黄芪总苷对脑缺血/再灌注损伤的保护作用及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑血管病(Ischemic Cerebrovascular Disease,ICVD)是由脑部血液循环障碍,导致以局部神经功能损伤、缺失为特征的一组疾病。ICVD具有发病率高、致残率高、死亡率高、复发率高和并发症多等特点,是引起人类致残、死亡的最主要疾病之一,给人类的身体健康造成了极大的伤害。因此,寻找与开发防治缺血性脑血管病的理想药物己日益受到国内外的广泛重视,成为当前医药学界工作者特别关注的研究课题。
     黄芪是我国传统中药,为豆科植物蒙古黄芪(Astraglus membranaceus Bge. var monghaalicus Hsiao)或膜荚黄芪(A. membranaceus Bge)的干燥根,其中含有皂苷类、黄酮类及苷类、糖类、多种氨基酸及微量元素。黄芪总苷(Astragalosides,AST)作为其主要成分具有抗氧化、免疫调节、促智等作用,临床常用于防治心脑血管疾病、促智、延缓衰老、免疫功能紊乱性疾病和抗肿瘤等多种疾病。本课题采用大鼠线栓法制作局灶性脑缺血再灌注模型和海马神经元缺氧/复氧模型,从以下几个方面对黄芪总苷进行研究,以探讨其对脑缺血再灌注损伤后神经功能和学习记忆功能恢复的保护作用及其机制。
     第一部分黄芪总苷对脑缺血再灌注损伤大鼠学习记忆功能的影响及其作用机制研究
     在MCAO大鼠模型上,研究了AST对脑缺血再灌注后7d大鼠学习记忆功能的影响及其机制。采用Morris水迷宫,观察AST对逃避潜伏期和游泳距离的影响;采用免疫组化的方法检测NGF和BDNF蛋白的表达;采用Western blot检测p-ERK1/2、p-JNK和p-Akt活性。实验结果显示:与模型组比较,AST(80mg/kg)可以明显缩短5d、6d和7d逃避潜伏期和游泳距离,AST(40mg/kg)可以缩短6d和7d的潜伏期和5d、6d和7d的游泳距离,AST(20mg/kg)可以缩短7d的潜伏期和6d和7d的游泳距离。AST(20,40、80mg/kg)可以增加NGF和BDNF蛋白的表达;AST(40、80mg/kg)可以上调p-ERK和p-Akt的表达、下调p-JNK的表达,可能是其发挥脑保护作用的机制之一。
     第二部分黄芪总苷对脑缺血再灌注大鼠的保护作用及其作用机制研究
     在MCAO大鼠模型上,研究了AST对脑缺血再灌注后1d、3d、7d和14d大鼠的保护作用及其机制。观察了AST对模型大鼠体重、神经功能评分、脑指数、脑含水量和脑梗死体积的影响;检测脑组织中超氧化物歧化酶(SOD)、乳酸脱氢酶(LDH)和一氧化氮合酶(NOS)活性,丙二醛(MDA)、乳酸(LD)和一氧化氮(NO)含量;采用苏木素-伊红(HE)染色观察脑组织病理改变;采用RT-PCR检测iNOSmRNA、NGFmRNA、BDNFmRNA和p75NTRmRNA的表达;采用real-time PCR检测TrkAmRNA和TrkBmRNA的表达。
     实验结果如下:
     1脑缺血再灌注后1d、3d、7d和14d模型组大鼠体重均有明显降低,AST(40mg/kg,ig)3d、7d和14d可以明显升高降低的模型大鼠体重。
     2模型大鼠在缺血再灌注1d时,神经功能评分最高,然后逐渐降低,14d时基本恢复正常;AST(40mg/kg,ig)3d可以明显降低模型大鼠升高的神经功能评分。
     3脑缺血再灌注后1d、3d和7d模型组大鼠脑指数均有明显增高,14d模型组大鼠脑指数恢复至正常;AST(40mg/kg,ig)3d和7d可以明显降低脑指数的增加。
     4脑缺血再灌注后1d模型组大鼠脑含水量已经明显增加,随着再灌注的进行,含水量逐步增加,在再灌注3d达到高峰,然后开始下降,7d仍有增加,至14d已经恢复正常。AST(40mg/kg,ig)3d和7d可以明显减轻大鼠缺血再灌注后脑组织含水量的增加。
     5脑缺血再灌注后出现明显的梗死灶,缺血再灌注3d时脑梗死体积最大。AST (40mg/kg,ig)3d、7d和14d可以明显减轻大鼠缺血再灌注后脑梗死体积。
     6脑缺血再灌注后1d、3d和7d模型组大鼠脑组织SOD活力明显降低和MDA含量明显升高;AST(40mg/kg,ig)3d、7d可以明显升高SOD活性、降低脑组织中MDA含量。
     7脑缺血再灌注后1d、3d和7d模型组大鼠脑组织LDH活力明显下降、LD含量明显升高,至14d基本恢复到正常水平;AST(40mg/kg,ig)3d、7d可以明显升高脑组织中LDH活性、降低脑组织中LD含量。
     8脑缺血再灌注后1d、3d和7d模型组大鼠脑组织NO含量、NOS活力明显升高,至14d基本恢复到正常水平;AST(40mg/kg,ig)3d、7d可以明显降低脑组织中NO含量和NOS活性。
     9脑缺血再灌注后1d、3d和7d模型组大鼠脑组织iNOSmRNA表达明显升高,至14d基本恢复到正常水平;AST(40mg/kg,ig)3d、7d可以明显降低脑组织中iNOSmRNA表达。
     10 AST(40mg/kg,ig)3d、7d和14d可以不同程度的减轻脑缺血再灌注大鼠脑组织的病理损害。
     11脑缺血再灌注后1d、3d、7d和14d模型组大鼠脑组织NGFmRNA表达明显升高,7d达到高峰;AST(40mg/kg,ig)3d、7d和14d可以明显升高脑组织中NGFmRNA。
     12脑缺血再灌注后1d、3d、7d和14d模型组大鼠脑组织BDNFmRNA表达明显升高,3d达到高峰;AST(40mg/kg,ig)3d、7d和14d可以明显升高脑组织中BDNFmRNA。
     13脑缺血再灌注后1d、3d和7d模型组大鼠脑组织p75NTRmRNA表达明显升高,3d达到高峰,14d基本恢复正常;AST(40mg/kg,ig)3d和7d可以明显降低脑组织中p75NTRmRNA。
     14缺血再灌注后1d、3d和7d模型组大鼠脑组织TrkAmRNA表达明显升高,7d达到高峰,14d基本恢复正常;AST(40mg/kg,ig)7d和14d可以明显升高脑组织中TrkAmRNA。
     15缺血再灌注后1d、3d和7d模型组大鼠脑组织TrkBmRNA表达明显升高,7d达到高峰,14d基本恢复正常;AST(40mg/kg,ig)3d和7d可以明显升高脑组织中TrkBmRNA。
     第三部分黄芪总苷对海马神经元缺氧复氧损伤的保护作用及其作用机制研究
     在原代培养的海马神经元缺氧/复氧(A/R)模型上,研究了AST对A/R诱导的海马神经元损伤的保护作用及其作用机制。采用MTT和LDH释放率法,检测海马神经元的活力;检测细胞上清液中SOD活性、MDA和NO含量;采用荧光素染料Hoechst33258染色法,测定海马神经元凋亡;采用Annexin-V/PI双染法,在流式细胞仪上检测细胞凋亡;采用Fluo-3/AM染色,测定海马神经元内[Ca2+]i的变化。结果显示,缺氧复氧组海马神经元活力明显降低;缺氧前加入AST(10、20、40μg/ml)可以明显提高海马神经元的活力,缺氧后复氧前加入AST(40μg/ml)可以提高海马神经元的活力。A/R组海马神经元LDH的释放率明显升高;AST(10、20、40μg/ml)可以明显降低A/R后海马神经元的LDH释放率。A/R后海马神经元培养上清液中SOD活性明显降低,MDA、NO含量明显升高; AST(10、20、40μg/ml)可以明显升高上清液中SOD活性、降低MDA和NO含量。A/R组表现出明显的细胞凋亡;与A/R组比较,AST(10、20、40μg/ml)可以明显减轻缺氧复氧后海马神经元的凋亡率,显著降低胞浆内钙离子的平均荧光强度。
