奶牛瘤胃微生物蛋白酶和二肽基肽酶Ⅳ基因的筛选与多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在日粮蛋白质的降解过程中,蛋白酶是蛋白质水解为肽或氨基酸的关键酶,由于受到纯培养技术的影响,瘤胃内分泌蛋白酶的细菌和各种蛋白酶的基因信息知之甚少。本试验旨在利用蛋白酶选择性培养基从瘤胃微生物Fosmid文库中筛选出含蛋白酶活性的克隆子,通过生物信息学分析获得这些克隆子的基因信息。应用脱脂乳粉和大豆蛋白粉两种蛋白酶选择性培养基,从30000个克隆中筛选得到14个具有蛋白酶活性的阳性克隆。利用福林酚试剂法检测14个蛋白酶克隆子的酶活力,结果表明每个克隆子分别具有不同的蛋白质分解能力。以酪蛋白为底物的克隆子酶活力介于0.59-2.74U/mg之间;以大豆蛋白粉为底物的克隆子酶活力在0.70-7.19U/mg之间。pro10F末端序列与金属肽酶匹配度为54%,属于肽酶M13家族,且该克隆蛋白酶最适pH值为7.0。选取两个克隆利用鸟枪测序法进行测序,经GenMark分析,共获得了53个不同的蛋白序列,其中有两个属于不同的肽酶家族的序列片段。
     为了研究奶牛瘤胃内参与蛋白质降解过程中二肽基肽酶Ⅳ(dipeptidyl peptidases Ⅳ,DPP-Ⅳ)的序列特征和酶学性质,从奶牛瘤胃微生物Fosmid文库中利用简并引物筛选含DPP-Ⅳ的阳性克隆。提取阳性克隆粗酶液,利用Gly-Pro-pNA底物检测肽酶活性。筛选后获得10个含有DPP-Ⅳ的阳性克隆(命名为DP1-DP10)。Fosmid末端序列经BLASTX比对后,结果表明78%的序列可以与数据库的已知序列相匹配,但相似度变化较大(44%-94%)。DPP-Ⅳ序列经BioEdit比对后,结果表明均含有N端保守区域(D-W-V-Y-E-E-E)和C端催化区域(G-W-S-Y-G-G)。酶活力检测发现DP7肽酶活力最高,为6.88U·mg-1。提取质粒等量混合后用Illumina HiSeq2000进行建库测序,经过Glimmer软件分析,获得3591个基因,对这些基因进行功能注释,发现参与多种代谢途径的基因,尤其是参与蛋白质降解过程的基因,其中存在两个不同的DPP-Ⅳ基因,为瘤胃蛋白质代谢的进一步研究提供了基础信息。
     选取10个阳性克隆中粗酶液活性最高的克隆DP7进行DPP-Ⅳ基因的研究。利用已有DP7中DPP-Ⅳ基因的序列两端设计引物,对DP7质粒进行直接测序,并对DPP-Ⅳ基因进行原核表达。结果发现DP7克隆中DPP-Ⅳ基因全长为2298bp,可编码756个氨基酸残基。利用预测的DPP-Ⅳ基因序列与GenBank数据库中的序列进行BLASTP比较,发现相似性最高的序列来源于Pontibacter sp的序列(46%),依次是Sphingobacterium sp(46%)、Solitalea canadensis(46%)、Marinilabilia sp(45%)和Cecembia lonarensi(s45%)。该序列具有DPP-Ⅳ三联体的催化结构(Ser633、Asp708和His740),且比其他的序列多了一段从422位到425位插入的氨基酸序列,说明该序列是一种新的DPP-Ⅳ基因序列。对该序列设计表达引物进行序列扩增,获得DPP-Ⅳ基因表达序列,经原核表达和纯化后,获得了DP7克隆中DPP-Ⅳ的目的蛋白,可继续进行DPP-Ⅳ酶学性质的研究。
     为了解豆粕降解菌中DPP-Ⅳ基因的序列结构多样性,本试验利用尼龙袋法分别收集0、12、24和48h豆粕降解菌,提取总DNA,PCR扩增16S rDNA V3区进行变性梯度凝胶电泳分析,结果表明与0h相比,12、24和48h的豆粕降解菌存在明显的变化,0h细菌的菌群条带比其他时间点的菌群条带丰富。选取12h的豆粕降解菌作为DPP-Ⅳ基因简并引物的扩增模板,PCR产物克隆测序后,获得5个克隆的DPP-Ⅳ基因序列;经BioEdit软件对序列进行比对,分析发现这5条序列存在DPP-Ⅳ的保守区序列(D-W-V-Y-E-E-E),但催化区(G-X-S-X-X-G)存在S→T或S→R的变异。对不同时间点的豆粕降解菌DNA混合样品进行DPP-Ⅳ全长基因的扩增,获得20个克隆的DPP-Ⅳ基因的全长序列。20个克隆中DPP-Ⅳ基因序列长度均为2193bp,都具有DPP-Ⅳ的活性位点序列(G-X-S-X-X-G)和催化三联体结构,但在保守序列(D-W-V-N-E-E-E)区出现2个变异位点(V→A和N→S)。这4个变化位点的存在是否影响DPP-Ⅳ的酶活性有待进一步研究。
     为了揭示体外培养条件下厌氧培养菌中DPP-Ⅳ基因多样性及莫能菌素对产生DPP-Ⅳ基因细菌的影响,本试验以酪蛋白为唯一氮源(P组),另一组在以酪蛋白为唯一氮源的基础上添加莫能菌素(M组),分别接种瘤胃液后,进行厌氧培养。培养12h后,收集培养液中的微生物,提取基因组DNA。利用设计的DPP-Ⅳ基因引物,通过PCR构建DPP-Ⅳ基因文库,挑取克隆测序后,获得66条DPP-Ⅳ基因序列;经Mothur软件分析发现23个OTU,其中OTU9可能是对莫能菌素敏感的蛋白降解菌的DPP-Ⅳ基因。对P和M组的厌氧培养菌进行DPP-Ⅳ基因的定量研究,发现P组的DPP-Ⅳ基因的拷贝数极显著高于M组(P<0.01)。这些结果表明莫能菌素影响了产DPP-Ⅳ细菌的数量。
