以玉米秸秆为主要原料的番茄无土栽培基质配方筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄品种金棚朝冠为试材,以腐熟的玉米秸秆为主要原料,与腐熟的玉米芯、稻壳、牛粪等按体积比组成4种复合基质配方(A、B、C和D),以烘干鸡粪和三元复合肥为追肥,以CK1(50%草炭+25%珍珠岩+25%蛭石)为有机生态型栽培基质对照,以CK2(常规土壤栽培)为基质栽培的对照,研究了不同基质配方对春夏季大棚番茄生长、产量、品质、养分吸收与分配的影响,并对基质理化性质、栽培过程中基质养分释放规律、生产成本和效益进行了分析。主要结果如下:
     (1)栽培前,已添加等量基肥的4种复合基质,其理化性质都在番茄无土栽培适宜的理想基质范围之内;栽培后,4种复合基质的pH值和电导率都有不同程度的升高,都在番茄无土栽培适宜的理想基质范围之内。
     (2)在番茄定植后的整个生育期内,4种复合基质中只有处理B(50%腐熟玉米秸秆+10%腐熟玉米芯+20%腐熟牛粪+20%河沙)番茄的株高和茎粗接近于CK1和CK2。
     (3)不同基质配方对番茄单株果数、平均单果重和单株产量影响较大,各处理小区产量与平均单果重和单株产量的趋势一致。4种复合基质中只有处理B和处理A的小区产量接近于CK1和CK2。
     (4)不同基质配方对番茄的品质有不同影响。与CK2相比,4种复合基质能够显著提高番茄果实糖酸比及可溶性固形物和维生素C的含量,降低果实硝酸盐含量,其中以处理B的效果最好。
     (5)在番茄定植后的整个生育期内,4种复合基质中碱解氮和速效钾含量一直呈下降趋势;速效磷含量先下降后升高,且只有处理B速效磷含量与定植前相比下降,其余3种处理均比定植前有不同程度的升高。4种复合基质中,处理B番茄植株对基质中大量营养元素吸收量最多,明显高于其他处理。拉秧时,4种复合基质番茄各营养器官中K的含量高于N和P的含量,且以果实和茎中的K含量较高;处理B番茄各营养器官中N、P、K的含量在4种复合基质中最高。
     (6)CK2因没有基质成本,产量也较高,在本试验中经济效益较高;CK1由于基质成本太高,导致经济效益不高;4种复合基质中处理B的经济效益最高,比CK1增加15%;处理B的生态效益远远高于CK1。
     本研究结果将为资源化利用农业废弃物(作物秸秆和畜禽粪便)替代草炭合成有机生态型栽培基质,解决设施蔬菜生产过程中土壤盐渍化和连作障碍提供理论依据和技术参考。
The experiment was carried out to investigate the effects of different substrate formula on the growth, yield, quality, and nutrient uptake along with its distribution of tomato under plastic tunnel during spring-summer season, by analysing the physicochemical properties, nutrient releasing rule in process of cultivation and cost along with the benefit of different substrate formulas. Four kinds of compound substrates, which using the composted corn straw as the main material, together with different ratios of composted corn cob, rice husk and cattle manure, combined with dried chicken manure and the ternary compound fertilizer as topdressing. Two treatments were used as control: 50% peat + 25% perlite + 25% vermiculite (CK1) was taken as the substrate control of organic ecotype culture and the conventional soil culture (CK2) was taken as the control of substrate culture. The main results were obtained as follows:
     (1) The equivalent basic fertilizer was added in all the four kinds of compound substrates before cultivation. Before cultivation the physicochemical properties of the four kinds of compound substrates were in the appropriate ranges of an ideal soilless culture substrate for tomato. The pH and EC of all the four kinds of compound substrates were increased in various ranges after cultivation, but both remained in the appropriate ranges of an ideal soilless culture substrate for tomato.
     (2) The plant height and stem diameter of tomato throughout the whole growth period of crop field setting, were found close to CK1 and CK2 only in the treatment B (50% composted corn straw + 10% composted corn cob + 20% composted cattle manure + 20% river sand).
     (3) Various substrate formulas reflected significant effects on the numebr of fruits, mean fruit weight and yield per plant of tomato. Comparing the mean fruit weight and the yield per plant in each treatment, the yield per plot showed the same trend. The yield per plot only in the treatment B and A were found close to CK1 and CK2.