     结论:本文研究了黄芪总苷对脑缺血再灌注损伤后的神经保护作用和对学习记忆功能的影响,并对其作用机制进行了探索。研究发现黄芪总苷对脑缺血再灌注损伤后的学习记忆功能有明显的保护作用,其作用机制涉及抗氧化、促进NGF、BDNF及其高亲和力受体TrkA、TrkB的表达、抑制低亲和力受体p75NTR的表达、抑制细胞凋亡、上调p-ERK和p-Akt的表达、下调p-JNK的表达等有关。
Astragalus is a traditional Chinese medicine, as legumes Mongolia astragalus or membranaceus (Fisch) Bge’s dry pods root, which contains saponins, flavonoid glycosides category, sugars, amino acids and trace elements. Astragalosides(AST) is the main component of astragalus with the function of antioxidant, immune regulation, promotes intelligence, which was commonly used in the prevention and treatment of cardiovascular and cerebrovascular diseases, aging, immune function disorders and other diseases. In this paper, the focal cerebral ischemia reperfusion (I/R) model and hippocampal neurons anoxia-reoxygenation model were established to explore the protective effects of AST on the nerve function and learning and memory function after cerebral ischemia-reperfusion injury and its mechanism.
     PartⅠEffect of astragalosides on the learning and memory after brain ischemia/ reperfusion injury and its mechanism
     To explore the effect of AST on the learning and memory function and its mechanism on MCAO rats. Morris water maze was used to observe the effect of AST on the escape latencies and swimming distance. NGF and BDNF protein expression were tested by immunohistochemistry, while the activity of p-ERK、p-JNK and p-Akt were measured by western blot. The results showed that AST(80mg/kg) could significantly shorten escape latencies and swimming distance at days5, 6 and 7 after I/R; AST(40mg/kg) could significantly shorten escape latencies at days 6 and 7, prolong swimming distance at days 5, 6 and 7 after I/R; AST (20mg/kg) could significantly shorten escape latencies of at day 7 and swimming distance at days 6 and 7. Compared with model group, AST (20,40,80mg/kg) increased the expression of NGF and BDNF; AST(40,80mg/kg) increased the expression of p-ERK, p-Akt and decreased the expression of p-JNK.
     PartⅡProtective Effect of Astragalosides against Focal Cerebral Ischemia-reperfusion in rat
     Male SD rats received right middle cerebral artery occlusion of 120 minutes’duration. The rats were decapitated at different reperfusion time points: days 1, 3, 7, and 14 of recirculation. The effect of AST on the weight of rats, neurological function score, the index of brain, the water content and infarction volume of brain were measured; the activity of superoxide dismutase (SOD), lactate dehydrogenase (LDH) and nitric oxide synthase (NOS), and the content of malondialdehyde (MDA), lactate (LD) and a nitric oxide (NO) of brain tissue were detected too. Using hematoxylin-eosine (HE) staining to observe brain tissue pathological changes, iNOSmRNA, NGFmRNA, BDNFmRNA and p75NTR mRNA expression were measured by RT-PCR; the expression of TrkAmRNA and TrkB mRNA were measured by real-time PCR.