During the degradative processing of diet protein, proteases are the key enzymes which hydrolyzeprotein to peptide or amino acid. However, little genetic information of protease originating from rumenmicrobiota is known due to the limitation of pure-cultured methods. To screen protease clones fromrumen microbial Fosmid library,14positive clones with protease activity were got by screening30000clones from skimmed milk powder's and soy protein powder's selective medium of proteases. Thezymolytic ability of protease from fourteen clones was measured by Folin-Phenol reagent method. Theresults showed that each clone had its unique ability of protease decomposition. The enzyme activityranged from0.59to2.74U/mg and from0.70to7.19U/mg with casein and isolated soybean protein asthe substrate respectively. The end sequences of pro10F have54%similarity with metal peptidasebelonged to peptidase family M13, and the optimal pH of the protease was7.0. Inserted fragments fromtwo clones were sequenced using shotgun sequencing method, and53different protein sequences weregained by GenMark analysis, two of which belonged to different peptidases family.
     To characterize dipeptidyl peptidase Ⅳ (DPP-Ⅳ), the DPP-Ⅳ degenerate primers were used toscreen rumen microbial Fosmid library. The peptidase activity of extract crude enzyme from thepositive clones was measured using Gly-Pro-pNA as a substrate. Ten positive clones named DP1-DP10containing DPP-Ⅳ fragment were obtained.78%of the Fosmid end sequences could match with theknown genes (similarity44%-94%). DPP-Ⅳ sequences contained N-conservative region(D-W-V-Y-E-E-E) and C-catalytic domain (G-W-S-Y-G-G). The activity of DP7peptidase was highest(6.88U/mg). Plasmid of ten clones were extracted, mixed equal amounts and built screening pool, thensequenced by Illumina HiSeq2000.3591genes were obtained by Glimmer analysis. These genefunctions were annotated, and the results showed that these genes take part in various metabolicpathways. Particularly, two different DPP-Ⅳ genes participated in protein degradation. These resultsprovided basic information for further study of protein metabolic in the rumen.
