清肺消炎丸及有效成分缓解哮喘的系统生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哮喘为众多细胞和细胞组分参与的气道炎症疾病。在体内外因素的作用下,可能导致支气管的高反应性、支气管上皮结构发生改变、气道和肺组织重构以及呼吸功能异常。全球哮喘疾病的发生发展都呈现上升趋势。目前哮喘治疗药物主要围绕两个方面,一是利用支气管扩张剂治疗急性哮喘发作症状,二是利用抗炎药物对于慢性炎症的长期治疗。临床使用哮喘治疗药物包括β2受体激动剂、M受体拮抗剂、糖皮质激素、白三烯调节剂、胰蛋白酶抑制剂、免疫抑制剂、抗气道重塑药物、基因治疗等。
     清肺消炎丸是根据医圣张仲景所著《伤寒论》中的经典名方“麻杏石甘汤”为基础的复方丸剂,有清肺化痰、止咳平喘之功效。临床用于痰热阻肺、咳嗽气喘、胸胁胀痛、吐痰黄稠;以及上呼吸道感染、急性支气管炎、慢性支气管炎急性发作等证候者。我们前期研究中发现,清肺消炎丸对组胺致喘豚鼠的哮喘潜伏期有明显的延长作用,能有效减少豚鼠的咳嗽次数;对豚鼠离体气管收缩的抑制效果较好,但其平喘作用机理方面的研究尚不够深入。本课题旨在从系统生物学角度探讨清肺消炎丸缓解哮喘的作用机制。
     在本研究中的清肺消炎丸的系统生物学研究部分,首先建立豚鼠哮喘模型,并给予清肺消炎丸干预治疗;发现清肺消炎丸给药组明显延缓哮喘发作开始时间,并且支气管和肺组织病理切片显示给药后气道和肺组织炎症、水肿、嗜酸性粒细胞浸润、气道重塑现象都明显减轻,表明清肺消炎丸缓解哮喘的药效良好。然后设计并定制Agilent4x44K双通道豚鼠全基因组表达谱芯片对模型组和给药组的肺组织进行基因表达差异的筛查,共筛选豚鼠差异基因55条。对差异表达基因的Cluster聚类分析结果显示,清肺消炎丸组的基因表达特征与正常对照组样本较为接近,提示给药后整体基因表达水平有恢复正常的趋势。经Blast比对获得相应的人源基因27条,参与了炎症信号传递、气道平滑肌细胞凋亡、平滑肌重构、基质蛋白分泌等生物学过程。其中MAPK3,RHO,VIM,CLU, GNB1,ENO1(3)基因的荧光定量PCR验证结果与芯片实验结果基本相符,表明了芯片实验结果可靠性。
     而后,采用蛋白质二维电泳-基质辅助激光解析电离飞行时间质谱技术对模型组和给药组样本进行了蛋白质组学研究。通过二维电泳筛选差异蛋白,并对其中6条差异蛋白进行质谱鉴定,发现其与炎症、哮喘、机体对药物敏感性、肺组织重构等相关,并对其中Hsp90的基因和蛋白表达水平进行了验证。将上述差异基因及差异蛋白对应基因进行GO基因功能注释、KEGG信号通路分析,发现各差异分子分别定位于多种细胞通路,共同参与炎症反应、细胞骨架及胞外基质调控、平滑肌收缩等信号通路。将实验确定的总的差异基因,基于HPRD数据库蛋白互作关系,投注于GAD数据库中哮喘相关的基因网络中,获得清肺消炎丸靶点与哮喘相关基因互作网络关系图,共含有1214个节点和1886个互作关系,表明清肺消炎丸的作用靶点与哮喘疾病相关基因有直接和间接的相互作用关系,对于探讨清肺消炎丸治疗哮喘、肺部炎症等疾病的作用机制提供有意义参考。
     基于前期对于清肺消炎丸化学物质组学及药物作用通路的分析发现,牛蒡子苷元是清肺消炎丸中木质素类的代表成分,可能通过ERK/MAPK通路发挥抗炎作用。本研究进一步选择了牛蒡子苷元单体成分,对其缓解气道收缩、对气道平滑肌以及平滑肌细胞内的钙离子的影响、以及电生理方面的影响进行探索研究。
     在牛蒡子舒张气道平滑肌的研究中,首先通过气管条张力测定的实验详细考察了牛蒡子苷元对缓解不同收缩剂致敏的豚鼠气管条的收缩现象,并进一步通过膜片钳记录牛蒡子苷元对L-型钙离子通道的影响和激光共聚焦显微镜(Confocal)来测定牛蒡子苷元影响支气管平滑肌细胞内钙离子浓度的变化,初步探索了其气管舒张作用的机制。结果发现,在正常K-H液中,牛蒡子苷元(0.1μM-1mM)可缓解10μM乙酰胆碱、10μM组胺、10mM氯化钾、30mM氯化钙不同预收缩剂所导致气管条的收缩,预孵育0.1mM牛蒡子苷元也可缓解气管条对收缩剂的反应,提示牛蒡子苷元可能通过不同机制缓解气管条收缩。在无钙K-H液中,牛蒡子苷元能显著降低气管条收缩,提示牛蒡子苷元能降低细胞内钙离子浓度,可能促进胞浆中的钙离子进入肌浆网或者促进钙离子排出胞外。膜片钳检测发现0.01mM牛蒡子苷元可降低人支气管平滑肌细胞(HBSMC)膜钙离子通道电流。Confocal显示牛蒡子苷元能促进细胞内钙离子排出和抑制细胞外钙离子入胞,进而降低细胞内钙离子浓度。推测牛蒡子苷元通过影响L-型钙离子通道而降低细胞内钙离子浓度可能是其中一种作用机制。
     综上所述,我们通过实验筛选及验证了清肺消炎丸可能的作用靶点,并构建了与哮喘相关基因的相互作用关系网络,揭示了清肺消炎丸多成分、多靶点、多途径的网络作用特点,并进一步考察了复方中的一种单体成分牛蒡子苷元,舒张支气管平滑肌、调节细胞膜离子通道的作用机制,对于诠释中医药缓解哮喘有一定的借鉴意义。
Asthma, as defined in2008by the Global Initiative for Asthma (GINA), is an inflammatory disorder of the airways in which many cells and cellular elements play roles. Bronchial hyperactivity associates with inflammation that together with an external or environmental insult, on vulnerable bronchial epithelial structures, generates tissue remodelling and respiratory functional impairment. Asthma is not a curable disease at the present time. However, with proper treatments, the risk of mortality for asthmatic individuals could be comparable to that of the general population. Presently, the treatment of asthma includes a dual focus:the short-term treatment of acute symptoms with bronchodilators, and together with the prevention or eventual reversal of chronic inflammation using anti-inflammatory drugs.