     The results are as follows:
     1 The body weight reduced at days1, 3, 7, and 14 on MCAO rats after I/R, and AST (40mg/kg) could significantly increase body weight at days 3, 7and 14.
     2 The neuroolgical function score peaked at day 1, then began to decline, and returned almost to the sham level at day 14; AST (40mg/kg) could obviously reduce the neurological function score at day 3.
     3 The brain index increased beginning at day 1, peaked at day 3, and returned almost to the sham level at day 14; AST (40mg/kg) could significantly decrease of brain index at days 3 and 7.
     4 The water content increased beginning at day 1, and returned almost to the sham level at day 14; AST (40mg/kg) could significantly decrease the water content at days 3 and 7.
     5 The brain infarct volume increased beginning at day 1, peaked at day 3, then began to decline; AST (40mg/kg) could significantly reduce the infarct volume at days 3, 7 and 14.
     6 The activity of SOD decreased and the content of MDA increased at days 1, 3 and 7; AST (40mg/kg) could significantly increase SOD activity and decrease brain tissue MDA content at days 3 and 7.
     7 The activity of LDH significantly decreased and the content of LD increased at days 1, 3 and 7; AST (40mg/kg) could significantly increase LDH activity and reduce the level of LD at days 3 and 7.
     8 The activity of NOS and the content of NO increased beginning at day 1, peaked at day 3, and returned almost to the sham level at day 14; AST (40mg/kg) could significantly decrease NO content and NOS activity at days 3and 7.
     9 The expression of iNOSmRNA in the rat brain tissue significantly increased at day 1, peaked at day 3, and returned almost to the sham level at day 14; AST (40mg/kg) could reduce the expression of iNOSmRNA at days 3 and 7. 10 AST (40mg/kg) could relieve the brain tissue histopathologic injury at days 3,7 and 14.
     11 The expression of NGFmRNA in the rat brain significantly increased at days 1,3,7 and 14, peaked at day 7; AST (40mg/kg) could increase the expression of NGFmRNA at days 3,7 and 14.
     12 The expression of BDNFmRNA in the rat brain increased at days 1,3,7 and 14, peaked at day 3; AST (40mg/kg) could significantly increase the expression of BDNFmRNA at days 3,7 and 14.
     13 The expression of p75NTRmRNA in the brain tissue significantly increased at days 1,3 and 7, peaked at day 3, and returned almost to the sham level at day 14; AST (40mg/kg) could obviously decrease the expression of p75NTRmRNA at days 3 and 7.
     14 The expression of TrkAmRNA in the brain tissue significantly increased at days 1,3 and 7, peaked at day 7, and returned almost to the sham level at day 14; AST (40mg/kg) could increase the expression of TrkAmRNA at days 7 and 14.
     15 The expression of TrkBmRNA increased at days 1,3 and 7; AST (40mg/kg) could increase the expression of TrkBmRNA at days 3 and 7.
     PartⅢProtective effect of astragalosides against injury induced by anoxia/reoxygenation on hippocampal neuron and its mechanism
     To observe the protective effects and its mechanism of AST on primary cultured hippocampal neurons after anoxia and reoxygenation (A/R). An A/R model was established using cultured primary hippocampal neurons which derived from 18 day embryonic rat. MTT assay method and LDH releasing rate were used to measure the cell viability, which evaluated the cellular injury. We detected the activity of SOD and the content of MDA and NO at the same time. The apoptosis rate of hippocampal neurons after A/R was measured by hoechst 33258 staining and flow cytometry with AnnexinV-PI staining. The intracellular calcium was observed with a cofocal laser - scanning microscope and determined by mean fluorescent value with Fluo-3/AM. The results showed that the cell viability of A/R group was reduced markedly, the AST(10, 20, 40μg/ml) significantly enhanced the cell viability of hippocampal neurons before anoxia and AST(40μg/ml) also enhanced it after anoxia. The LDH releasing rate of model group increased markedly, AST(10, 20, 40μg/ml) significantly reduced the LDH releasing rate. The activity of SOD decreased and the content of MDA and NO increased significantly after A/R, but AST (10, 20, 40μg/ml) could enhance the SOD activity and reduce the MDA and NO contents markedly. Compared with the A/R group, AST(10, 20, and 40μg/ml) could reduce the A/R -induced apoptosis and decrease the fluorescence intensity value of [Ca2+]i.
     Conclusions: It was found that AST could improve the rats learning and memory function after brain ischemia/reperfusion injury, the mechanism may related with anti-oxidation, increasing the expression of NGF, BDNF, TrkA and TrkB, decreasing the expression of p75NTR, inhibiting the hippocampal neurons apoptosis, up-regulating the expression of p-ERK and p-Akt, down-regulating the expression of p-JNK.
引文
1 Belayev L, Alonso OF, Busto R. Middle cerebral artery occlusion in the rat by intraluminal suture: neurological and pathlogical evaluation of an improved model. Stroke,1996;27(9):1616~22.
    2 Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors . Cell , 2002 , 110 (4) : 429- 41.
    3黄延红,黄瑾.神经营养因子家族受体与信号转导的研究现状.国际脑血管病杂志, 2006,14(11):870-872.
    4 York RD, Molliver DC, Grewal SS, et al. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol. 2000 Nov, 20(21):8069-83.
    5 MacDonald JI, Gryz EA, Kubu CJ, et al. Direct binding of the signaling adapter protein Grb2 to the activation loop tyrosines on the nerve growth factor receptor tyrosine kinase, TrkA. J Biol Chem. 2000 Jun 16;275(24):18225-33.
