: 1-3.
    
    20. Igarashi I., Njonge FK., Kaneko Y., et al. Babesia bigeina; in vitro and in vivo effects of curdlan sulfate on growth of parasites [J]. Experimental Parasitology. 1998, 90(3): 290-293
    
    21. Ikeda S, Nitta Y, Temsiripong T and et al. Atomic force microscopy studies on cation-induede network formation of gellan. Food Hydrocolloids, 2004, 18: 727-735.
    
    22. Jabbal-Gill I, Fisher AN, Rappuoli R. Stimulation of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan in mice. Vaccine, 1998, 16(20): 2039-2046.
    
    23. Janczarek M, Skorupska A. Exopolysaccharide synthsis in Rhizobium leguminosarum bv. Trifolii is related to various metabolic pathways. Research in Microbiology, 2003, 154: 433-442.
    
    24. Kaname K, Hideki N, Naoki Yaoki Y, et al. Synthesis of sulfated oligosaccharide having high anti-HIV activity and therelationship between activity and chemical structure. Carbohydr Res, 1999,315:234-242.
    
    25. Kanzawa Y, Harada A. and Koreeda A., et al. Difference of molecular association in two types of curdlan gel. Carbohydrate polymers, 1989, 10: 299-313.
    
    26. Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T and Itoh Y. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. International Journal of Food Microbiology, 1998, 40(3): 169-175.
    
    27. Legoux R, Lelong P, Jourde C and et al. N-acetyl-heparosan lyade of Escherichia coli K5:Gene cloning and expression. Journal of Bacteriology, 1997, 178: 7260-7264.
    
    28. Li H, Rief M, Oesterhelt F, and et al. Single-molecule force spectroscopy on xanthan by AFM. Adv Mater, 1998,3:316-319.
    
    29. Li HB, Rief M, Oesterhelt F, and et al. Force Spectroscopy on Single Xanthan Molecules. Applied Physics A-Materials Science and Processing, 1999, 68: 407-410.
    
    30. Lin CW, Lin JC. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method. Biomacromolecules, 2003, 4(6): 1691-1697.
    
    31. Marszalek P, Pang Y.P., and Li H. et al. Atomic levers control pyranose ring conformation . Proc Natl Acad Sci., 1999, 96: 7894-7898.
    
    32. Martinez-Salazar JM, Moreno S, Najera R and et al. Characterizaion of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis . Journal of Bacteriology, 1996, 178: 1800-1808.
    
    33. Mejiaruiz H, Moreno S, Guzman J, Najera R, Leon R, Soberonchavez G, Espin G Isolation and characterization of an Azotobacter vinelandii algk mutant. FEMS Microbiology Letters, 1997, 156: 101-106.
    
    34. Mitsuo N., Tsuyoshi K., Yuzo K., et al. Characterization of curdlan in aqueous sodium hydroxide polymer. [J]. 1998, 39: 1475-1481
    
    35. Muramatsu T, Yamada K, Date M, et al. Action of poly (B2D2man2 nuronate) lyase from Turbo cornutus on oligomeric substrates. Biosci Biotech Bioch, 1993, 57(12): 1990-1994.
    
    36. Ouchi T, Matsumoto T, Matsumoto T. Synthesis and antitumor activity of conjugates of 5-fluorouracil and chito-oligosaccharides involving a hexamethylene spacer group and carbamoyl bonds. Drug Design Delivery, 1990, 6 (4): 281-287.
    
    37. Pasquier C, Marty N and Dournes JL, et al. Implication of neutral polysaccharides associatied to alginate in inhibition of murine macrophage response to Pseudomonas aeruginosa . FEMS Microbiology Letter, 1997, 195-202.
    
    38. Prigent-Combaret C, Vidal O, Dorel C, and Lejeune P. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. Journal of bacteriology, 1999, 181:5993-6002.
    39. Ridout MJ, Brownsey GJ, and York GM. Effect of O-acyl substituents on the functional behaviour of Rhizobium meliloti succinoglycan. International Journal of Biological Macromolecules, 1997, 20: 1-7.
    