     The DPP-Ⅳ gene of DP7clone which had the highest peptidase activity of crude enzyme from tenclones was studied. Two primers were designed using DPP-Ⅳ gene (GenBank: JX466878) from DP7clone, plasmid of DP7clone was direct sequenced. The structural feature of DPP-Ⅳ gene was analyzedby bioinformatics method and DPP-Ⅳ gene was expressed in BL21competent cell. The analysis ofDPP-Ⅳ gene sequence showed it had one ORF with2298bp length (756amino acid residue)containing the characteristic catalytic domain G-W-S-F-G-G found in all known DPP-Ⅳs and theconserved region D-W-V-Y-E-E-E. The BLASTP analysis was done using the prediction of the DPP-Ⅳgene sequence comapring with GenBank database, and the results showed the highest similarity ofsequences derived from the sequence of Pontibacter sp DPP-Ⅳ (46%identity) followed bySphingobacterium sp DPP-Ⅳ (46%), Solitalea canadensis DPP-Ⅳ (46%), Marinilabilia sp (45%)andCecembia lonarensis (45%). DPP-Ⅳ had the identification of the catalytic triad (Ser-633, Asp-708andHis-740), and inserted with a length of amino acid sequence from422to445than that of other organisms. The results demonstrated DPP-Ⅳ gene obtained from DP7was a new sequence of DPP-Ⅳ.The DPP-Ⅳ gene expression sequence was obtain by PCR amplification from DP7clones usingsequence expression primer, and the target protein of DPP-Ⅳ was acquired by prokaryotic expressionand purification. The molecular weight of target protein was consistent with the predicted molecularweight (78kDa) indicating that could proceed with the study of DPP-Ⅳ enzymatic properties.
     To understand the diversity of DPP-Ⅳ gene sequence structure derived from soybean mealdegradation bacteria, soybean meal degradation bacterium was collected at different time points (0,12,24and48h) by nylon bags technique. The total DNA was extracted, and then16S rDNA V3region wasamplified and analyzed using denaturing gel gradient electrophoresis (DGGE). Result showed thatsoybean meal degradation bacteria had obvious change at12,24and48h time points comparing to0h.Bands of bacteria flora at0h was richer than other time points, while bands at12h was larger than that24and48h. DNA of soybean meal degradation bacteria at12h was select as amplify templates ofDPP-Ⅳ gene degenerate primers. Five sequences of DPP-Ⅳ gene were obtained by PCR amplification,cloning and sequencing. ClustalW alignment showed that all five sequences had a conserved region(D-W-V-Y-E-E-E), but the characteristic catalytic domain (G-W-S-F-G-G) contained two mutations(S→T or R). By gene amplification, the full-length sequences of DPP-Ⅳ gene were acquired fromDNA mixed samples of soybean meal degradative bacteria at different time points. The length ofDPP-Ⅳ genes in twenty clones were2193bp. It contained the characteristic catalytic domain(G-W-S-F-G-G) and the catalytic triad composition, but the conserved region (D-W-V-Y-E-E-E) hadtwo mutations (V→A and N→S). The four mutations needed to be further study on whether affect theactivity of DPP-Ⅳ.
     To reveal the genetic diversity of anaerobic bacterial DPP-Ⅳ gene in vitro cultivation and theinfluence of monensin in bacteria including DPP-Ⅳ gene, there were two group: one group substratewas casein (P), other group added monensin on the basis of casein (M). Anaerobic culture was doneafter inoculated with rumen fluid respectively. And then anaerobic bacterium was collected after12hculture and its DNA was extracted. DPP-Ⅳ gene library was established through PCR, and sixty-sixsequence of DPP-Ⅳ gene were obtained by sequencing the picking clones. Twenty-three operationaltaxonomic unit (OTU) were found by Mothur software analysis, and OTU9might be a DPP-Ⅳ gene ofprotein degradation bacteria sensitising to monensin. The copy number of DPP-Ⅳ gene in P group wassignificantly higher than that of M group (P<0.01) by quantitative analysis. These results suggested thatmonensin affected the number of bacteria included DPP-Ⅳ gene.
引文
1.王小芬,王伟东,高丽娟,等.变性梯度凝胶电泳在环境微生物研究中的应用详解.中国农业大学学报,2008,11(5):1–7.