     Qingfei Xiaoyan Wan (QFXY) is originated from a famous Traditional Chinese Medicine (TCM) formula "Maxing Shigan Decoction". It has been experimentally improved, consisting of eight materia medicas, Ephedra Herba, Saigae Tataricae Cornu, Pheretima, Arctii Fructus, Lepidii Semen, Bovis Calculus Artifactus, Armeniacae Semen Amarum and Gypsum Fibrosum. Since decades of extensive clinical practice, QFXY has shown significantly therapeutic effects on dissolving phlegm as well as relieving cough, asthma, upper respiratory tract infection, bronchitis, pneumonia, and etc. Comparing with other anti-asthma drugs, it is characterised with moderate and persistent efficacy as well as few side effects, however, the underlying action mechanism still remains elusive.
     We first established asthma model induced by histamine phosphate and acetylcholine chloride (His&Ach) in guinea pigs, which then were administered orally with QFXY (132.5mg/100g). Asthma prolonged time and Hematoxylin-Eosin staining sections were applied for evaluating QFXY effect. Comparing with the model group, in the QFXY group, the asthma onset time was significantly prolonged and HE sections presented anti-inflammation and anti-remodelling effects of QFXY. In both Model and QFXY groups, customized microarrays and2D electrophoresis were adopted to detect differentially expressed genes (diff genes) and proteins (diff proteins) respectively, and some diff proteins were identified with MALDI-TOF/MS. As a result,55diff genes (27human homologs after Blasting) and6diff proteins were identified in QFXY group. Validation by qPCR and Western blot showed the microarray and2D data reliable. The checked diff genes and proteins underwent Cluster, GO and KEGG analysis, which focused on signaling pathways in cytoskeleton and extracellular matrix regulation, smooth muscle contraction as well as inflammation response,etc. Based on GAD and HPRD databases, QFXY-asthma target regulation network was constructed, containing1214nodes and1886interactions.
     Based on the combination of Chemomics and Systems biology research, after the formula study, we next focused on Arctigenin, an active ingredient in QFXY, is reported with anti-inflammation, antioxidation and vasodilator effects. However, its effects on airway smooth muscle and intracellular calcium, as well as ion channels remain eclusive.
     To investigate how arctigenin regulates bronchus tone and calcium ion (Ca2+) flow. Trachea strips of guinea pigs were prepared for testing relaxation effect of arctigenin (0.1μM-1mM) to10μM acetylcholine,10μM histamine,10mM KCl and30mM CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp and intracellular Ca2+concentration treated with arctigenin in human bronchial smooth muscle cells (HBSMC) was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca2+concentration by inhibiting Ca2+influx partly through L-type calcium channel as well as promoting Ca2+efflux.
     Hereby, in the first part of the study, a primarily combined genomic and proteomic screening of QFXY targets displayed a series of candidate genes and proteins, which indicated that the effect of QFXY relied on the combined mechanism, anti-inflammation and anti-remodelling, as well as influencing signal transduction in vivo, demonstrating QFXY multi-target network regulation as an asthma controller. ASM related study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy. All together, these results reveal multiple active components, multiple targets and synergistic effects in the mechanism of action of a TCM.
引文
[1]Bateman E D, Hurd S S, Barnes P J, et al. Global strategy for asthma management and prevention:GINA executive summary[J]. Eur Respir J,2008,31(1):143-178.
    [2]Holgate S T, Davies D E. Rethinking the pathogenesis of asthma[J]. Immunity,2009,31(3): 362-367.
    [3]Gern J E, Lemanske R F, Busse W W. Early life origins of asthma[J]. J Clin Invest,1999, 104(7):837-843.
    [4]Claudio L, Tulton L, Doucette J, et al. Socioeconomic factors and asthma hospitalization rates in New York City[J]. J Asthma,1999,36(4):327-343.
    [5]尹静波,黄永富.炎性细胞因子在支气管哮喘发病机制中的作用[J].国际检验医学杂志,2011(10):1087-1089.
    [6]王君,林挺岩,吴桦,等.诱导痰中炎性细胞及细胞因子在哮喘患者发病中的作用[J].陕西医学杂志,2006(09):1119-1121.
    [7]兀威.体外抑制哮喘患者炎性细胞因子生成作用的研究[D].第四军医大学,2004.
    [8]姚金晶,陈宜涛Th1/Th2平衡调节与疾病发生的研究进展[J].现代生物医学进展,2009(13):2597-2600.