    6刘宇,邓宇斌,周丽华. P75NTR介导神经细胞凋亡研究进展.生命科学,2007,19(1):64-67.
    7Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002 Jun;2(6):420-30. Review.
    8刘冬梅,徐东芳,刘治娟,等.黄芪提取物保护Aβ致海马神经元损伤.中国药理学通报,2007,23(4):543-7.
    9朱华野,朴龙.黄芪提取物抗炎、镇痛、耐缺氧及抗疲劳作用的研究.时珍国医国药,2007,18(5):1156-7.
    10王玲,董矜,汪德清,等.黄芪提取物免疫调节作用的实验研究.军医进修学院学报,2005,26(4):293-5.
    11尹艳艳,李卫平,王绍斌,等.黄芪提取物对大鼠局灶性脑缺血再灌注损伤后炎症因子及细胞凋亡的作用.中国药理学通报,2005,21(12):1486-9.
    12 Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989;20(1):84~91.
    13陈纬洲.脑缺血/脑梗死动物模型.见:徐叔云,卞如濂,陈修主编.药理实验方法学(第三版).北京:人民卫生出版社,2002:1066~1067.
    14 Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination.Stroke. 1986;17(3):472-6.
    15 Yonemori F, Yamaguchi T, Yamada H, et al. Spatial cognitive performance after chronic focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 1999, 19(5) : 483-94.
    16 Jolkkonen J, Puurunen K, Rantak?mi S, et al. Behavioral effects of the alpha(2)-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats. Eur J Pharmacol, 2000,400(2 - 3) :211-9.
    17 D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev,2001,36(1):60-90.
    18 Wieloch T, Hu BR, Boris-M?ller A, et al. Intracellular signal transduction in the postischemic brain. Adv Neurol, 1996;71:371-87; discussion 387-8.
    19 Lennmyr F, Karlsson S, Gerwins P, et al. Activation of mitogen-activated protein kinases in experimental cerebral ischemia. Acta Neurol Scand, 2002,106(6):333-40.
    20 Wu DC, Ye W, Che XM, et al. Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. J Cereb Blood Flow Metab, 2000,20(9):1320-30.
    21 Liu X, Wang S, Wu X, et al. Association between delayed cardioprotection of agedrat myocytes and activation of mitogen-activated protein kinase. Chin Med J (Engl), 2000,113(1):5-9.
    22 Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 2001;23(1):1-19.
    23 Miranda S, Foncea R, Guerrero J, etal. Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted Hela cells. Biochem Biophys Res Commun, 1999, 258(1):44 - 9.
    24 Chang L and Karin M. Mammalian MAP kinase signalling cascades. Nature , 2001 , 410 (6824) : 37-40.
    25 Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298(5600) :1911-2.
    26吕建瑞,马宏钟,薛荣亮.全脑缺血再灌注损伤后JUN蛋白在大鼠海马的表达及热休克预处理对其表达的影响[J ].西安交通大学学报(医学版),2007, 27(4) :337- 340.
    27 Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res,2004,26(8):835-45.
    28 Okuno S, Saito A, Hayashi T,et al. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci. 2004 Sep 8;24(36):7879-87.
    29 Mullonkal CJ, Toledo - Pereyra LH. Akt in ischemia and reperfusion. J Invest Surg, 2007,20(3):195-203.
    30 Williams DL, Ozment- Skelton T, LiC. Modulation of the phosphoinositide 3 - kinase signaling pathway alters host response to sepsis, inflammation, and ischemia /reperfusion injury. Shock,2006,25(5):432-9.
    31高唱,吴伟康. Akt信号通路在HD02抗慢性前脑缺血大鼠神经细胞凋亡中的作用.中国临床康复, 2004,8(1):56-57.
    32 Dudek H, Datta SR, Frabke TF, et al. Regulation of neuronal survival by the serine-threonine protein Akt. Science,1997,275(5300):661-5.
    33刘小光,徐理纳.一种能评价溶拴和抗栓药的大鼠大脑中动脉血栓模型.药学学报,1995;30(9):662~667.
    34李定友.丙二醛测定法.见:徐叔云,卞如濂,陈修主编.药理实验方法学(第三版).北京:人民卫生出版社,2002:434~436.
    35 Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods 2001, 25:402-408.
    36 L D Ke, Z Chen .A reliability test of standard-based quantitative PCR: exogenous vs endogenous standards Mol Cell Probes. 2000 Apr;14(2):127-35.
    37 Weihong Liu and David A. Saint Validation of a quantitative method for real time PCR kinetics. Biochemical and Biophysical Research Communications 294 (2002) 347–353.
    38 Tamura A, Graham DI, McCulloch J, et al. Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [ 14C ] iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab, 1981, 1(1): 61-9.
    39 Koizumi JI, Yoshida Y, Nakazawa T, et al. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemia area. Stroke,1986;8(1):1-8.
    40 Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989;20(1):84-91.
    41 Goldlust EJ, Paczynski RP, He YY, et al. Automated measurement of infarct size with scanned images of triphenyltetrazolium chloride-stained rat brains[J]. Stroke, 1996, 27 (9):1657-62.
    42刘亚敏,夏鑫华,赵光锋,彭胜权,徐秋英,沈强.麝香配伍冰片对局灶性脑缺血再灌注大鼠脑含水量及血脑屏障通透性的影响.广州中医药大学学报, 2007, 24(6): 498 -501.
    43 Lo AC, Chen AY, Hung VK, et al. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet[ J ]. J Cereb Blood FlowMetab, 2005, 25(8): 998 -1011.