    2.王佳堃,安培培,陈振明,等.湖羊瘤胃微生物Fosmid文库的构建和分析.动物营养学报,2010,22(20):341–345.
    3.王梦芝,喻礼怀,王洪荣,等.不同蛋白质饲料对瘤胃微生物体外发酵和群体结构的影响.动物营养学报,2009,21(5):673–679.
    4.中华人民共和国专业标准(SB/T10317-1999):蛋白酶活力测定法.
    5.冯国栋,许艳艳,吕丹青,等.一个新型湖羊瘤胃木聚糖酶基因的克隆和鉴定.科技通报,2010,26(3):345–349.
    6.刘艳平,程在全,殷富有,等.云南药用野生稻BI BAC文库混合克隆池制备及筛选.生物技术通报,2012,2:117–120.
    7.朱雅新,东秀珠,黄力,等.瘤胃元基因组BAC文库研究.中国农业科技导报,2007,9(5):53–57.
    8.朱雅新,王加启,马润林,等.荷斯坦奶牛瘤胃微生物元基因组BAC文库的构建与分析.微生物学报,2007,47(2):213–216.
    9.吴锡川,杨舒黎,苟潇,等.宏基因组学及其在瘤胃微生物中的应用研究进展.中国畜牧兽医,2011,38(12):106–110.
    10.李旦,王加启,卜登攀,等.荷斯坦奶牛瘤胃微生物元基因组Fosmid库的构建与分析.微生物学杂志,2009,29(6):1–4.
    11.李明辉,吴风瑞,熊传奇,等.尼罗罗非鱼微阵列Fosmid基因组文库的构建及基因筛选.水产学报,2011,35(1):27–33.
    12.胡婷婷,蒋承建,梁璇,等.碱性土壤微生物基因的克隆和多样性分析.遗传,2006,28(10):1287–1293.
    13.赵广存,段承杰,庞浩,等.牛瘤胃未培养细菌中一个β-葡萄糖苷酶基因umbgl3A的克隆及鉴定.西南农业学报,2005,18(4):472–476.
    14.赵圣国,王加启,刘开朗,等.宏基因组学方法分析奶牛瘤胃尿素分解菌的多样性.中国农业大学学报,2010,15(1):55–61.
    15.赵圣国,王加启,卜登攀,等.奶牛瘤胃微生物BAC文库中ACCase基因的筛选与生物信息学分析.中国农业科学,2011,44(5):1015–1021.
    16.赵圣国,王加启,卜登攀,等.动物胃肠道微生物元基因组学研究进展.生物技术通报,2009,9(6):41–45.
    17.赵圣国,王加启,刘开朗,等.细菌脲酶的生化和分子生物学特征.微生物学通报,2008,35(7):1146–1152.
    18.赵志祥,芦小飞,陈国华,等.温室黄瓜根结线虫发生地土壤微生物宏基因组文库的构建及其一个杀线虫蛋白酶基因的筛选.微生物学报,2010,50(8):1072–1079.
    19.郭巧玲,杨祥胜,赵晶,等.深海沉积物宏基因组文库中产蛋白酶克隆的筛选及性质分析.应用与环境生物学报,2009,15(4):507–510.
    20.郭鸿,封毅,莫新春,等.水牛瘤胃宏基因组的一个新的β-葡萄糖苷酶基因Umcel3G的克隆、表达及其表达产物的酶学特性.生物工程学报,2008,24(2):232–238.
    21.萨姆布鲁克,拉塞尔著.黄培堂等译.分子克隆实验指南.北京:科学出版社,2002.
    22.谭婉新,刘利,胡亚林,等.一个新的内切葡聚糖酶基因umcel5K的克隆、表达及其表达产物的酶学特性.广西农业生物科学,2008,1(25):7–13.
    23. Aertgeerts K, Ye S, Tennant M G, et al. Crystal structure of human dipeptidyl peptidase Ⅳ incomplex with a decapeptide reveals details on substrate specificity and tetrahedral intermediateformation. Protein Sci,2004,13(2):412–421.
    24. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection ofindividual microbial cells without cultivation. Microbiol Rev,1995,59(1):143–169.