    [9]欧阳若芸,胡成平,陈平,等.哮喘中Th_1/Th_2类细胞因子免疫失衡对神经生长因子表达的影响[J].中南大学学报(医学版),2007(01):119-123.
    [10]Heller A R. Immunomodulatory therapeutic approaches in relation to systemic inflammation and acute lung injury[J]. Anasth Intensivmed,2004,45(6):322.
    [11]李明华,殷凯生,蔡映云.哮喘病学[M].北京:人民卫生出版社,2005.
    [12]李文娟,高超.支气管哮喘的变态反应机制[J].临床医药实践,2013(01):4446.
    [13]丁艳苓,姚婉贞.慢性阻塞性肺疾病与哮喘气道炎症的研究[J].中国呼吸与危重监护杂志,2004(06):78-80.
    [14]陈娉娉,陈正贤,何碧芳,等.正常气管壁超声图像及其对应的组织学分层的定量测量分析[J].中华结核和呼吸杂志,2012,35(6).
    [15]瞿佐发,田菊霞.系统解剖学[M].北京:人民卫生出版社,2005.
    [16]於峻路.呼吸道迷走神经感受器概述(英文)[J].生理学报,2002(06):451459.
    [17]Oh E J, Mazzone S B, Canning B J, et al. Reflex regulation of airway sympathetic nerves in guinea-pigs[J]. J Physiol,2006,573(Pt 2):549-564.
    [18]Bleecker E R. Cholinergic and neurogenic mechanisms in obstructive airways disease[J]. Am J Med,1986,81(5A):93-102.
    [19]刘春涛,刘媛华.重新认识气道平滑肌在支气管哮喘中的地位[J].中华结核和呼吸杂志,2010,33(7):536-539.
    [20]Salazar L M, Herrera A M. Fibrotic response of tissue remodeling in COPD[J]. Lung, 2011, 189(2):101-109.
    [21]Westergren-Thorsson G, Larsen K, Nihlberg K, et al. Pathological airway remodelling in inflammation[J]. Clin Respir J,2010,4 Suppl 1:1-8.
    [22]Jeffery P K. Remodeling in asthma and chronic obstructive lung disease[J]. Am J Respir Crit Care Med,2001,164(10 Pt 2):S28-S38.
    [23]James A, Carroll N. Airway smooth muscle in health and disease; methods of measurement and relation to function[J]. Eur Respir J,2000,15(4):782-789.
    [24]Pelaia G, Renda T, Gallelli L, et al. Molecular mechanisms underlying airway smooth muscle contraction and proliferation:implications for asthma[J]. Respir Med,2008,102(8): 1173-1181.
    [25]徐玉东.人体解剖生理学[M].北京:人民卫生出版社,2007.
    [26]Valverde M A, Cantero-Recasens G, Garcia-Elias A, et al. Ion Channels in Asthma[J]. J Biol Chem,2011,286(38):32877-32882.
    [27]Galli S J, Tsai M, Piliponsky A M. The development of allergic inflammation[J]. Nature, 2008,454(7203):445-454.
    [28]Maddox L, Schwartz D A. The pathophysiology of asthma[J]. Annu Rev Med,2002,53: 477-498.
    [29]Holgate S T, Roberts G, Arshad H S, et al. The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis.[J]. Proceedings of the American Thoracic Society,2009,6(8):655-659.
    [30]Cookson W. The immunogenetics of asthma and eczema:A new focus on the epithelium[J]. Nat Rev Immunol,2004,4(12):978-988.
    [31]Veres T Z, Rochlitzer S, Braun A. The role of neuro-immune cross-talk in the regulation of inflammation and remodelling in asthma[J]. Pharmacol Therapeut,2009,122(2):203-214.
    [32]Wilson J W, Kotsimbos T. Airway vascular remodeling in asthma[J]. CURRENT ALLERGY AND ASTHMA REPORTS,2003,3(2):153-158.
    [33]Janssen L J. T-type and L-type Ca2+ currents in canine bronchial smooth muscle: characterization and physiological roles[J]. Am J Physiol-Cell Ph,1997,272(6): C1757-C1765.
    [34]Townley R G, Hopp R J. Measurement and interpretation of nonspecific bronchial reactivity.[J]. CHEST Journal,1988,94(3):452-454.
    [35]Patel K R. Calcium antagonists in exercise-induced asthma.[J]. British medical journal (Clinical research ed.),1981,282(6268):932.
    [36]Malerba M, Radaeli A, Mancuso S, et al. THE POTENTIAL THERAPEUTIC ROLE OF POTASSIUM CHANNEL MODULATORS IN ASTHMA AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE[J]. J Biol Reg Homeos Ag,2010,24(2): 123-130.
    [37]Janssen L J, Killian K. Airway smooth muscle as a target of asthma therapy:history and new directions[J]. RESPIRATORY RESEARCH,2006,7(123).
    [38]Cheng G, Ramanathan A, Shao Z, et al. Chloride channel expression and functional diversity in the immune cells of allergic diseases[J]. CURRENT MOLECULAR MEDICINE,2008,8(5):401-407.
    [39]Galietta L J V, Folli C, Caci E, et al. Effect of inflammatory stimuli on airway ion transport. [J]. Proceedings of the American Thoracic Society,2004,1(1):62-65.
    [40]Kotlikoff M I, Wang Y X. Calcium release and calcium-activated chloride channels in airway smooth muscle cells[J]. Am J Resp Crit Care,1998,158S(5):S109-S114.