    44 Heistad DD. Oxidative Stress and Vascular Disease:2005 Duff Lecture. Arterioscler Thromb Vasc Biol.2006 ,Apr;26(4) :689-95.
    45 Ribeiro Mde C, Hirt L, Bogousslavsky J, et al. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res.2006, 83(7) :1231-40.
    46 Meschia JF. Ischemic stroke as a complex genetic disorder. Semin Neurol. 2006 Feb;26(1) :49~56.
    47王春娟,薛连璧.缺血性脑卒中与NO、SOD关系研究进展.脑与神经疾病杂志. 2007,15 (5):391-394.
    48 Cuzzocrea S, Riley DP, Caputi AP, et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001; 53(1):135-59. Review.
    49刘煜敏,徐怀四,黄怀钧,等.兴奋性氨基酸、氧自由基与缺血再灌注损伤关系的实验观察.卒中与神经疾病,2000,7(2) :98 - 100.
    50 Serteser M, Ozben T, Gümü?lüS, et al. Biochemical evidence of crossed cerebellar diaschisis in terms of nitric oxide indicators and lipid peroxidation products in rats during focal cerebral ischemia. Acta Neurol Scand,2001 ,103(1) :43 - 8.
    51 Shibuta S,Varathan S, Mashimo T. The neuroprotective effect of ONO- 1714 on NMDA - mediated cytoxicity in vitro. J Neurol Sci ,2003 ,215(5) :31-6.
    52 Stoyanova II, Lazarov NE. Localization of nitric oxide synthase in rat trigeminal primary afferent neurons using NADPH-diaphorase histochemistry. J Mol Histol, 2005,36(3):187-93.
    53 Heneka MT, Feinstein DL. Expression and function of inducible nitric oxide synthase in neurons. J Neuroimmunol, 2001,114(1 - 2):8-18.
    54 Holopainen IE. Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res,2005,30(12):1521-8.
    55 Mark KS, Burroughs AR, Brown RC, et al. Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature. Am J Physiol Heart Circ Physiol, 2004, 286 (1):H174-80.
    56 Nakashima MN, Ajiki K, Nakashima K, et al. Possible role of nitric oxide in anxiety following transient cerebral ischemia in mice. J Pharmacol Sci,2003,91(1):47-52.
    57 Knowles RG, Mencada S. Nitric oxide Synthases in Mammals. Biochem J , 1994 , 298 (pt2):249-58.
    58 Sasaki T, Hamada J, Shibata M, et al. Inhibition of nitric oxide production during global ischemia ameliorates ischemic damage of pyramidal neurons in the hippocampus. Keio J Med, 2001, 50(3):182 - 7.
    59 Gidday JM, Shah AR, Maceren RG, et al. Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab, 1999, 19 (3): 331 -340.
    60 Holtz ML, Craddock SD, Pettigrew LC. Rapid expression of neuronal and inducible nitric oxide synthases during post-ischemic reperfusion in rat brain. Brain Res, 2001, 898(1): 49 -60.
    61 Legos JJ, Barone FC. Update on pharmacological strategies for stroke: prevention, acute intervention and regeneration. Curr Opin Investing Drugs,2003 ,4(7) :847-58.
    62黄延红,黄瑾.神经营养因子家族受体与信号转导的研究现状.国际脑血管病杂志, 2006,14(11):870-872.
    63袁丽波,席焕久,于红.神经生长因子治疗脑缺血性疾病的研究.医学综述, 2008,14(4):518-520.
    64 Tirassa P, Manni L, Aloe L, et al. Cholecystokinin-8 and nerve growth factor:two endogenous molecules working for the upkeep and repair of the nervous system. Curr Drug Targets CNS Neural Disord,2002,1(5):495-510.
    65 Holtzman DM, Sheldon RA, Jaffe W, et al. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol ,1996, 39(1) :114 - 122.
    66 Covaceuszach S, Cattaneo A, Lamba D. Neutralization of NGF-TrkA receptor interaction by the novel antagonistic anti-TrkA monoclonal antibody MNAC13:a structural insight. Proteins, 2005,58(3) :717 - 27.
    67 Liepinsh E, Ilag LL, Otling G, et al. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J, 1997,16(16) :4999 - 5005.
    68 Bilderback TR, Gazula VR, Dobrowsky RT. Phosphoinositide 3 - kinase regulates crosstalk between TrkA tyrosine kinase and p75(NTR)-dependent sphingolipid signaling pathways. J Neurochem, 2001, 76(5):1540-51.
    69 Cheng B, Mattson MP. NT-3 and BDNF protect CNS neurons against metabolic /excitotoxic insults. Brain Res, 1994, 640 (1) :56 - 67.
    70 Guégan C, Ceballos-Picot I, Chevalier E,et al. Reduction of ischemic damage in NGF - transgenic mice:correlation with enhancement of antioxidant enzyme activeties. Neurobiol Dis, 1999,6 (3) :180-9.
    71 Cheng B, McMahon DG, Mattson MP. Modulationof calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Res, 1993, 607 (1-2) :275- 85.
    72刘崴,程焱,王虔.脑源性神经营养因子与缺血性脑损伤.国外医学脑血管疾病分册, 2004, 12(6):433-6.
    73 Marini AM, Jiang X, Wu X, et al. Role of brain-derived neurotrophic factor and NF-kappa B in neuronal plasticity and survival: From genes to phenotype. Restor Neurol Neurosci ,2004 ,22 (2) :121-30.
    74 Kim MW, Bang MS, Han TR,et al. Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain.Brain Res, 2005 , 1052(1) :16 - 21.