    25. Ammiraju J, Yu Y, Luo M, et al. Random sheared fosmid library asa new genomic tool toaccelerate complete finishing of rice (Oryza sativa spp. Nipponbare) genome sequence: sequencingof gap-specific fosmid clones uncovers new euchromatic portions of the genome. Theor ApplGenet,2005,111(8):1596–1607.
    26. Anbu P. Characterization of solvent stable extracellular protease from Bacillus koreensis(BK-P21A). Int J Biol Macromol,2013,56:162–168.
    27. Anitha T S, Palanivelu P. Purification and characterization of an extracellular keratinolytic proteasefrom a new isolate of Aspergillus parasiticus. Protein Expr Purif,2013,88(2):214–220.
    28. Antonopoulos D A, Aminov R I, Duncan P A, et al. Characterization of the gene encodingglutamate dehydrogenase (gdhA) from the ruminal bacterium Ruminococcus flavefaciens FD-1.Archives in Microbiology,2003,179(3):184–190.
    29. Ashburner M, Bard J, Winter R, et al. Gene Ontology: tool for the unification of biology. NatGenet,2000,25(1):25–29.
    30. Atasoglu C, Guliye A Y, Wallace R J. Use of stable isotopes to measure de novo synthesis andturnover of amino acid-C and-N in mixed microorganisms from the sheep rumen in vitro. BritishJournal of Nutrition,2004,91(2):253–262.
    31. Bach H J, Hartmann A, Schloter M, et al. PCR primers and functional probes for amplification anddetection of bacterial genes for extracellular peptidases in single strains and in soil. J MicrobiolMethods,2001,44(2):173–182.
    32. Balasubramanian N, Nascimento G, Ferreira R, et al. Pepsin-like aspartic protease (Sc-ASP155)cloning, molecular characterization and gene expression analysis in developmental stages ofnematode Steinernema carpocapsae. Gene,2012,500(2):164–171.
    33. Bao L, Huang Q, Chang L, et al. Screening and characterization of a cellulose with endocellulaseand exocellulase activity from yak rumen metagenome. Journal of Molecular Catalysis B:Enzymatic,2011,73(1-4):104–110.
    34. BéjàO, Spudich E N, Spudich J L, et al. Proteorhodopsin phototrophy in the ocean. Nature,2001,411(6839):786–789.
    35. BéjàO, Koonin E V, Aravind L, et al, Comparative genomic analysis of archaeal genotypicvariants in a single population and in two different oceanic provinces. Appl Environ Microbiol,2002,68(1):335–345.
    36. Beloqui A, Pita M, Polaina J, et al. Novel polyphenol oxidase mined from a metagenomeexpression library of bovine rumen: biochemical properties, structural analysis, and phylogeneticrelationships. J Biol Chem,2006,281(32):22933–22942.
    37. Bernard A M, Mattei M G, Pierres M, et al. Structure of the mouse dipeptidyl peptidase Ⅳ (CD26)gene. Biochemistry,1994,33(50):15204–15214.
    38. Bernd W. Structure-function relation ship in class CA1cysteine peptidase propeptides. ActaBiochemical Polonica,2003,50(3):691–713.
    39. Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotesand viruses. Nucleic Acids Research,2005,33: W451–W454.
    40. Bindschedler L V, Sanchez P, Dunn S, et al. Deletion of the SNP1trypsin protease fromStagonospora nodorum reveals another major protease expressed during infection. Fungal GenetBiol,2003,38(1):43–53.
    41. Bitar A P, Cao M, Marquis H. The metalloprotease of Listeria monocytogenes is activated byintramolecular autocatalysis. J Bacteriol,2008,190(1):107–111.
    42. Bladen H A, Bryant M P, Doetsch R N. A study of bacterial species from the rumen which produceammonia from protein hydrolyzate. Applied Microbiology,1961,9(2):175–180.
    43. Bonet J, Girona E L, Sargent D J, et al. The development and characterisation of a bacterialartificial chromosome library for Fragaria vesca. BMC Research Notes,2009,2:188.
    44. Brady S F, Clardy J. Long-chain N-Acyl amino acid antibiotics isolated from heterologouslyexpressed environmental DNA. J Am Chem Soc,2000,122:12903–12904.
    45. Brenchley R, Spannagl M, Pfeifer M, et al. Analysis of the bread wheat genome usingwhole-genome shotgun sequencing. Nature,2012,491(7426):705–710.