    40. Rief M, Oesterhelt F, and Heymnn B, et al. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science, 1997,28: 1295-1297.
    
    41. Ruas-Madiedo P, Hugenholtz J, and Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal, 2000, 212, 163-171.
    
    42. Shatwell KP, Sutherland IW, and Dea ICM, et al. The influence of acetyl and pyruvate substituents on the solution properties of xanthan polysaccharide . International journal of biological Macromolecules, 1990, 12: 71-78.
    
    43. Shibata Y, Foster LA, Metzger WJ, et al. Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice. Infect. Immun., 1998, 65 (5): 1734-1741.
    
    44. Shigeta JI, Sato K, Tanaka S, et al. Efficient plant regeneration of asparagus from in vitro multiplied shoot explants using gellan gum and glucose. Plant Science, 1996, 58: 1224-1230.
    
    45. Shon YH. Inhibition of puluamine biosynthesis in acanthamoeba castallanii and 12- otetrasecanoylphorbol 13-acetate-induced ornithine decarboxylase activity by chitosanoligosaccharide. Biotechnol Lett, 2003, 25 (9): 701-704.
    
    46. Sun R, Sun X, Fowler P, et al. Structural and physicochemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. Eur Polym J, 2002, 38 (7): 1399-1407.
    
    47. Sutherland IW. Novel and established applications of microbial polysaccharides. Trends in Biotechnology, 1998, 16:41-46.
    
    48. Sutherland IW. Polysaccharases for microbial polysaccharides. Carbohydrate Polymer, 1999, 38:319-328.
    
    49. Suzuki K, Mikami T, Okawa Y, et al. Antitumor effect of hexa-N-acetylchitohe-xaose and chitohexaose. Carbohydrate Research, 1986, 151: 403.
    
    50. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki M. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydrate Research, 1987, 151: 403-408.
    
    51. Suzuki K, Tokoro A, Okawa Y, et al. Enhancing effects of N-acetylchitooligo-saccharides on the active oxygen-generating and microbicidal activities of peritoneal exudates cells in mice. Chem Pharm Bull, 1985, 33 (2): 886-888.
    52. Svanem BI, Strand WI, Ertesvg H, et al. The catalytic activities of the bifunctional Azotobacter vinelandii mannuronan C-5 epimerase and alginate lyase algE7 probably originate from the same active site in the enzyme. J Biol Chem, 2001, 276 (34): 31542-31550.
    
    53. Tang JL, Liu YN, Barber CE, et al. Genetic and molecular analysis of a cluster of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Molecular and General Genetics, 1991, 226: 409-417.
    
    54. Thome L,Mikolajezak MJ,Pollock TJ,et al. Increasing the yield and viscosity of exopolysaccharides secreted by Sphingomonas by augmentation of chromosomal genes with multiple copies of cloned biosynthetic genes[J]. J Ind Microbiol Biotechnol, 2000, 25: 49-57
    
    55. Tsukada K, Matsumoto T, Aizawa K, et al. Antimetastaic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. JpnJ Cancer Res, 1990, 81(3): 259-265.
    
    56. Turquois T, Acquistapace S, Arce Vera F, Welti DH. Composition of carrageenan blends inferred from 13C-NMR and infrared spectroscopic analysis. Carbohydrate Polymers, 1996, 31:269-278.
    
    57. Usov AI. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids, 1998, 12: 301-308.
    
    58. Van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends in Food Science and Technology, 2000, 13: 73-92.
    
    59. Vedamuthu ER, Neville JM. Involvement of a plasmid in production of ropiness (mucoidness) in milk culture by Streptococcus cremoris MS. Appl Environ Microbiol. 1986, 51 (4): 677-682.
    
    60. Vescovo M, Scolari G, and Bottazzi V. Plasmid-encoded ropiness 689 production in Lactobacillus casei subsp. casei. Biotechnol. Lett., 1989, II: 709-712.
    
    61. Walker GC and Cheng HP. Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two component regulatory system . Journal of Bacteriology, 1998, 180:20-26.
    
    62. Wang B, Cai JY, Feng Q, et al. On the Morghology of the Ordered Chitosan-Cu2+ Condensates. Chinese Journal of Applied Chemistry, 2004, 2:113-116.
    