    75 Lang EM, Asan E, Plesnila N, et al. Motoneuron survival after C7 nerve root avulsion and replantation in the adult rabbit :Effects of local ciliary neurotrophic factor and brain-derived neurotrophic factor application. Plast Reconstr Surg, 2005,115 (7) :2042 -50.
    76 Han BH, D’Costa A, Back SA, et al.BDNF blocks caspase - 3 activation in neonatal hypoxia - ischemia . Neurobiol Dis,2000 ,7 (1) :38 -53.
    77 Nomura T, Honmou O, Harada K, et al. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience, 2005,136 (1) :161 - 169.
    78 Kim MW, Bang MS, Han TR, et al. Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain Res. 2005 ;1052(1):16-21.
    79陈鹏,高向东.神经营养素受体P75的研究.药学进展,2001,25(2):87-90.
    80 Aurikko JP, Ruotolo BT, Grossmann JG et al. Characterization of symmetric complexes of nerve growth factor and the ectodomain of the pan-neurotrophin receptor, p75NTR. J Biol Chem, 2005;280(39):33453– 60.
    81 Frade JM. Nuclear translocation of the p75 neurotrophin receptor cytoplasmic domain in response to neurotrophin binding. J Neurosci, 2005;25(6):1407-11.
    82 Harrington AW, Leiner B, Blechschmitt C, et al. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci USA, 2004, 101(16): 6226-30.
    83 Yeiser EC, Rutkoski NJ, Naito A, et al. Neurotrophin signaling through the p75 receptor is deficient in traf6-/-mice. J Neurosci,2004,24:10521-9.
    84 Becker EB, Howell J, Kodama Y, et al. Characterization of the c-Jun N-terminal kinase–BimEL signaling pathway in neuronal apoptosis. J Neurosci, 2004, 24(40):8762 -70.
    85 A rai S, Kinouchi H, Akabane A, et al. Induction of brain-derived neurotrophic factor (BDNF) and the receptor trkB mRNA following middle cerebral artery occlusion in rat. Neurosci Lett, 1996; 211(1): 57-60.
    86 Sch?bitz WR, Berger C, Kollmar R, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke, 2004; 35(4): 992-7.
    87 Williamson R, Scales T, Clark BR, et al. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-beta peptide exposure: involvement of Src family protein kinases. J Neurosci. 2002 22(1):10-20.
    88汪炜健,刘荣国,史春霞,等.二氮嗪预处理对缺氧复氧后大鼠海马神经元凋亡的影响.中华麻醉学杂志,2006,26(3):252-4.
    89 Bayatti N, Zschocke J, Behl C. Brain region-specific neuroprotective action and signaling of corticotropin-releasing hormone in primary neurons.Endocrinology. 2003,144(9):4051-60.
    90 Sarnelli G, Vanden Berghe P, Raeymaekers P,et al. Inhibitory effects of galanin on evoked [Ca2+]i responses in cultured myenteric neurons. Am J Physiol Gastrointest Liver Physiol. 2004 Jun;286(6): 1009-14.
    91 Nitatori T,Sato N,Waguri S,et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci, 1995,15(2) :1001-11.
    92 Yavin E, Billia DM. Apoptotic death in cerebral hemisphere cells is density dependent and modulated by transient oxygen and glucose deprivation . J Neurosci Res, 1997, 47 (5) :471-8.
    93 Bossenmeyer-PouriéC, Lièvre V, Grojean S, et al. Sequential expression patterns of apoptosis and cell cycle-related proteins in neuronal response to severe or mild transient hypoxia. Neurosicence, 2002, 114(4): 869-82.
    94刘荣国,汪炜健,何爱霞,等.心肌肽素预先给药对大鼠海马神经元缺氧复氧损伤的影响.中华麻醉学杂志,2005,25(10):759-61.
    95 Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab,2001,21(1):99-109.
    96 Ly JV, Zavala JA, Donnan GA. Neuroprotection and thrombolysis:combination therapy in acute ischaemic stroke. Expert Opin Pharmacother.2006,7(12):1571-81.
    97 Yoshida H, Yanai H, Namiki Y, et al. Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev, 2006, 12(1):9-20.
    98 Tymianski M, Wallace M C, Spigelman I, et al. Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron, 1993, 11(5):221-35.
    99 Mody I, MacDonald JF. NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2 + release. Trends Pharmacol Sci, 1995,16(10):356-9.
    1 Reynolds BA ,Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255(5052) :1707-10.
    2 McKay R. Stem cells in the central nervous system. Science, 1997, 276 (5309): 66-71.
    3 Kornblum HI. Introduction to neural stem cells. Stroke, 2007, 38(2 Suppl): 810-6.
    4 Gage FH. Mammalian neural stem cells. Science, 2000, 287(5457):1433-8.
    5 Doetsch F, Scharff C. Challenges for brain repair: insights from adult neurogenesis in birds and mammals. Brain Behav Evol, 2001,58(5):306-22.
    6王晓静.神经干细胞的研究进展[J].神经解剖学杂志,2005,21(3 ) :323 - 326.
    7余爽,张京钟,张海燕,等.免疫磁珠体外纯化人胎脑中CD133阳性干细胞的实验研究[J].神经解剖学杂志, 2004,20(3):271 - 274.
    8 Ciccolini F. Identification of two distinct types of multipotent neural precursors that appear sequentially during CNS development. Mol Cell Neurosci, 2001 , 17(5): 895- 907.
    9 Vaccarino FM, Ganat Y, Zhang Y, et al. Stem cells in neuro development and plasticity. Neuropsychopharmacology, 2001, 25(6): 805-15.
    10 Arsenijevic Y, Weiss S, SchneiderB, etal. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci, 2001, 21(18): 7194-202.