     (4) Different substrate formulas had great effects on the fruit quality. Comparing with CK2, it was found that all the four kinds of compound substrates not only greatly improved the ratio of sugar to acid, solid matter and vitamin C, but also reduced the content of nitrate in tomato. The treatment B remained superior amongst all the four kinds of compound substrates.
     (5) Throughout the whole growth period of crop field setting, the contents of available N and K decreased gradually; the content of available P decreased at first and in the last period it showed slightly increase. The content of available P only in the treatment B was recorded less than the beginning. The uptake of macronutrients of tomato in the treatment B was significant higher as compared to the others. At the end of experiment in all the four kinds of compound substrates the content of K was noted higher than N and P in the different organs of plant, i.e. root, stem, leaf and fruit. The content of K was recored high especially in the fruit and stem. The contents of N, P and K in the root, stem, leaf and fruit during ending date in the treatment B were significantly high as compared to the other three kinds of compound substrates.
     (6) As the cost and highest yield were concerned, the benefit of CK2 was found the highest in this experiment. The benefit of CK1 was not good due to its expensive substrate cost. The treatment B showed the highest benefit, by increasing 15% as compared to CK1, amongst the four kinds of compound substrates.
     The results of this experiment will provide a theoretic basis and reference for solving soil salinization and continuous cropping obstacle by resource-utilizing agricultural residue (crop straw and livestock manure), which can be used to synthesize organic ecotype culture substrate instead of using peat.
引文
[1]李鸣雷,刘萌娟,谷洁.农业废弃物资源化利用的微生物学途径探讨[J].西安文理学院学报(自然科学版), 2007, 10(3): 14 ~ 17.
    [2]孙振钧,孙永明.我国农业废弃物资源化与农村生物质能源利用的现状与发展[J].中国农业科技导报, 2006, 8(1): 6 ~ 13.
    [3]秦清军.农业废弃物静态高温堆腐微生物菌剂研究[D].杨凌:西北农林科技大学, 2007.
    [4]阮建雯,蔡宗寿,张霞.云南省农业废弃物资源化利用状况及对策[J].中国沼气, 2008, 26(2): 48 ~ 51.
    [5]汪建飞,于群英,陈世勇,等.农业固体有机废弃物的环境危害及堆肥化技术展望[J].安徽农业科学, 2006, 34(18): 4720 ~ 4722.
    [6]蒋文新.农业废弃物制备高效天然高分子絮凝剂的研究[D].天津:天津科技大学, 2005.
    [7]杜静.利用农业有机废弃物进行大棚CO2施肥的发酵条件及可行性研究[D].杭州:浙江大学, 2003.
    [8]顾骅珊.农业废弃物循环利用模式探讨—以浙江嘉兴为例[J].生态经济, 2009, 1: 82 ~ 84, 157.
    [9]岳祥荣.浅谈农作物秸秆压块燃料的生产技术[J].科技风, 2008, 12: 54.
    [10]于承艳.农业有机度弃物生物发酵产生CO2过程的pH调节以及增施CO2对大棚蔬菜生长的影响[D].杭州:浙江大学, 2005.
    [11]胡明秀.农业废弃物资源化综合利用途径探讨[J].安徽农业科学, 2004, 32(4): 757 ~ 759, 767.
    [12]曾昭鹏.我国的农业生态环境问题及其治理对策[J].商业研究, 2003, 15: 171 ~ 172.
    [13]王韶华,刘昆鹏.我国畜禽养殖废弃物污染与资源化利用的探讨[J].科技咨询导报, 2007, 1: 130 ~ 131, 133.
    [14]吴继敏,刘玲,冀永生.畜禽废弃物的污染与防治措施[J].农业环境与发展, 2007, 6: 64 ~ 66.
    [15]高福平.循环农业中农业废弃物的再生利用[J].中国农村小康科技, 2008, 2: 66 ~ 68.
    [16]孙智君.基于农业废弃物资源化利用的农业循环经济发展模式探讨[J].生态经济(学术版), 2008, 1: 197 ~ 199, 207.