    63. Whitfield C and Roberts IS. Structure, assembly and regulation of expression of capsules in Escherichia coli. Molecular Microbiology, 1999, 31, 1307-1319.
    64.Wong TY,Preston LA,Schiller NL.Alginate lyase:review of major sources and enzyme characteristics,structure-function analysis,biological roles,and applications.Annu Rev Microbiol,2000,54:289-340.
    65.Xing R,Liu S,Yu H,et al.Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation.Carbohydr Res,2005,340(13):2150-2153.
    66.Yamazaki M,Thome L,Mikolajczak MJ,et al.Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas Strain $88.Journal of Bacteriology,1996,178:2676-2678.
    67.Zubillaga M,Weill R and Postaire E.Effect of probiotics and functional foods and their use in different diseases.Nutrition Research,2001,21:569-579.
    68.倪红,杨艳燕,阎达中.寡糖的开发现状及其应用研究进展.湖北大学学报(自然科学版).2003,25(2):6.
    69.刘艳如,余萍.水溶性壳寡糖对小鼠免疫功能与移植性肿瘤的影响.福建大学学报,1999,15:66-70.
    70.孔庆胜,王彦英.南瓜多糖的分离、纯化及其降血脂作用.中国生化药物杂志,2000,21(3):130-132.
    71.宋国安,宋玉峰.黄原胶的性能及其应用[J].山东化工,1997,4:33-36.
    72.宋绍富,崔吉,罗一菁,雷光伦,张忠智.微生物多糖研究进展.油田化学,2004 21:91-96
    73.崔艳红,黄现青.微生物胞外多糖研究进展.生物技术通报2006,2:25-29
    74.应恺.结冷胶的特性及其在食品工业中的应用[J].食品工业,2004,4:45-48.
    75.张俊,王军,刘敏.食品工业科技,2002(11):28-29.
    76.张剑波,田庚元.糖类的高效毛细管电泳.有机化学,1998,18.(1):88-96.
    77.张惟杰.糖复合物生化研究技术.浙江:浙江大学出版社,1994.
    78.张晨,刘志伟.糖的生物合成及微生物多糖发酵,嘉应大学学报,1999,3:88-91
    79.张柏英,孙景民,康恒.胜利孤东油田七区油井黄原胶驱油应用效果分析[J].石油与天然气化工,1999,28(1):49-52.
    80.张澄波.脱乙酰壳多糖的抗细菌感染作用.首都医学院学报,1993,14(3):175-176.
    81.张虎,杜昱光,虞星炬.几丁寡糖与壳寡糖的制备和功能.中国生化药物杂志,1999,20(2):99-102.
    82.方积年,魏远安.高效液相色谱在糖类研究中的应用.色谱,1991,9(2):103-107.
    83.李有志,唐纪良,冯家勋,等.与黄原胶生物合成相关的“1.9”kbEcoRⅠ DNA片段的序列测 定分析[J].广西农业生物科学,1999,18(1):6-9.
    84.李有志,唐纪良,冯家勋,等.与黄原胶生物合成相关的“1.9”kbEcoRⅠDNA片段的序列测定分析[J].广西农业生物科学,1999,18(1):6-9.
    85.李治,刘晓非,徐怀玉,管云林等.壳聚糖的γ射线辐射降解研究.应用化学,2001,18(2):104-107.
    86.来鲁华,杨昱婷.寡糖的构象分析.生物化学与生物物理进展,1995,22(4):290-294.
    87.杨宇民,马振祥,尹继成等.系列水溶性壳聚糖衍生物的抑菌性能研究.中国公共卫生,2005,21(9):1080-1081.
    88.杨建雨,宋志宗,刘庆昌,等.岔河集油田岔15、39断块黄原胶调剖先导试验[J].油田化学,2001,18(1):43-47.
    89.杨钊,张真庆,管华诗.一种新的褐藻胶寡糖制备方法—氧化降解法.海洋科学,2004,28(7):19-22.
    90.王中和,陆顺娟,胡海生等.低分子壳寡糖对癌症放疗患者免疫功能的影响.首都医科大学学报,1997,18(1):80-82.
    91.王伟,秦汶.脱乙酰基甲壳素的超声波降解.化学通报,1989,(9):41-44.
    92.王芳宇,何淑雅,李邦良等.水溶性壳寡糖抗肿瘤作用的实验研究.中国生化药物杂志,2001,22(1):21-22.
    93.邵健,姚成.低聚氨基葡萄糖的吸湿、保湿和抑菌性质.中国海洋药物,2000,19(4):25-27.
    94.陈光,张真妮.吉林农业大学学报.2001,1:42-46.
    95.陈玉铭,姚敏杰,何长达,热凝胶的性质、生产和应用[J],第二届全国发酵工程学术讨论会论文集,1998:226-229
    96.雷巧会,鞠岩,田根林,等.含助剂的生物聚合物驱油剂性能研究[J].油田化学,1997,14(4):349-351.
    97.高浩其,徐良峰,杨建平,陈开勋.壳聚糖在近临界水中降解及其工艺研究.西北大学学报(自然科学版),2004,34(4):436-438.
    98.魏滨,谢贵林,王燕,等.甲型副伤寒菌O-特异性多糖与破伤风类毒素结合菌苗的制备及其在小鼠体内的免疫原性[J].微生物学免疫学进展,2000,28(2):14-18.