    11 Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins.Cell, 1989, 56(5): 777-83.
    12 Uchida Y, Nakano S, Gomi F, et al. Differential regulation of basic helix-loop-helix factors Mash1 and Olig2 by beta-amyloid accelerates both differentiation and death of cultured neural stem/progenitor cells. J Biol Chem, 2007; 282(27): 19700-9.
    13 Nakatani T, Mizuhara E, Minaki Y, et al. Helt, a novel basic-helix-loop-helix transcriptional repressor expressed in the developing central nervous system. J Biol Chem. 2004,279(16):16356-67.
    14 Su X, Kameoka S, Lentz S, et al. Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Mol Cell Biol, 2004,24(18): 8018-25.
    15 Bray S. Notch. Curr Biol, 2000, 10(12):433-5.
    16 Nishino H, Hida H, Takei N, et al. Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol, 2000,164(1):209-14.
    17 Johansson BB. Functional outcome in rats transferred to an enriched environment
    15 days after focal brain ischemia. Stroke,1996, 27(2): 324-6.
    18 Nudo RJ, Wise BM, Sifuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 1996, 272 (5269): 1791-4.
    19 Komitova M, Mattsson B, Johansson BB, et al. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke, 2005,36(6):1278-82.
    20 van Praag H, Christie BR, Sejnowski TJ, et al. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A., 1999, 96(23): 13427-31.
    21 Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci ,1998,18(9):3206-12.
    22 Briones TL, Suh E, Hattar H, et al. Dentate gyrus neurogenesis after cerebralischemia and behavioral training. Biol Res Nurs. 2005,6(3):167-79.
    23 Lemaire V, Koehl M, Le Moal M, et al. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci U S A. 2000,97(20):11032-7.
    24 Guold E, McEwen BS, Tanapat P, et al. Neurogenesis in the dentate gurus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation.J Neurosci,997,17(7):2492-8.
    25 Kempermann G, Kuhn HG, Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci U S A. 1997;94(19):10409-14.
    26 Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macque monkey. Proc Natl Acad Sci U S A. 1999;96(10):5768-73.
    27 Yagita Y, Kitagawa K, Ohtsuki T,et al. Neurogenesis by progenitor cellsin the ischemic adult rat hippocampus[J ]. Stroke , 2001 , 32(8) : 1890 - 1896.
    28 Sato K, Hayashi T, Sasaki C, et al. Temporal and spatial differences of PSA-NCAM expression between young-adult and aged rats in normal and ischemic brains. Brain Res, 2001, 922(1):135-9.
    29 Parent JM ,Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci ,1997,17(10):3727-38.
    30 Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001,98(8):4710-5.
    31 Takagi Y, Nozaki K, Takahashi J, et al. Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice[J ] Brain Res,1999, 831 (1-2): 283-7.
    32 Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Acad Sci USA,2001, 98(8):4710-5.
    33 Zhang RL, Zhang ZG, Zhang L, et al. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience, 2001, 105(1):33-41.
    34 Iwai M, Sato K, Omori N, et al. Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. J Cereb Blood Flow Metab, 2002, 22(4):411-9.
    35 Iwai M, Sato K, Kamada H, et al. Temporal profile of stem cell division, migration, and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils. J Cereb Blood Flow Metab, 2003, 23(3): 331-41.
    36 Zhang RL, LeTourneau Y, Gregg SR, et al. Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci. 2007, 27 (12): 3157-62.
    37 Bernabeu R, Sharp FR. NMDA and AMPA/kainite glutamate receptors modulate dentate neurogenesis and CA3 synapsin-Ⅰin normal and ischemic hippocampus. J Cereb Blood Flow Metab, 2000, 20(12): 1669-80.
    38 Arvidsson A, Kokaia Z, Lindvall O. N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci. 2001, 14 (1):10-8.
    39 Lin TN, Te J, Lee M, et al. Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res Mol Brain Res, 1997, 49 (1-2):255-65.
    40 Yoshimura S, TakagiY, Harada J et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA, 2001, 98(10):5874 -9.
    41 Jin K, Mao XO ,Sun Y, et al. Stem cell factor stimulates neurogenesis in vitro and in vivo. J Clin Invest, 2002,110 (3):311-9.
    42 Leker RR, Soldner F, Velasco I, et al. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke, 2007,38(1):153-61.
    43 Lee TH, Kato H, Chen ST, et al. Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke. 1998 Aug;29(8):1687-97.
    44 PenceaV, Bingaman KD, Wiegand SJ, et al. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum,thalamus, and hypothalamus. J Neurosci, 2001; 21 (17): 6706 -17.
    45 Benraiss A, Chmielnicki E, Lerner K, et al. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci, 2001;21(17):6718-31.
    46 Lindvall O, Ernfors P, Bengzon J, et al. Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci USA, 1992;89(2):648-52.
    47 Kokaia Z, Zhao Q, Kokaia M, et al. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol, 1995;136(1):73-8.
    48 Larsson E, Mandel RJ, Klein RL, et al. Suppression of insult-induced neurogenesis in adult rat brain by brain-derived neurotrophic factor. Exp Neurol, 2002;177(1):1-8.
    49 Arvidsson A, Kokaia Z, Airaksinen MS, et al. Stroke induces widespread changes of gene expression for glial cell line-derived neurotrophic factor family receptors in the adult rat brain. Neuroscience, 2001,106(1):27-41.
    50 Bauer S, Patterson PH. Leukemia inhibitory factor promotes neural stem cell self- renewal in the adult brain. J Neurosci. 2006, 15;26(46):12089-99.