    [41]Bessac B F, Sivula M, Von Hehn C A, et al. TRPA1 is a major oxidant sensor in murine airway sensory neurons [J]. J Clin Invest,2008,118(5):1899-1910.
    [42]Li S, Westwick J, Poll C. Transient receptor potential (TRP) channels as potential drug targets in respiratory disease[J]. Cell Calcium,2003,33(5-6):551-558.
    [43]Moffatt M F, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma[J]. Nature,2007,448(7152):470-475.
    [44]Cantero-Recasens G, Fandos C, Rubio-Moscardo F, et al. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress[J]. Hum Mol Genet,2010,19(1):111-121.
    [45]Becchetti A, Arcangeli A. Integrins and Ion Channels in Cell Migration:Implications for Neuronal Development, Wound Healing and Metastatic Spread[M]. Integrins and Ion Channels:Molecular Complexes and Signaling,2010:674,107-123.
    [46]Rajasekaran S A, Beyenbach K W, Rajasekaran A K. Interactions of tight junctions with membrane channels and transporters [J]. Bba-Biomembranes,2008,1778(3):757-769.
    [47]Schiller K R, Maniak P J, O'Grady S M. Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair[J]. Am J Physiol-Cell Ph,2010, 299(5):C912-C921.
    [48]Lesimple P, Liao J, Robert R, et al. Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers[J]. J Physiol-London,2010,588(8):1195-1209.
    [49]Nighot P K, Blikslager A T. C1C-2 regulates mucosal barrier function associated with structural changes to the villus and epithelial tight junction[J]. Am J Physiol-Gastr L,2010, 299(2):G449-G456.
    [50]Rao J N, Rathor N, Zou T, et al. STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca2+signaling after wounding[J]. Am J Physiol-Cell Ph,2010,299(3):C579-C588.
    [51]Reiter B, Kraft R, Guenzel D, et al. TRPV4-mediated regulation of epithelial permeability[J]. Faseb J,2006,20(11):1802-1812.
    [52]Tiruppathi C, Freichel M, Vogel S M, et al. Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability[J]. Circ Res, 2002,91(1):70-76.
    [53]Lazaar A L, Panettieri R A. Airway smooth muscle:A modulator of airway remodeling in asthma[J]. J Allergy Clin Immun,2005,116(3):488-495.
    [54]Pelaia G, Gallelli L, Vatrella A, et al. Potential role of potassium channel openers in the treatment of asthma and chronic obstructive pulmonary disease[J]. Life Sci,2002,70(9): 977-990.
    [55]Perez-Zoghbi J F, Karner C, Ito S, et al. Ion channel regulation of intracellular calcium and airway smooth muscle function[J]. Pulm Pharmacol Ther,2009,22(5):388-397.
    [56]Janssen L J. Ionic mechanisms and Ca2+ regulation in airway smooth muscle contraction: do the data contradict dogma?[J]. Am J Physiol-Lung C,2002,282(6):L1161-L1178.
    [57]Twiss M A, Harman E, Chesrown S, et al. Efficacy of calcium channel blockers as maintenance therapy for asthma[J]. Brit J Clin Pharmaco,2002,53(3):243-249.
    [58]Lee J S, Kim J, Bae J S, et al. Association of CACNG6 polymorphisms with aspirin-intolerance asthmatics in a Korean population[J]. BMC Med Genet,2010,11(138).
    [59]Shepherd M C, Duffy S M, Harris T, et al. K(Ca)3.1 Ca2+-Activated K+ channels regulate human airway smooth muscle proliferation[J]. Am J Resp Cell Mol,2007,37(5):525-531.
    [60]Kotlikoff M I. Potassium channels in airway smooth muscle:a tale of two channels[J]. Pharmacol Therapeut,1993,58(1):1-12.
    [61]Black J L, Armour C L, Johnson P R, et al. The Action of a Potassium Channel Activator, SRL 38227 (Lemakalim), on Human Airway Smooth Muscle 1-3[J]. Am Rev Resp Dis, 1990,142(6):1384-1389.
    [62]Mccann J D, Welsh M J. Calcium-activated potassium channels in canine airway smooth muscle.[J]. J Physiol,1986,372(1):113-127.
    [63]Colsoul B, Nilius B, Vennekens R. On the putative role of transient receptor potential cation channels in asthma[J]. Clin Exp Allergy,2009,39(10):1456-1466.
    [64]Sweeney M, Mcdaniel S S, Platoshyn O, et al. Role of capacitative Ca2+ entry in bronchial contraction and remodeling[J]. J Appl Physiol,2002,92(4):1594-1602.
    [65]Xiao J, Zheng Y, Liao B, et al. Functional Role of Canonical Transient Receptor Potential 1 and Canonical Transient Receptor Potential 3 in Normal and Asthmatic Airway Smooth Muscle Cells[J]. Am J Resp Cell Mol,2010,43(1):17-25.
    [66]Sel S, Rost B R, Yildirim A O, et al. Loss of classical transient receptor potential 6 channel reduces allergic airway response[J]. Clin Exp Allergy,2008,38(9):1548-1558.
    [67]White T A, Xue A, Chini E N, et al. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes[J]. Am J Resp Cell Mol, 2006,35(2):243-251.
    [68]Howarth P H, Babu K S, Arshad H S, et al. Tumour necrosis factor (TNF alpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma[J]. Thorax,2005,60(12): 1012-1018.
    [69]Vig M, Kinet J. Calcium signaling in immune cells[J]. Nat Immunol,2009,10(1):21-27.
    [70]Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells[J].1992.