    [17]贾玉,陆迁,张德荣,等. 2006年陕西省农业废弃物存量估算[J].安徽农业科学, 2008, 36(32): 14279 ~ 14280.
    [18]崔明,赵立欣,田宜水,等.中国主要农作物秸秆资源能源化利用分析评价[J].农业工程学报, 2008, 24(12): 291 ~ 296.
    [19]徐琪.江苏循环农业发展的实践与创新[J].科技与经济, 2008, 21(5): 45 ~ 47.
    [20]徐文燕.我国农业循环经济发展的障碍分析与对策[J].学习与探索, 2007, 2: 147 ~ 150.
    [21]戴敬,周学金,郑伟,等.扬州市农业节能减排的潜力分析[J].中国环境管理干部学院学报, 2009, 19(1): 53 ~ 57.
    [22]陈奇榕,丁中文,翁伯琦.福建农业生物质产业发展对策研究[J].台湾农业探索, 2008, 3: 26 ~ 29.
    [23]刘荣章,翁伯琦,曾玉荣.农业循环经济:政策与技术[M].北京:社会科学文献出版社, 2006.
    [24]阮建雯,蔡宗寿,张霞.云南省农业废弃物资源化利用状况及对策[J].中国沼气, 2008, 26(2): 48 ~ 51.
    [25]尹芳,李鹏,张无敌.云南生物质资源及发电前景[J].云南电业, 2006, 3: 9 ~ 10.
    [26]曹超,罗波.探索农业废弃物资源化利用的道路[J].农村改革与发展, 2001, 3: 34 ~ 35.
    [27]李云林,刘蓓.云南农村作物秸秆综合利用研究[J].云南地理环境研究, 1999, 11(2): 32 ~ 38.
    [28]张继承,尹昌斌,周颖.河南省产业链延伸型循环农业模式研究[J].中国生态农业学报, 2008, 16(6): 1564 ~ 1567.
    [29]赵金龙,何玲,王军.谈循环农业的模式及其评价方法[J].安徽农业科学, 2007, 35(6): 1766 ~ 1767.
    [30]张金水,同延安,云伟祥,等.陕西省农业废弃物养分资源肥料化利用现状与前景分析[J].磷肥与复肥, 2008, 23(5): 52 ~ 54.
    [31]梁连友,呼有贤,李鸣雷.渭北果区果—菇高效生态农业模式研究[J].陕西农业科学, 2006, 1: 18 ~ 20.
    [32]杨莉,谢宇,胡立明.花生壳在食品、医药、化工方面的研究与开发[J].花生学报, 2008, 37(3): 24 ~ 28.
    [33]曹青,吕永康,鲍卫仁,等.玉米芯制备高比表面积活性炭的研究[J].林产化学与工业, 2005, 25(1): 66 ~ 68.
    [34]牟晓红.向日葵籽壳生产木糖醇的工艺及方法[J].化工技术与开发, 2008, 37(8): 44 ~ 46.
    [35]钱伯章.我国纤维素乙醇开发进展[J].化工新型材料, 2009, 37(3): 41 ~ 43.
    [36]岳祥荣.浅谈农作物秸秆压块燃料的生产技术[J].科技风, 2008, 12: 54.
    [37]涂启梁,付时雨,詹怀宇.甘蔗渣综合利用的研究进展[J].中国资源综合利用, 2006, 24(11): 13 ~ 16.
    [38]邓干然,张劲,连文伟,等.菠萝叶渣生产有机肥技术初探[J].中国热带农业, 2007, 1: 55 ~ 56.
    [39]龙明华,唐小付,于文进,等.蔗渣处理物作西瓜、甜瓜栽培基质的效应[J].当代蔬菜, 2005, 6: 33 ~ 34.
    [40]许凤,孙润仓,詹怀宇.农林废弃物在工业废水处理中的应用[J].造纸科学与技术, 2003, 22(3): 1~ 3, 16.
    [41]卜玉山.不同覆盖物的农田生态效应与作物增产机理研究[D].太谷:山西农业大学, 2004.
    [42]叶安珊.节能减排背景下看我国循环经济农业废弃物资源化问题[J].农业环境与发展, 2008, 5: 29 ~ 31.
    [43]张焕利.漫谈日本的环境保护[J].生态经济, 2003,2: 64 ~ 67.