    46. Brock F M, Forsberg C W, Buchanan-Smith J G. Proteolytic activity of rumen microorganisms andeffects of proteinase inhibition. Appl Environ Microbiol,1982,44(3):561–569.
    47. Brooks S L, Van Hamme J D. Whole-genome shotgun sequence of Rhodococcus species strainJVH1. J Bacteriol,2012,194(19):5492–5493.
    48. Brown C T, Richardson Agd, Giongo A, et al. Gut microbiome metagenomics analysis suggests afunctional model for the development of autoimmunity for type1diabetes. Plos One,2011,6(10):25792.
    49. Brudnak M A. Genomic multi-level nutrient-sensing pathways. Med Hypotheses,2001,56(2):194–199.
    50. Brudnak M A, Rimland B, Kerry R E, et al. Enzyme-based therapy for autism spectrumdisorders—is it worth another look?. Med Hypotheses,2002,58(5):422–428.
    51. Calsamiglia S, Stern M D, Firkins J L. Effects of protein source on nitrogen metabolism incontinuous culture and intestinal digestion in vitro. Journal of Animal science,1995,73(6):1819–1827.
    52. Castellanos-Moguel J, González-Barajas M, Mier T, et al. Virulence testing and extracellularsubtilisin-like (Pr1) and trypsin-like (Pr2) activity during propagule production of Paecilomycesfumosoroseus isolates from whiteflies (Homoptera: Aleyrodidae). Rev Iberoam Micol,2007,24(1):62–68.
    53. Cendrowska M, Kasperowiczl A, Micha owski T. Preliminary assessment of the capability of therumen bacterium, Butyrivibrio fibrisolvens, to utilize fructose polymers for growth. Journal ofAnimal and Feed Sciences,2006,15(Suppl1):11–14.
    54. Cerdà-Costa N, Guevara T, Karim A Y, et al. The structure of the catalytic domain of Tannerellaforsythia karilysin reveals it is a bacterial xenologue of animal matrix metalloproteinases.Molecular Microbiology,2011,79(1):119–132.
    55. Chen L, Ye J, Liu Y, et al. Construction, characterization, and chromosomal mapping of a fosmidlibrary of the white-cheeked gibbon (Nomascus leucogenys). Genomics Proteomics Bioinformatics,2007,5(3-4):207–215.
    56. Chen W T, Kelly T, Ghersi G. DPPⅣ, seprase, and related serine peptidases in muhiple cellularfunctions. Curr Top Dev Biol,2003,54(2):207–232.
    57. Chu F S, Nei P Y, Leung P S. Byssochlamyopeptidase A, a rennin-like enzyme produced byByssochlamys fulva. Appl Microbiol,1973,25(2):163–168.
    58. Cottrell M T, Moore J A, Kirchman D L. Chitinases from uncultured marine microorganisms. ApplEnviron Microbiol,1999,65(6):2553–2557.
    59. Courtois, S, Cappellano C M, Ball M, et al. Recombinant environmental libraries provide access tomicrobial diversity for drug discovery from natural products. Appl Environ Microbiol,2003,69(1):49–55.
    60. Cunningham D F, Connor B O. Proline specific peptidases. BBA Protein Struct M,1997,1343(2):160–186.
    61. Daligault H, Lapidus A, Zeytun A, et al. Complete genome sequence of Haliscomenobacterhydrossis type strain (O). Stand Genomic Sci,2011,4(3):352-360.
    62. Dasgupta J, Kar S, Liu R, et al. Reactive oxygen species control senescence-associated matrixmetalloproteinase-1through c-Jun-N-terminal kinase. J Cell Physiol,2010,225(1):52–62.
    63. Delcher A L, Bratke K A, Powers E C, et al. Identifying bacterial genes and endosymbiont DNAwith Glimmer. Bioinformatics,2007,23(6):673–679.
    64. Delcher A L, Harmon D, Kasif S, et al. Improved microbial gene identification with GLIMMER.Nucleic Acids Research,1999,27(23):4636-4641.
    65. Dinsdale E A, Edwards R A, Hall D, et al. Functional metagenomic profiling of nine biomes.Nature,2008,452(7187):629–632.