    [71]Feske S. ORAI1 and STIM1 deficiency in human and mice:roles of store-operated Ca2+ entry in the immune system and beyond[J]. Immunol Rev,2009,231:189-209.
    [72]Yoshino T, Ishikawa J, Ohga K, et al. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models[J]. Eur J Pharmacol,2007,560(2-3):225-233.
    [73]Ghanshani S, Wulff H, Miller M J, et al. Up-regulation of the IKCa1 potassium channel during T-cell activation-Molecular mechanism and functional consequences[J]. J Biol Chem,2000,275(47):37137-37149.
    [74]Lin C S, Boltz R C, Blake J T, et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. [J]. The Journal of experimental medicine,1993,177(3):637-645.
    [75]Shumilina E, Lam R S, Woelbing F, et al. Blunted IgE-mediated activation of mast cells in mice lacking the Ca2+-activated K+channel K(Ca)3.1[J]. J Immunol,2008,180(12): 8040-8047.
    [76]Cabral M D, Paulet P, Robert V, et al. Knocking Down Ca(v)1 Calcium Channels Implicated in Th2 Cell Activation Prevents Experimental Asthma[J]. Am J Resp Crit Care, 2010,181(12):1310-1317.
    [77]Zhang G, Lin R, Wiggers M, et al. Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat[J]. J Physiol-London,2008,586(23):5771-5786.
    [78]Groneberg D A, Niimi A, Dinh Q T, et al. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough[J]. Am J Resp Crit Care,2004, 170(12):1276-1280.
    [79]Lee L, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity[J]. CURRENT OPINION IN PHARMACOLOGY,2009,9(3):243-249.
    [80]Andre E, Campi B, Materazzi S, et al. Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents[J]. J Clin Invest,2008,118(7):2574-2582.
    [81]Talavera K, Gees M, Karashima Y, et al. Nicotine activates the chemosensory cation channel TRPA1[J]. Nat Neurosci,2009,12(10):1214-1293.
    [82]Bessac B F, Jordt S. Breathtaking TRP Channels:TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control[J]. PHYSIOLOGY,2008,23(6):360-370.
    [83]Gu Q, Lin R. Heavy metals zinc, cadmium, and copper stimulate pulmonary sensory neurons via direct activation of TRPA1[J]. J Appl Physiol,2010,108(4):891-897.
    [84]Eilers H, Cattaruzza F, Nassini R, et al. Pungent General Anesthetics Activate Transient Receptor Potential-Al to Produce Hyperalgesia and Neurogenic Bronchoconstriction[J]. Anesthesiology,2010,112(6):1452-1463.
    [85]Bateman E D, Hurd S S, Barnes P J, et al. Global strategy for asthma management and prevention:GINA executive summary[J]. Eur Respir J,2008,31(1):143-178.
    [86]朱慧华,刘俊方,虞坚尔.支气管哮喘中医证候现代研究进展[J].甘肃中医学院学报,2013(01):68-70.
    [87]许建中.中西医结合哮喘病学[M].北京:人民卫生出版社,2001.
    [88]王岩,郑健,何顺勇,等.哮喘中医证型与免疫的关系研究[J].福建中医药,2007(06):16-17.
    [89]梁汝成,王振瑞.冬病夏治原理与辨证用药[J].中医药临床杂志,2004,16(6):590.
    [90]萧淑华,霍海燕,卢树标.吸入β_2-受体激动剂与M-受体拮抗剂治疗支气管扩张症的疗效分析[J].实用心脑肺血管病杂志,2006(05):382-383.
    [91]陈福仙.M受体阻滞剂联合β_2受体激动剂治疗慢性阻塞性肺疾病的研究[J].现代中西医结合杂志,2006(24):3324-3325.
    [92]张强,何凤萍,招冯珠,等.支气管舒张剂雾化吸入联合激素治疗哮喘中重度急性发作[J].中国实用医药,2013(04):150-151.
    [93]朱毅,孙培莉.激素联合支气管舒张剂雾化吸入治疗哮喘中重度急性发作疗效评价[J].东南大学学报(医学版),2011(06):882-885.
    [94]罗国安,梁琼麟,刘清飞,等.整合化学物质组学的整体系统生物学——中药复方配伍和作用机理研究的整体方法论[J].世界科学技术-中医药现代化,2007,9(1):10-15,24.
    [95]罗国安,梁琼麟,张荣利,等.化学物质组学与中药方剂研究--兼析清开灵复方物质基础研究[J].世界科学技术-中医药现代化,2006,8(1):6-15.
    [96]罗国安,王义明,梁琼麟,等.中医药系统生物学[M].北京:科学出版社,2011.
    [97]Hood L. Integrative systems biology:Genomics, proteomics, and computation.[J]. Abstracts of Papers of The American Chemical Society,2002,224(1):U205.
    [98]Nicholson J K, Wilson I D. Understanding 'global' systems biology:Metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov,2003,2(8):668-676.
    [99]Hood L. Systems biology:New opportunities arising from genomics, proteomics and beyond[J]. Exp Hematol,1998,26(8):681.
    [100]强伯勤,方福德.中国人类基因组研究的现在与未来[J].研究,2000,1:3.
    [101]Pandey A, Mann M. Proteomics to study genes and genomes[J]. Nature,2000,405(6788): 837-846.
    [102]Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome[J]. Science, 2001,291(5507):1304-1351.
    [103]梁鑫淼,丰加涛,金郁,等.中药质量控制技术发展展望[J].色谱,2008(02):130-135.
    [104]孙琴,肖小河,金城,等.中药质量控制和评价模式应多元化[J].中药材,2008(01):1-4.