    [44]陈彤.日韩农地环保事业的借鉴[J].亚太经济, 2004, 5: 28 ~ 30, 52.
    [45]钱维.巴西将启动植物纤维素乙醇的商业化生产[J].中国林业产业, 2008, 10: 69.
    [46]龙斌.巴西用农业废科生产出“绿色”水泥[J].功能材料信息, 2008, 5(5): 14.
    [47] Moral R., Paredes C., Bustamante M.A., et al. Utilization of manure composts by high-value crops: Safety and environmental challenges [J]. Bioresource Technology, (2009), doi: 10.1016/j. biotech. 2008. 12. 007
    [48] Opstal B.V. The use of compost as greenhouse growth media [R]. Toronto: Ontario Ministry of Environment and Energy, 1996.
    [49] Reddy N., Yang Y.Q. Properties and potential applications of natural cellulose fibers from the bark of cotton stalk [J]. Bioresource Technology, 2009, 100: 3563 ~ 3569.
    [50] Reddy N., Yang Y.Q. Natural cellulose fibers from soybean straw [J]. Bioresource Technology, 2009,100: 3593 ~ 3598.
    [51] Cantrell K.B., Ducey T., Ro K.S., et al. Livestock waste-to-bioenergy generation opportunities [J]. Bioresource Technology, 2008, 99: 7941 ~ 7953.
    [52] Camassola M., Dillon A.J.P. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum [J]. Industrial Crops and Products, 2009, 29: 642 ~ 647.
    [53] Sud D., Mahajan G., Kaur M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions– A review [J]. Bioresource Technology, 2008, 99: 6017 ~ 6027.
    [54] Huang Y.F., Kuan W.H., Lo S.L., et al. Total recovery of resources and energy from rice straw using microwave-induced pyrolysis [J]. Bioresource Technology, 2008, 99: 8252 ~ 8258.
    [55]刘艳鹏.不同肥料类型对基质中微生物、酶和番茄生长的影响[D].北京:中国农业科学院研究生院, 2007.
    [56]李建勇.日光温室有机基质型无土栽培番茄的施肥效应[D].泰安:山东农业大学, 2004.
    [57]朱国鹏,王玉彦,刘士哲,等.蔬菜设施栽培土壤的盐分累积及其调控[J].热带农业科学, 2002, 22(3): 57 ~ 61, 69.
    [58]蒋卫杰,余宏军,刘伟.有机生态型无土栽培技术在我国迅猛发展[J].中国蔬菜, 2000,增刊: 35 ~ 39.
    [59]蒋卫杰,刘伟,余宏军,等.克服温室大棚连作障碍的有效技术—有机生态型无土栽培技术[J].现代农业, 1999, 1: 6 ~ 7.
    [60]陈新平,张福锁.北京地区蔬菜施肥的问题与对策[J].中国农业大学学报, 1996, 1 (5): 63 ~ 66.
    [61]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报, 1995, 1(2): 80 ~ 87.
    [62]屈冬玉,胡鸿,张德纯.绿色园艺—21世纪中国园艺业的发展方向[J].园艺学报, 2001, 28 (增刊): 711 ~ 715.
    [63]中国绿色食品发展中心.绿色食品标准[M].北京:中华人民共和国农业部, 1995.
    [64]张跃群.不同配比的中药渣基质对番茄生长、产量及品质的影响[D].南京:南京农业大学, 2004.
    [65]曹红星.黄瓜无土栽培有机基质配方和肥料筛选研究[D].杨凌:西北农林科技大学, 2005.
    [66] Agelopoulos N.G., Chamberlain K., Pickett J.A. Factors affecting volatile emissions of intact potato plants, Solanum tuberosum: variability of quantities and stability of ratios [J]. J. Chem. Ecol., 2000, 26: 297 ~ 512.
    [67] Yu J.Q., Komada H. Hinoki (Chamaecyparis obtusa) bark, a substrate with anti-pathogen properties that suppress some root disease of tomato [J]. Scientia Hort., 1999, 81: 13 ~ 24.
    [68]王倩.西瓜连作障碍中自毒作用及酚酸类物质作用机理的研究[D].北京:中国农业大学, 2002.
    [69]蒋卫杰.我国无土栽培的现状与展望[J].农村实用工程技术, 1997, 7: 2.