    66. Duan C J, Xian L, Zhao G C, et al. Isolation and partial characterization of novel genes encodingacidic cellulases from metagenomes of buffalo rumens. Journal of Applied Microbiology,2009,107(1):245–256.
    67. Duffield T F, Bagg R N. Use of ionophores in lactating dairy cattle: a review. Can Vet J,2000,41(5):288–372
    68. Dunaevski Ia E, Gruban' T N, Beliakova G A, et al. Extracellular proteinases of filamentous fungias potential markers of phytopathogenesis. Mikrobiologiia,2006,75(6):747–751.
    69. Elend C, Schmeisser C, Leggewie C, et al. Isolation and biochemical characterization of two novelmetagenome-derived esterases. Appl Environ Microbiol,2006,72(5):3637–3645
    70. Entcheva P, Liebl W, Johann A, et al. Direct cloning from enrichment cultures, a reliable strategyfor isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol,2001,67(1):89–99.
    71. Eschenlauer S C P, McKain N, Walker N D, et al. Ammonia production by ruminalmicroorganisms and enumeration, isolation, and characterization of bacteria capable of growth onpeptides and amino acids from the sheep rumen. Appl Environ Microbiol,2002,68(10):4925–4931.
    72. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution,1985,39(4):783–791.
    73. Feng Y, Duan C J, Pang H, et al. Cloning and identification of novel cellulose gene fromuncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. ApplMicrobiol Biotechnol,2007,75(2):319–328.
    74. Fernando S C, Purvis H T, Najar F Z, et al. Meta-functional genomics of the rumen biome. Journalof Dairy Science,2007,90(Suppl1): W331.
    75. Ferrer M, Beloqui A, Golyshina O V, et al. Biochemical structure features of a novelcyclodextrinase from cow rumen metagenome. Biotechnology Journal,2007,2(2):207–213.
    76. Ferrer M, Beloqui A, Timmis K N, et al. Metagenomics for mining new genetic resources ofmicrobial communities. J Mol Microbiol Biotechnol,2009,16:109–123.
    77. Firkins J L, Yu Z, Morrison M. Ruminal nitrogen metabolism: perspectives for integration ofmicrobiology and nutrition for dairy. J Dairy Sci,2007,90(Suppl1): E1–E16.
    78. Flythe M, Kagan I. Antimicrobial effect of red clover (Trifolium pratense) phenolic extract on theruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr Microbiol,2010,61(2):125–131.
    79. Foukis A, Stergiou P Y, Theodorou L G, et al. Purification, kinetic characterization and propertiesof a novel thermo-tolerant extracellular protease from Kluyveromyces marxianus IFO0288withpotential biotechnological interest. Bioresour Technol,2012,123:214–220.
    80. Gazi M I, Cox S W, Clark D T, et al. Characterization of protease activities in Capnocytophagaspp., Porphyromonas gingivalis, Prevotella spp., Treponema denticola and Actinobacillusactinomycetemcomitans. Oral Microbiol Immunol,1997,12(4):240–248.
    81. Ge J, Feng Y, Ji H, et al. Inactivation of dipeptidyl peptidase Ⅳ attenuates the virulence ofStreptococcus suis serotype2that causes streptococcal toxic shock syndrome. Curr Microbiol,2009,59(3):248–255.
    82. Gilmore B F, Carson L, McShane L L, et al. Synthesis, kinetic evaluation, and utilization of abiotinylated dipeptide proline diphenyl phosphonate for the disclosure of dipeptidyl peptidaseⅣ-like serine proteases. Biochem Biophys Res Commun,2006,347(1):373–379.
    83. Gillespie D E, Brady S F, Bettermann A D, et al. Isolation of antibiotics turbomycin A and B froma metagenomic library of soil microbial DNA. Appl Environ Microbiol,2002,68(9):4301–4306.
    84. Giri S S, Sukumaran V, Sen S S, et al. Purification and partial characterization of a detergent andoxidizing agent stable alkaline protease from a newly isolated Bacillus subtilis VSG-4of tropicalsoil. J Microbiol,2011,49(3):455–461.
    85. Glavina D R T, Abt B, et al. Complete genome sequence of Chitinophaga pinensis type strain(UQM2034). Stand Genomic Sci,2010,2(1):87–95.