    [105]黄瑛.中药复方质量控制方法研究进展[J].药学实践杂志,2008(01):11-13.
    [106]Nicholson J K, Lindon J C, Holmes E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica,1999,29(11):1181-1189.
    [107]Nicholson J K, Connelly J, Lindon J C, et al. Metabonomics:a platform for studying drug toxicity and gene function[J]. Nat Rev Drug Discov,2002,1(2):153-161.
    [108]贾伟,蒋健,刘平,等.代谢组学在中医药复杂理论体系研究中的应用[J].中国中药杂志,2006(08):621-624.
    [109]刘昌孝.代谢物组学在中药现代研究中的意义[J].中草药,2004(06):6-10.
    [110]叶能胜,梁琼麟,罗国安,等.化学物质组学与蛋白质组学[J].亚太传统医药,2006(01):23-27.
    [111]Dessalew N, Mikre W. On the paradigm shift towards multitarget selective drug design[J]. Current Computer-Aided Drug Design,2008,4(2):76-90.
    [112]刘恩顺,刘伟,孙增涛,等.清肺消炎丸对COPD大鼠肺组织MMP-9和TIMP-1表达的影响[J].世界中医药,2013(06):649-651.
    [113]Cheng B, Hou Y, Wang L, et al. Dual-bioactivity-based liquid chromatography-coupled quadrupole time-of-flight mass spectrometry for NF-kappaB inhibitors and beta2AR agonists identification in Chinese Medicinal Preparation Qingfei Xiaoyan Wan[J]. Anal Bioanal Chem,2012,404(8):2445-2452.
    [114]程彬峰,侯媛媛,姜民,等.基于网络药理学的清肺消炎丸抗炎机制的初步研究[J].药学学报,2013(05):686-693.
    [115]白芳,荣子丹,白钢,等.清肺消炎丸体外抗菌活性研究[J].药物评价研究,2012(02):106-108.
    [116]侯媛媛,李若洁,程彬峰,等.清肺消炎丸对豚鼠的镇咳平喘作用研究[J].药物评价研究,2010(02):103-105.
    [117]侯媛媛,李若洁,石倩,等.清肺消炎丸平喘作用机制研究[J].南开大学学报(自然科学版),2009(05):103-107.
    [118]Kurucz I, Szelenyi I. Current animal models of bronchial asthma[J]. Curr Pharm Design, 2006,12(25):3175-3194.
    [119]曹珊珊,孙轶秋.支气管哮喘动物模型制备的研究[J].中国中医急症,2012(10):1574-1576.
    [120]吕洪臻,黄诚,崔玉宝.支气管哮喘动物模型的研究进展[J].医学综述,2012(19):3216-3220.
    [121]Elias J A, Lee C G, Zheng T, et al. New insights into the pathogenesis of asthma[J]. J Clin Invest,2003,111(3):291-297.
    [122]Wills-Karp M, Ewart S L. The genetics of allergen-induced airway hyperresponsiveness in mice[J]. Am J Resp Crit Care,1997,156(4):S89-S96.
    [123]Erjefalt J S, Persson C G. New aspects of degranulation and fates of airway mucosal eosinophils[J]. Am J Resp Crit Care,2000,161(6):2074-2085.
    [124]Misawa M, Takenouchi K, Abiru T, et al. Strain difference in an allergic asthma model in rats.[J]. Japanese journal of pharmacology,1987,45(1):63.
    [125]刘素芝,刘玉丽,曹国龙,等.哮喘动物模型免疫炎症反应发生验证的要点[J].中国组织工程研究与临床康复,2007(29):5814-5816.
    [126]陈斌.基因芯片技术在中医药研究中的应用进展[J].湖北民族学院学报(医学版), 2012(01):72-74.
    [127]周亚滨,王岩.基因芯片技术在中医药领域的应用现状[J].天津中医药,2010(01):85-86.
    [128]Shaul Y D, Seger R. The MEK/ERK cascade:From signaling specificity to diverse functions[J]. Bba-Mol Cell Res,2007,1773(8):1213-1226.
    [129]Mccubrey J A, Milella M, Tafuri A, et al. Targeting the Raf/MEK/ERK pathway with small-molecule inhibitors[J]. Curr Opin Invest Dr,2008,9(6):614-630.
    [130]Verhaeghe C, Remouchamps C, Hennuy B, et al. Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways[J]. Biochem Pharmacol,2007,73(12): 1982-1994.
    [131]Perkins N D. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway[J]. Oncogene,2006,25(51):6717-6730.
    [132]Weiss T, Shalit I, Blau H, et al. Anti-inflammatory effects of moxifloxacin on activated human monocytic cells:Inhibition of NF-KB and mitogen-activated protein kinase activation and of synthesis of proinflammatory ctokines[J]. Antimicrob Agents Ch,2004, 48(6):1974-1982.
    [133]Lee F S, Peters R T, Dang L C, et al. MEKK1 activates both I kappa B kinase alpha and I kappa B kinase beta[J]. P Natl Acad Sci Usa,1998,95(16):9319-9324.
    [134]Kitanaka J, Kitanaka N, Takemura M, et al. Isolation and Sequencing of a putative promoter region of the murine G protein beta 1 subunit (GNB1) gene[J]. Dna Sequence,2002,13(1): 39-45.
    [135]Moya-Quiles M R, Ballesta-Martinez M J, Lopez-Gonzalez V, et al. A compound heterozygous mutation in the EDAR gene in a Spanish family with autosomal recessive hypohidrotic ectodermal dysplasia[J]. Arch Dermatol Res,2010,302(4):307-310.