    [70]段崇香,于贤昌.日光温室基质栽培黄瓜化肥吸收利用规律的研究[J].西北农业学报, 2004, 13(3): 110 ~ 113.
    [71]高俊杰,于贤昌,焦自高,等.施肥量对有机基质栽培厚皮甜瓜产量及硝酸盐含量的影响[J].山东农业科学, 2004, 1: 58 ~ 59.
    [72]段崇香,于贤昌.有机基质栽培黄瓜化肥施用技术的研究[J].植物营养与肥料学报, 2003, 9(2): 238 ~ 241.
    [73]夏秀波.水分对有机基质栽培番茄生长、生理特性、产量品质及水分利用率的影响[D].泰安:山东农业大学, 2007.
    [74]李天林,沈兵,李红霞.无土栽培中基质培选料的参考因素与发展趋势(综述)[J].石河子大学学报(自然科学版), 1999, 3(3): 250 ~ 258.
    [75]秦新惠,郁继华.樱桃番茄有机生态型无土栽培基质筛选试验研究[J].农业工程技术(温室园艺), 2009, 3: 42 ~ 43.
    [76]胡学玉,刘寒迁,张继铭.菠菜有机生态型基质栽培施肥技术研究[J].长江蔬菜, 2003, 2: 34 ~ 35.
    [77]谢占周,付长奇,朱彬梅.彩色甜椒有机生态型无土栽培技术[J].四川农业科技, 2008, 11: 37.
    [78]孙海燕,姚银安,牟东岭.观赏南瓜有机生态型栽培基质配方的筛选[J].山地农业生物学报, 2008, 27(4): 301 ~ 304.
    [79]李孝良,汪建飞,王丹,等.基质配比对无土栽培生菜产量和品质的影响[J].安徽农业科学, 2008, 36(6): 11291 ~ 11292.
    [80]刘本文,许宇恒.空心菜有机生态型无土栽培技术[J].现代农业科技, 2008, 20: 42.
    [81]张淑霞,孙兆法,宋朝玉,等.连栋温室小型西瓜有机生态型无土栽培技术[J].安徽农学通报, 2008, 14(20): 182, 188.
    [82]董光威,秦新惠.切花非洲菊有机生态型无土栽培技术[J].中国果菜, 2008, 4: 12 ~ 13.
    [83]赵亮,郭玉珍,丁明元.日光温室辣椒有机生态型无土栽培技术[J].中国蔬菜, 2007, 2: 47 ~ 48.
    [84]杜慧芳,程智慧,薛晓娜.有机和混合基质配方对青蒜生长发育及营养品质的影响[J].西北农林科技大学学报(自然科学版), 2006, 34(10): 91 ~ 95.
    [85]潘凯,王琳,陈克农.生稻壳在有机生态型无土栽培中的应用[J].北方园艺, 2005, 2: 60 ~ 61.
    [86]雷泽湘,雷中英,费永俊,等.食用仙人掌有机生态型栽培基质配方筛选[J].安徽农业科学, 2006, 34(1): 32 ~ 33, 44.
    [87]王成业,袁蕊,赵金华.生菜有机生态型无土栽培技术[J].四川农业科技, 2007, 11: 34.
    [88]蒲兴秀,林存峰.温室茄子有机生态无土栽培基质配方筛选[J].中国蔬菜, 2005, 12: 32 ~ 33.
    [89]王莉娜.日光温室茄子有机生态型无土栽培技术[J].甘肃农业科技, 2008, 3: 57 ~ 58.
    [90]孙廷相,邹志荣,何军林.玉米芯育苗对番茄幼苗生长发育的影响[J].长江蔬菜, 1991, 1: 32 ~ 34.
    [91]芦波,潘凯,杨丽.黄瓜有机生态型无土栽培基质配方筛选[J].农业工程技术(温室园艺), 2007, 5: 34 ~ 35.
    [92]李方华,周海霞.日光温室黄瓜有机生态型无土栽培技术[J].河北农业科技, 2007, 4: 19.
    [93]唐懋华,李英,王玮.水果黄瓜有机生态型无土栽培技术[J].上海蔬菜, 2008, 4: 39 ~ 40.