    周德庆著,微生物学教程,高等教育出版社,2001:104-107
    Takeshitai M.Translucent Colony Form of the Gram-Negative,Levan-Producing Bacterium,Aerobacter levanicum.J.Bacteriol.,1973,116:503-506
    东秀珠,蔡妙英等编著.常见菌中系统鉴定手册.北京:科学出版社,2001.
    1.朱圣东.黄原胶发酵工艺条件研究.精细石油化工进展,2002,3(2):41-43.
    2.诸葛健等.工业微生物实验技术手册,1994.
    3.Dubois M.,Gilles K.A.,et al.Colorimctric method for determination of sugar and related substance.Analytical chemistry,1956,28:350-356
    4.Peter HV,Herbst H,Hesselink PGM,Lunsdorf H,Schumpe A,Decker WD.The influence of agitation rate on xanthan production by Xanthamonas campestris.Biotechnology and Bioengineering.1989,34:1391-1397.
    5.Wecker A,Onken V.Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans.Biotechnology Letters,1991,13:155-160.
    6.Sumner J.B.,Somers G.F.Laboratory Experiments in Biological Chemistry.Academic Press.1949,2:38-39
    1.栗克喜等.天然产物研究与开发,2001,13(3):23-25.
    2.刘如林,赵大建.微生物多糖的产品回收.食品与发酵工业,1990,(60):58-63.
    3.阮国瑞,范子文,张雪萍.细菌荚膜多糖的纯化、分析及免疫原性的研究现状.南京铁道医学院学报,1997,16(30):216-218.
    4.邵德益.微生物胞外多糖的提取.化工时刊,1995,8:25-26.
    5.王伟,徐德时,李素清等.壳聚糖浓溶液流变学性质研究.高分子学报,1994,3:328.
    6.张惟杰主编.糖复合物生化研究技术.浙江:浙江大学出版社.1994,第一版:63
    7.周少奇.温度对高等真菌发酵液流变特性的影响(英文).华南理工大学学报,1996,24(12):120.
    8.Balnois E,Wilkinson KJ.Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy.Colloids and Surfaces A:hysico-chemical and Engineering Aspects,2002,207:229-242.
    9.Bao X,Duan J,Fang J.Chemical modifications of the(1→3)-α-D-glucan from spores of ganoderma lucidum and investigation of their physicochemical properties and immunological activity.Carbohydrate Research,2001,336:127-140.
    10.Bustamante C,Keller D.Scanning force microscopy in biology.Physics Today,1995,48:32-38.
    11.Dais P,Vlachou S,Taravel FR.13C Nuclear magnetic relaxation study of segmental dynamics of the heteropolysaccharide pullulan in dilute solutions.Biomacromolecules,2001,2:1137-1147.
    12.Dische Z.A new specific color reaction of hexuronic acids.J.Biol.Chem.,1997,167:189.
    13.Dodgson KS,Price RG.A note on the determination of the ester sulfate content of sulfated polysaccharides.Biochem.J.,1962,84:106-110.
    14.Harada T,Koreeda A,Sato S,Kasai N.Electron microscopic study on the ultrastructure of curdlan get:assembly and dissociation of fibrils by heating.Journal of Electron Microscopy,1979,28:147-153.
    15.Ikeda S,Nitta Y,Temsiripong T,Pongsawatmanit R,Nishinari K.Atomic force icroscopy studies on cation-induced network formation of gellan.Food Hydrocolloids,2004,18:727-735.
    16. McIntire TM, Penner RM, Brant DA. Observations of a circular, triple helical polysaccharide using noncontact atomic force microscopy. Macromolecules, 1995, 28: 6375-6377.
    