    51 Sugiura S, Kitagawa K, Tanaka S, et al. Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis andangiogenesis after focal cerebral ischemia in rats. Stroke, 2005, 36(4):859-64.
    52 Kumihashi K, Uchida K,Miyazaki H, et al. Acetylsalicylic acid reduces ischemia- induced proliferation of dentate cells in gerbils. Neuroreport, 2001,12(5):915-7.
    53 Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke. 2005, 36(12):2718-24.
    54 Ekdahl CT, Mohapel P, Elmér E, et al. Caspase inhibitors increase short-term survival of progenitor-cell progeny in the adult rat dentate gyrus following status epilepticus. Eur J Neurosci. 2001,14(6):937-45.
    55 Fernando P, Brunette S, Megeney LA. Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J. 2005,19(12):1671-3.
    56 Sirén AL, Knerlich F, Poser W, et al. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol, 2001, 101(3): 271-6.
    57 Shingo T, Sorokan ST, Shimazaki T, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci, 2001,21(15):9733-43.
    58 Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke, 2004,35(7):1732-7.
    59 Wang CH, Liang CL, Huang LT, et al. Single intravenous injection of naked plasmid DNA encoding erythropoietin provides neuroprotection in hypoxia-ischemia rats[J ]. Biochem Biophys Res Commun, 2004,314(4):1064-71.
    60 Iwai M, Cao G, Yin W, et al. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ ischemia in rats. Stroke, 2007; 38(10): 2795-803.
    61 Tanaka K, Wada N, Ogawa W. Chronic cerebral hypoperfusion induces transient reversible monoaminergic changes in the rat brain. Neurochem Res, 2000, 25(2):313- 20.
    62 Brezun JM, Daszuta A. Serotonin may stimulate granule cell proliferation in the adu1lt hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci, 2000, 12(1):391-6.
    63 Brezun JM, Daszuta A. Depletion in serotonin devreases neurogenesis in the dentate gyrus and the subventriclar zone of adult rats. Neuroscience,1999,89(4):999-1002.
    64 Toda H, TakahashiJ, Iwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett, 2001, 316(1):9 - 12.
    65 Kelly S, Bliss TM, Shah AK, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA. 2004, 101 (32):11839-44.
    66 Dobkin BH. Behavioral, temporal, and spatial targets for cellular transplants as adjuncts to rehabilitation for stroke. Stroke, 2007, 38(2 suppl): 832-9.
    67 Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neuralprogenitors. Cell, 2002, 110(4): 429-41.
    68 Benraiss A, Chmielnicki E, Lerner K, et al. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci, 2001, 21(17): 6718-31.
    69 Iwai M, Abe K, Kitagawa H, et al. Gene therapy with adenovirus-mediated glial cell line-derived neurotrophic factor and neural stem cells activation after ischemic brain injury. Hum Cell, 2001, 14(1):27-38.
    70 Sch?bitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007,38(7):2165-72.
    71 Culmsee C, Stumm RK, Sch?fer MK, et al. Clenbuterol induces growth factor mRNA, activates astrocytes, and protects rat brain tissue against ischemic damage. Eur J Pharmacol, 1999,379(1)33-45.
    72 Semkova I, Schilling M, Henrich-Noack P et al.Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF. Brian Res, 1996, 717(1-2):44-54.
    73徐正东,李贯绯. BDNF,NGF在大鼠局灶性脑缺血的表达变化及葛根素对其影响的实验研究.中国实验诊断学,2005,9(8):578-80.
    74许能贵,汪帼斌,余世锋,易玮,赖新生.电针对不同时间段局灶性脑缺血大鼠缺血区皮层BDNF表达的影响.中医药通报,2004,3(4):33-5.
    75赵晖,张秋霞,穆阳.候氏黑散对大鼠局灶性脑缺血再灌注损伤后神经生长因子表达的影响.中国实验方剂学杂志,2006,12(11):43-6.
    76 Song JH, Wang CX, Song DK, et al. Interferon gamma induces neurite outgrowth by up-regulation of p35 neuron-specific cyclin-dependent kinase5 activator via activation of ERK1/2 pathway. J Biol Chem, 2005, 280(13):12896-901.
    77 Qiao C, Den R, Kudo K, et al. Ginseng enhances contextual fear conditioning and neurogenesis in rats. Neurosci Res, 2005, 51(1): 31-8.
    78 Shen L, Zhang J. Ginsenoside Rg1 increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neurosci Lett, 2003, 344(1): 1-4.
    79陈东风,杜少辉,李伊为,等.龟板对局灶性脑缺血后神经干细胞的作用[J].广州中医药大学学报,2001,18(4):328-31.
    80高唱,吴伟康,王景周,等. HD02对慢性前脑缺血大鼠神干细胞增殖分化的影响[J ].中国临床康复, 2003, 7 (28):3796-8.
    81高唱,吴伟康,王景周,等. HD02对慢性前脑缺血大鼠神细胞凋亡的影响[J].中国临床康复,2003,7(22):3030-1.
    82高唱,吴伟康. HD02对前脑缺血大鼠神经干细胞增殖分化蛋白的作用[J].中国临床康复,2003,7(19):2648-9.
    83高唱,吴伟康. Akt信号通路在HD02抗慢性前脑缺血大鼠神经细胞凋亡中的作用[J].中国临床康复,2004,8(1):56-7.
    84廖春来,佟丽,陈育尧.补阳还五汤对大鼠脑缺血半暗区Caspase-3mRNA表达的影响[J ].中国临床康复, 2004, 8(19):3821-3.
    85刘柏炎,蔡光先,林琳,等.补阳还五汤对大鼠局灶性脑缺血后神经干细胞影响的初步研究[J].中国临床康复,2004,8(22):4532-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700