    [136]Meyer N, Akdis C A. Vascular Endothelial Growth Factor as a Key Inducer of Angiogenesis in the Asthmatic Airways[J]. Curr Allergy Asthm R,2013,13(1):1-9.
    [137]Budd D C, Holmes A M. Targeting TGF beta superfamily ligand accessory proteins as novel therapeutics for chronic lung disorders[J]. Pharmacol Therapeut,2012,135(3): 279-291.
    [138]Engelse M A, Neele J A, Bronckers A, et al. Vascular calcification:expression patterns of the osteoblast-specific gene core binding factor alpha-1 and the protective factor matrix gla protein in human atherogenesis[J]. Cardiovasc Res,2001,52(2):281-289.
    [139]Bostrom K, Zebboudj A F, Yao Y C, et al. Matrix GLA protein stimulates VEGF expression through increased transforming growth factor-beta 1 activity in endothelial cells[J]. J Biol Chem,2004,279(51):52904-52913.
    [140]Boulet L P, Turcotte H, Laviolette M, et al. Airway hyperresponsiveness, inflammation, and subepithelial collagen deposition in recently diagnosed versus long-standing mild asthma-Influence of inhaled corticosteroids[J]. Am J Resp Crit Care,2000,162(4):1308-1313.
    [141]Vignola A M, Mirabella F, Costanzo G, et al. Airway remodeling in asthma[J]. Chest,2003, 123S(3):417S-422S.
    [142]Burgess J K. The role of the extracellular matrix and specific growth factors in the regulation of inflammation and remodelling in asthma[J]. Pharmacol Therapeut,2009, 122(1):19-29.
    [143]Gettins P, Olson S T. Exosite Determinants of Serpin Specificity[J]. J Biol Chem,2009, 284(31):20441-20445.
    [144]Ekeowa U I, Marciniak S J, Lomas D A. alpha(1)-antitrypsin deficiency and inflammation[J]. Expert Rev Clin Immu,2011,7(2):243-252.
    [145]Janciauskiene S M, Bals R, Koczulla R, et al. The discovery of alpha 1-antitrypsin and its rote in health and disease[J]. Resp Med,2011,105(8):1129-1139.
    [146]Shigetomi H, Onogi A, Kajiwara H, et al. Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain[J]. Inflamm Res,2010,59(9):679-687.
    [147]薛惠文,章静波.核纤层蛋白B与细胞分裂密切相关[J].基础医学与临床,2007(11):1250.
    [148]林飞,贾超,邵根宝,等6-DMAP诱导PM胚胎形成过程中核纤层蛋白B的动力学变化[J].细胞生物学杂志,2006(04):577-581.
    [149]霍丽蓉,钟南.A型核纤层蛋白——多种结合蛋白共同的"脚手架"[J]国际遗传学杂志,2006,29(4):264-269.
    [150]张晓兰,文宗曜,姚伟娟F-actin慢生长端的盖帽蛋白:红细胞原肌球调节蛋白[J].生理科学进展,2011(01):27-31.
    [151]Liao S H, Zhao X Y, Han Y H, et al. Proteomics-based identification of two novel direct targets of hypoxia-inducible factor-1 and their potential roles in migration/invasion of cancer cells[J]. Proteomics,2009,9(15):3901-3912.
    [152]王建义,慈忠玲.热激蛋白的研究进展[J].山西林业科技,2008(01):27-32.
    [153]Fontana J, Fulton D, Chen Y, et al. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release[J]. Circ Res,2002,90(8):866-873.
    [154]Ozes O N, Mayo L D, Gustin J A, et al. NF-kappa B activation by tumour necrosis factor requires the Akt serine-threonine kinase[J]. Nature,1999,401(6748):82-85.
    [155]Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90[J]. P Natl Acad Sci Usa,2000,97(20):10832-10837.
    [156]Belyantseva I A, Perrin B J, Sonnemann K J, et al. γ-Actin is required for cytoskeletal maintenance but not development[J]. P Natl Acad Sci USA,2009,106(24):9703-9708.
    [157]易震南,黄仁清,宋泽庆.滨蒿内酯对大鼠哮喘模型α-SMA的表达及平滑肌增殖的影响[J].中国临床实用医学,2009,3(4):7-9.
    [158]Schlosser A, Thomsen T, Shipley J M, et al. Microfibril-associated protein 4 binds to surfactant protein A (SP-A) and colocalizes with SP-A in the extracellular matrix of the lung[J]. Scand J Immunol,2006,64(2):104-116.
    [159]Zimmennann G R, Lehar J, Keith C T. Multi-target therapeutics:when the whole is greater than the sum of the parts[J]. Drug Discov Today,2007,12(1-2):34-42.
    [160]Hopkins A L. Network pharmacology [J]. Nat Biotechnol,2007,25(10):1110-1111.
    [161]Becker K G, Barnes K C, Bright T J, et al. The Genetic Association Database[J]. Nat Genet, 2004,36(5):431-432.
    [162]李霞.生物信息学[M].北京:人民卫生出版社,2010.
    [163]Mishra G R, Suresh M, Kumaran K, et al. Human protein reference database-2006 update[J]. Nucleic Acids Res,2006,34(SI):D411-D414.
    [164]余鑫煜,许正平.蛋白质相互作用数据库及其应用[J].中国生物化学与分子生物学报,2008(03):189-196.
    [165]Cline M S, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using Cytoscape[J]. Nat Protoc,2007,2(10):2366-2382.
    [166]闫冠韫,程伟,杨寄,等.中药现代化研究中的网络药理学方法及可视化工具[J].哈尔滨医科大学学报,2013(03):287-290.