    17. Mclntire TM, Brant DA. Imaging of individual biopolymers and supramolecular assemblies using noncontact atomic force microscopy. Biopolymers, 1996, 42: 133-146.
    
    18. Mclntire TM, Brant DA. Imaging of carrageenan macrocycles and amylose using oncontact atomic force microscopy. International Journal of Biological Macromolecules, 1999,26:303-310.
    
    19. Nakata M, Kawaguchi T, Kodama Y, Konno A. Characterization of curdlan in aqueous sodium hydroxide. Polymer, 1998, 39: 1475-1481.
    
    20. Ressing JL, Strominger LJ, Leloir FL. A modified calorietric method for the estimation of N-acetylamino sugars. J. Biol. Chem., 1955, 217: 959-1006.
    
    21. Saito H. Conformation and dynamics of (1→3)-β-D-glucans in the solid and gel state:high resolution solid-state 13C NMR spectroscopic study. In Viscoelasticity of biomaterials. Glasser, W.; Hatakeyama, H. eds. American Chemical Society, Washington DC, 1992, pp 296-310.
    
    22. Saito H, Ohki T, Sasaki T. A 13C nuclear magnetic resonance study of gel-forming (1→3)-β-D-glucans. Evidence of the presence of single helical conformation in a resilient gel of a curdlan-type polysaccharide 13140 from Alcaligenes faecalis var. myxogenes IFO 13140. Biochemistry, 1977, 16: 908-914.
    
    23. Sanchez-Sevilla A, Thimonier J, Marilley M, Rocca-Serra J, Barbet J. Accuracy of AFM measurements of the contour length of DNA fragments adsorbed on mica in air and in aqueous buffer. Ultramicroscopy, 2002, 92: 151-158.
    
    24. Tada T, Tamai N, Matsumoto T, Masuda T. Network structure of curdlan in DMSO and mixture of DMSO and water. Biopolymers, 2001, 58: 129-137.
    
    25. Yang Y, Wang H, Eric DA. Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. Methods, 2003, 29: 175-187.
    1.郭忠武,王来曦,糖化学研究进展,化学进展,1995,7(1):10-29.
    2.张惟杰主编.糖复合物生化研究技术.浙江:浙江大学出版社.1994,第一版:63.
    3.张真庆.质谱分析外源性和内源性寡糖的方法学研究.2006博士论文,中国海洋大学.
    4.Atkins ED,Nieduszynski IA,Mackie W,Parker KD,Smolko EE.Structural components of alginic acid.Ⅱ.The crystalline structure of poly-alpha-L-guluronic acid.Results of x-ray diffraction and polarized infrared studies.Biopolymers,1973,12:1879-1887.
    5.Daniel R,Berteau O,Jozefonvicz J,Goasdoue N.Degradation of algal (Ascophyllum nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusc Pecten maximus.Carbohydr.Res.,1999,322:291-297.
    6.Gage DA,Rathke E,Costello CE,Jones MZ.Determination of sequence and linkage of tissue oligosaccharides in caprine beta-mannosidosis by fast atom bombardment,collisionally activated dissociation tandem mass spectrometry,Glycoconj J.1992 Jun,9(3):126-131.
    7.Haug A,Larsen B,Smidsrod O.A study of the constitution of alginic acid by partial acid hydrolysis.Acta Chem.Scand.1966,20:183-190.
    8.Heyraud A,Colin-Morel P,Girond S,Richard C,Kloareg B.NMR spectroscopy analysis of oligoguluronates and oligomannuronates prepared by acid or enzymatic hydrolysis of homopolymeric blocks of alginic acid.Application to the determination of the substrate specificity of Haliotis tuberculata alginate tyase.Carbohydr.Res.1996,289:11-23.
    9.Nardella A,Chaubet F,Boisson-Vidal C,Blondin C,Durand R Jozefonvicz J.Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from brown seaweed Ascophyllum nodosum. Carbohydr. Res., 1996,289: 201-208.
    