    [94]周艳丽,程智慧,孟焕文,等.有机基质配比对番茄生长发育及产量和品质的影响[J].西北农林科技大学学报(自然科学版), 2005, 33(1): 79 ~ 82.
    [95]郭庆茹,李学斌,王星红,等.石嘴山市日光温室番茄有机生态型无土栽培技术[J].甘肃农业科技, 2007, 1: 46 ~ 47.
    [96]舒英杰,周玉丽.河西地区日光温室番茄有机生态型无土栽培技术[J].长江蔬菜, 2004, 6: 16 ~ 17.
    [97]赵文怀,张国森,杨茂元.温室甜瓜有机生态型无土栽培[J].上海蔬菜, 2003, 3: 31 ~ 32.
    [98]张敏强,曹淑玲,魏鸿辉,等.网纹甜瓜有机生态型无土栽培技术[J].北京农业, 2004, 8: 19.
    [99]郭图强.彩椒有机生态型无土栽培基质的筛选[J].中国农学通报, 2005, 21(5): 278 ~ 280, 283.
    [100] Chong C. Apple pomace as an amendment in container growing media [J]. Hort. Science., 1992, 27(10): 1138.
    [101] Reis M., Inacio H., Rosa A., et al. Grape marc compost as an alternative growing media for greenhouse tomato [J]. Acta Horticulturae, 2001, 554: 75 ~ 81.
    [102] Bugee G. J. Growth of rudbeckia and leaching of nitrates in potting media amended with composted coffee processing residue, municipal solid waste and sewage sludge [J]. Compost Science and Utilization, 1995, 2(5 ~ 6): 63 ~ 67.
    [103] Hensler K. Lkenef based fiber matasa substrate for establishing soillessed [J]. Hort Technology, 1998, 8(2): 171 ~ 175.
    [104] Shbata M., Hayakawal. Artificial soil and construction of bed soil for potting green using artificial soil [J]. United States patent, 1989, 4: 339, 812.
    [105] Calkins J.B., Jarvis B.R., Swanson B. T. Compost and rubber tire chips as peat substrates in nursery container media: growth effect [J]. Journal of Environmental Horticulture, 1997, 15(2): 88 ~ 94.
    [106] Pickering J. An alternative to Peat for Potting [J]. Garden London, 1997, 122(6): 428 ~ 429.
    [107]杨华.陇东地区日光温室番茄无土栽培技术研究[D].杨凌:西北农林科技大学, 2007.
    [108]白纲义.有机生态型无土栽培营养特点及其生态意义[J].中国蔬菜, 2000, S1: 40 ~ 45.
    [109] Jiang W.J., Liu W., Yu H.J. Dynamic changes of pH and EC value in substrate culture using directly solid fertilizers instead of nutrient solution [J]. Acta Horticulture, 2003, 609: 453 ~ 458.
    [110]郑光华,蒋卫杰.消毒鸡粪在樱桃番茄无土栽培中的应用效果[J].北方园艺, 1994, 4: 5 ~ 7.
    [111]刘淑英,李小刚,王平,等.兰州市安宁区保护地蔬菜施肥状况的调查[J].甘肃农业大学学报, 1998, 33(2): 190 ~ 193.
    [112]刘更另.有机肥料的生产使用是一项社会产业[J].中国农业科学, 1988, 21(5): 1 ~ 6.
    [113]郎家庆,姜娟,何随成,等.当前肥料发展的趋势及特点[J].杂粮作物, 2003, 23(2): 111 ~ 113.
    [114]向志民,何敏.有机肥资源质量分析与评价[J].陕西农业科学, 2000, 5: 14 ~ 16.
    [115] Martin J.P., Haider K., Kassim G. Biodegradation and stabilization after 2 years of specific crop lignin and polysaccharide carbons in soils [J]. Soil Society American journal, 1980, 44: 1250 ~ 1255.
    [116] Summerell B.A., Burgess L.W. Decomposition and chemical composition of cereal straw [J]. Soil Biology and Biochemistry, 1989, 21: 551 ~ 559.
    [117]刘鹏程,丘华吕.不同方式秸秆还田培肥土壤的模拟试验[J].土壤肥料, 1994, 6: 19 ~ 23.