    [167]张贵彪,陈启龙,苏式兵.中药网络药理学研究进展[J].中国中医药信息杂志,2013(08):103-106.
    [168]程彬峰,侯媛媛,姜民,等.基于网络药理学的清肺消炎丸抗炎机制的初步研究[J].药学学报,2013(05):686-693.
    [169]Ramirez-Sanchez I, Aguilar H, Ceballos G, et al. (-)-Epicatechin-induced calcium independent eNOS activation:roles of HSP90 and AKT[J]. Mol Cell Biochem,2012, 370(1-2):141-150.
    [170]Bukiya A N, Patil S A, Li W, et al. Calcium- and Voltage-Gated Potassium (BK) Channel Activators in the 5 beta-Cholanic Acid-3 alpha-ol Analogue Series with Modifications in the Lateral Chain[J]. ChemMedChem,2012,7(10SI):1784-1792.
    [171]Zhang B, Ma J X. SERPINA3K Prevents Oxidative Stress Induced Necrotic Cell Death by Inhibiting Calcium Overload[J]. PLOS ONE,2008,3(e407712).
    [172]Perkinton M S, Ip J K, Wood G L, et al. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erkl/2), Akt/PKB and CREB in striatal neurones[J]. J Neurochem,2002,80(2):239-254.
    [173]Aworet-Samseny R R R, Souza A, Kpahe F, et al. Dichrostachys cinerea (L.) Wight et Arn (Mimosaceae) hydro-alcoholic extract action on the contractility of tracheal smooth muscle isolated from guinea-pig[J]. BMC Complem Altern M,2011,11(23).
    [174]Meurs H, Dekkers B G J, Maarsingh H, et al. Muscarinic receptors on airway mesenchymal cells:Novel findings for an ancient target[J]. Pulm Pharmacol Ther,2013,26(1):145-155.
    [175]Mcfadzean I, Gibson A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle[J]. Brit J Pharmacol,2002,135(1):1-13.
    [176]Barnes P J. Muscarinic receptor subtypes in airways.[J]. Life Sci,1993,52(5-6):521-527.
    [177]Gunst S J, Stropp J Q, Flavahan N A. Muscarinic receptor reserve and beta-adrenergic sensitivity in tracheal smooth muscle.[J]. J Appl Physiol,1989,67(3):1294-1298.
    [178]van Koppen C J, Rodrigues De Miranda J F, Beld A J, et al. Characterization of the muscarinic receptor in human tracheal smooth muscle.[J]. Naunyn Schmiedebergs Arch Pharmacol,1985,331(2-3):247-252.
    [179]Zhang D. Patch Clamp:A Powerful Technique for Studying the Mechanism of Acupuncture[J]. Evid-based Compl Alt,2012(534219).
    [180]林燕飞,欧阳守.膜片钳技术研究进展及其应用[J].海峡药学,2008(09):8-11.
    [181]陈军.膜片钳实验技术[M].北京:科学出版社,2001.
    [182]Hisada T, Kurachi Y, Sugimoto T. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea.[J]. Pflugers Arch,1990,416(1-2):151-161.
    [183]Marthan R, Martin C, Amedee T, et al. Calcium channel currents in isolated smooth muscle cells from human bronchus.[J]. J Appl Physiol,1989,66(4):1706-1714.
    [184]Waterman S A. Voltage-gated calcium channels in autonomic neuroeffector transmission[J]. Prog Neurobiol,2000,60(2):181-210.
    [185]Deshpande D A, Walseth T F, Panettieri R A, et al. CD38-cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyperresponsiveness[J]. Faseb J,2003, 17(1):452.
    [186]Tliba O, Deshpande D, Chen H, et al. IL-13 enhances agonist-evoked calcium signals and contractile responses in airway smooth muscle[J]. Brit J Pharmacol,2003,140(7): 1159-1162.
    [187]Gumral N, Naziroglu M, Ongel K, et al. Antioxidant enzymes and melatonin levels in patients with bronchial asthma and chronic obstructive pulmonary disease during stable and exacerbation periods[J]. Cell Biochem Funct,2009,27(5):276-283.
    [188]Naziroglu M. New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose[J]. Neurochem Res,2007,32(11):1990-2001.
    [189]Naziroglu M. Molecular role of catalase on oxidative stress-induced Ca2+ signaling and TRP cation channel activation in nervous system[J]. J Recept Sig Transd,2012,32(3): 134-141.
    [190]Halayko A J, Amrani Y. Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma[J]. Resp Physiol Neurobi,2003,137(2-3): 209-222.
    [191]Amrani Y, Panettieri R A J. Modulation of calcium homeostasis as a mechanism for altering smooth muscle responsiveness in asthma.[J]. Curr Opin Allergy Clin Immunol,2002,2(1): 39-45.
    [192]Kang H S, Lee J Y, Kim C J. Anti-inflammatory activity of arctigenin from Forsythiae Fructus[J]. J Ethnopharmacol,2008,116(2):305-312.
    [193]Gosens R, Bromhaar M, Tonkes A, et al. Muscarinic M-3 receptor-dependent regulation of airway smooth muscle contractile phenotype[J]. Brit J Pharmacol,2004,141(6):943-950.
    [194]Bates J H, Rincon M, Irvin C G. Animal models of asthma[J]. Am J Physiol Lung Cell Mol Physiol,2009,297(3):L401-L410.
    [195]Canning B J. Modeling asthma and COPD in animals:a pointless exercise?[J]. Curr Opin Pharmacol,2003,3(3):244-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700