    10. Penn SG, Cancilla MT, Lebrilla CB. Collision-induced dissociation of branched oligosaccharide ions with analysis and calculation of relative dissociation thresholds. Anal Chem. 1996 Jul 15, 68(14): 2331-2339.
    
    11. Takeshi S, Hitomi K, and Ikunoshin K. A marine strain of flavobacteriaceae utilizes brown seaweed fucoidan. Mar. Biotechnol. 2002,4: 399-405.
    
    12. Van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends in Food Science and Technology, 2000, 13: 73-92.
    
    13. Wysocki VH, Resing KA, Zhang Q, Cheng G. Mass spectrometry of peptides and proteins. Methods. Epub 2005 Jan 20. 2005 Mar, 35 (3): 211-222.
    
    14. Zaia J, McClellan JE, Costello CE. Tandem mass spectrometric determination of the 4S/6S sulfation sequence in chondroitin sulfate oligosaccharides. Anal Chem. 2001, 73(24): 6030-6039.
    
    15. Zhang Y, Kariya Y, Conrad AH, Tasheva ES, Conrad GW. Analysis of keratan sulfate oligosaccharides by electrospray ionization tandem mass spectrometry Anal Chem. 2005, 77(3): 902-910.
    
    16. Zhang Z, Yu G, Zhao X, Liu H, Guan H, Lawson AM, Chai W. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. J Am Soc Mass Spectrom, 2006, 17: 621-630.
    1.陈春景.草莓保鲜技术.保鲜与加工,2002,(03)
    2.曹仪植,宋占午.植物生理学.兰州:兰州大学出版社,1998,144-157.
    3.葛会波,张广华,李青云,董贯琴,张进献.草莓贮藏保鲜研究.保鲜与加工,2001,(04)
    4.康明丽,牟德华.壳聚糖涂膜常温保鲜草莓的试验研究.北方园艺,2005,6
    5.李春立,陈志玲,李薇.草莓果实采后贮藏保鲜研究进展.河北林果研究,1999,(02)
    6.李和生,王鸿飞.几种常用化学保鲜剂对草莓贮藏保鲜作用的比较.保鲜与加工,2002,(02)
    7.李和生,王鸿飞.过氧乙酸对草莓贮藏保鲜效果的初步研究.江苏农业科学,2002,(01)
    8.马剑敏,李今,张改娜等.Hg~(2+)与POD复合处理对小麦萌发及幼苗生长的影响.植物学通报,2004,21(5):531-538.
    9.钱玉梅,高丽萍,王旭侠.草莓采后贮藏保鲜技术.安徽农业科学,2004,(01)
    10.许大全,徐允钢.光合作用的限制因素.余叔文,汤章城编.植物生理与分子生物学.北京:科学出版社,1999,262-272.
    11.杨颖丽,徐世键,保颖,安梨哲.盐胁迫对两种小麦叶片蛋白质的影响.兰州大学学报,2007,43(1):70-74.
    12.余歆,周春华.几丁质/壳聚糖在果实贮藏上的作用.食品科学,1999,20(8):58-61.
    13.Bensadoun A and Weinstein D.Assay of proteins in presence of interfering materials.Analytical Biochemistry,1976,54:484-489.
    14.Dubois M,Gilles KA,et al.Colorimctric method for determination of sugar and related substance.Analytical chemistry,1956,28:350-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700