    [118]胡学玉,刘寒迁,张继铭.菠菜有机生态型基质栽培施肥技术研究[J].长江蔬菜, 2003, 2: 34 ~ 35.
    [119]段崇香,于贤昌.有机基质栽培黄瓜化肥施用技术的研究[J].植物营养与肥料学报, 2003, 9(2): 238 ~ 241.
    [120]郭世荣.固体栽培基质研究、开发现状及发展趋势[J].农业工程学报, 2005, 21(增刊): 1 ~ 4.
    [121]郭世荣.栽培基质研究现状及今后的发展趋势(上)[J].农村实用工程技术(温室园艺), 2005, 10: 16 ~ 17.
    [122]郭世荣.栽培基质研究现状及今后的发展趋势(下)[J].农村实用工程技术(温室园艺), 2005, 11: 16 ~ 17.
    [123]李霞,吕国华,孟胜.基质开发的研究现状、存在问题及发展趋势[J].安徽农学通报, 2005, 11(7): 28 ~ 29.
    [124]李谦盛,郭世荣,李式军.基质EC值与作物生长的关系及其测定方法比较[J].中国蔬菜, 2004, 1: 70 ~ 71.
    [125]张荣盛,张鸿雁,孙剑.专用基质开发与应用[J].中国花卉园艺, 2004, 22: 40 ~ 41.
    [126]周跃华,聂艳丽,赵永红.国内外固体基质研究概况[J].中国生态农业学报, 2005, 13(4): 40 ~ 43.
    [127]蒋卫杰.“有机生态型无土栽培体系与技术开发研究”通过成果鉴定[J].中国蔬菜, 2002, 1: 43.
    [128]杨亚新.混合基质的选择和应用[J].中国花卉园艺, 2005, 22: 57 ~ 58.
    [129]高新昊.农作物秸秆资源化利用及日光温室番茄长季节栽培肥水管理技术[D].南京:南京农业大学, 2006.
    [130] Schmilewski G.K. Quality control and use of composted organic wastes as components of growing media in the Federal Republic of Germany [J]. Acta Horticulture, 1991, 294: 89 ~ 98.
    [131] Carlile W.R., Papadopoulos A.P. The effects of environment lobby on the selection and use of growing media [J]. Acta Horticulture, 1999, 481: 587 ~ 596.
    [132]田吉林,汪寅虎.设施无土栽培基质的研究现状、存在问题与展望(综述)[J].上海农业学报, 2000, 16(4): 87 ~ 92.
    [133]李谦盛,郭世荣,李式军.利用工农业有机废弃物生产优质无土栽培基质[J].自然资源学报, 2002, 17(4): 515 ~ 519.
    [134] Shahidul Islam Md., Khan S., Ito T., et al. Characterization of the physic-chemical properties of environmentally friendly organic substrates in relation to rockwool [J]. Hort. Sci. & Biotech, 2002, 77(2): 143 ~ 148.
    [135] Screenivas K., Michael R., Robert H. Coconut husk and processing effects on chemical and physical properties of coconut coir dust [J]. Hort Science, 1999, 34(1): 88 ~ 90.
    [136] George E., Edwin R., Kimberly A. Use of compost products for ornamental crop production: research and grower experiences [J]. Hort Science, 1998, 33(6): 941 ~ 944.
    [137] Blindeman L. Substrate research for roses: evaluation of different types of coir. Special issue: cut flowers [J]. Verbondsnieuwa, 1999, 43: 20, 29 ~ 31.
    [138] Blom T., Papadopoulos A. Coco coir versus granulated rockwool and arching versus traditional harvesting of roses in a recirculating system [J]. Acta Hort, 1999, 481: 503 ~ 507.
    [139]黄国锋,钟流举,张振钿,等.有机固体废弃物堆肥的物质变化及腐熟度评价[J].应用生态学报, 2003, 14(5): 813 ~ 818.
    [140] Golueke C.G. Principle of biological resource recovery [J]. Biocycle, 1981, 22: 36 ~ 40.
    [141] Gaecia C., Cost H. F., Ayuso M. Evaluation of maturity of municipal waste compost using simple chemical characterics [J].Communication in Soil Science and Plant Analysis, 1992, 23: 1501 ~ 1512.
    [142] Jiminez E.I., Garcia V. P. Evaluation of city reuse compost maturity: a review [J]. Biological Waste, 1989, 27: 115 ~ 142.
    [143]李承强,魏源送,樊耀波,等.堆肥腐熟度的研究进展[J].环境科学进展, 1999, 7(6): 1 ~ 12.
    [144]魏源送,李承强,樊耀波,等.环境温度对污泥堆肥过程的影响[J].环境污染治理技术与设备, 2000, 1 (6): 45 ~ 52.
    [145]李艳霞,王敏健,王菊思.有机固体废弃物堆肥的腐熟度参数及指标[J].环境科学, 1999, 20(2):98 ~ 103.
    [146]陈双臣.大棚番茄越夏长季节高产栽培基质的筛选与水肥量化的研究[D].杨凌:西北农林科技大学, 2003.
    [147]袁四清.改进型有机生态无土栽培技术[J].长江蔬菜, 2000, 7: 12 ~ 13.
    [148]赵文怀,张国森,杨茂元.温室甜瓜有机生态型无土栽培技术[J].农业科技与信息, 2002, 5: 14 ~ 15.
    [149]刘金华.有机生态型无土栽培小西瓜周年生产技术[J].上海蔬菜, 2003, 3: 32 ~ 33.
    [150]程斐,孙朝晖,赵玉国,等.芦苇末有机栽培基质的基本理化性能分析[J].南京农业大学学报, 2001, 24(3): 19 ~ 22.
    [151]郭世荣,李式军,程斐,等.有机基质培在蔬菜无土栽培上的应用研究[J].沈阳农业大学学报, 2000, 31(1): 89 ~ 92.
    [152]秦嘉海,陈广泉,陈修斌.糠醛渣混合基质在番茄无土栽培中的应用[J].中国蔬菜, 1997, 4: 13 ~ 15.
    [153]曹毅.培养基质及氮磷肥对蔬菜幼苗素质的影晌[J].佛山科学技术学院学报(自然科学版), 1994, S1: 43 ~ 47.
    [154]蒋卫杰,刘伟,余宏军,等.我国有机生态型无土栽培技术研究[J].生态农业研究, 2000, 8(3): 17 ~ 21.
    [155]李静,赵秀兰,魏世强,等.无公害蔬菜无土栽培基质理化特性研究[J].西南农业大学学报, 2000, 22(2): 112 ~ 115.
    [156]唐俊昌,邹志荣,程智慧.高效设施园艺生产技术大全[M].西安:西安地图出版社, 2001.
    [157]连兆煌.无土栽培原理与技术[M].北京:中国农业出版社, 1994.
    [158]李酉开.土壤农业化学常规分析方法[M].北京:科学出版社, 1983.
    [159]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000.
    [160]高俊凤.植物生理学实验技术[M ].北京:高等教育出版社, 2005.
    [161]孙群,胡景江.植物生理学研究技术[M].西北农林科技大学出版社, 2006.
    [162]郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨工业大学出版社, 2004.
    [163]高新昊,张志斌,郭世荣.玉米与小麦秸秆无土栽培基质的理化性状分析[J].南京农业大学学报, 2006, 29(4): 131 ~ 134.
    [164]王建湘,周杰良.农作物秸秆在有机生态型无土栽培中的应用研究[J].北方园艺, 2007, 4: 7 ~ 9.
    [165]蒋卫杰,郑光华,汪浩,等.有机生态型无土栽培技术及其营养生理基础[J].园艺学报, 1996, 26(2): 139 ~ 144.
    [166]陈丽平.辣椒有机生态型无土栽培效应的研究[D].杨凌:西北农林科技大学, 2000.
    [167] Hsieh, S.C. Concept and Practice of natural farming in subtropics [J]. Natural Farm, 1992, 4: l.
    [168]吴建繁,王运华,贺建德,等.京郊保护地番茄氮磷钾肥料效应及其吸收分配规律研究[J].植物营养与肥料学报, 2000, 6(4) : 409 ~ 416.
    [169]蔡邵珍,陈振德.蔬菜的营养与施肥技术[M].青岛:青岛出版社, 1997.
    [170] Wilson D.P., Carlile W.R. Plant growth in potting media containing worm-worked duck waste [J]. Acta horticulture, 1989, 238: 502 ~ 519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700