    86. Glogauer A, Martini V P, Faoro H,et al. Identification and characterization of a new true lipaseisolated through metagenomic approach. Microbial Cell Factories,2011,10(1):54–69.
    87. Goldstein J M, Banbula A, Kordula T, et al. Novel Extracellular x-Prolyl Dipeptidyl-Peptidase(DPP) from Streptococcus gordonii FSS2: an Emerging Subfamily of Viridans Streptococcalx-Prolyl DPPs. Infection and Immunity,2001,69(9):5494–5501.
    88. Griswold K E, White B A, Mackie R I. Proteolytic activities of the starch-fermenting ruminalbacterium, Streptococcus bovis. Current Microbiology,1999,39:180–186.
    89. Gupta R, Walunj S S, Tokala R K, et al. Emerging drug candidates of dipeptidyl peptidase Ⅳ(DPP Ⅳ) inhibitor class for the treatment of Type2Diabetes. Curr Drug Targets,2009,10(1):71–87.
    90. H deman F, Sj ling S. Metagenomic approach for the isolation of a novellow-temperature-activelipase from uncultured bacteria of marine sediment. FEMS Microbiol Ecol,2007,59(2):524–534.
    91. Haney M E, Hoehn M M. Monensin, a new biologically active compound.I. Discovery andisolation. Antimicrob Agents Chemother,1967,7:349–352.
    92. Hattori M, Isomura S, Yokoyama E, et al. Extracellular trypsin-like proteases produced byCordyceps militaris. J Biosci Bioeng,2005,100(6):631–636.
    93. Hao D C, Yang L, Xiao P G. The first insight into the Taxus genome via fosmid library constructionand end sequencing. Mol Genet Genomics,2011,285:197–205.
    94. Healy F G, Ray R M, Aldrich H C, et al. Direct isolation of functional genes encoding cellulasesfrom the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose.Appl Microbiol Biotechnol,1995,43(4):667–674.
    95. Hegen M, Kameoka J, Dong R P, et al. Cross-linking of CD26by antibody induces tyrosinephosphorylation and activation of mitogen-activated protein kinase. J Immunol,1997,90(2):257–264.
    96. Heins J, Welker P, Scholein C, et al. Mechanism of proline-specific proteinases:(1)substratespecificity of dipeptidyl peptidase IV from pig kidney and proline-specific endopeptidase fromFlavobacterium meningosepticum. Biochim Biophys Acta,1988,954(2):161–169.
    97. Henne A, Daniel R, Schmitz R A, et al. Construction of environmental DNA libraries inEscherichia coli and screening for the presence of genes conferringutilization of4-hydroxybutyrate.Appl Environ Microbiol,1999,65(9):3901–3907.
    98. Henne A, Schmitz R A, Bomeke M, et al. Screening of environmental DNA libraries for thepresence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol,2000,66(7):3113–3116.
    99. Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes andgenomes from cow rumen. Science,2011,331(6016):463–467.
    100. Hetta M, Cone J W, Gustavsson A M, et al. The effect of additives in silages of pure timothy andtimothy mixed with red clover on chemical composition and in vitro rumen fermentationcharacteristics. Grass and Forage Science,2003,58(3):249–257.
    101. Holdeman L V, Cato E P, Moore W E C. Anerobe Laboratory Manual. Blachsburg: VirginiaPolytechnic Institude,1977.
    102. Holst J J. Treatment of type2diabetes mellitus with agonists of the GLP-1receptor or DPP-IVinhibitors. Expert Opin Emerg Drugs,2004,9(1):155–166.
    103. Hou S, Saw S, Lee K S, et al. Genome sequence of the deep-sea gamma-proteobacteriumIdiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc NatlAcad Sci U S A,2004,101(52):18036–18041.
    104. Hu Q X, Zhang G Q, Zhang R Y, et al. A novel aspartic protease with HIV-1reverse transcriptaseinhibitory activity from fresh fruiting bodies of the wild mushroom Xylaria hypoxylon. J BiomedBiotechnol,2012,2012:728975–728983.
    105. Hu Y F, Fu C Z, Yin Y S, et al. Construction and Preliminary Analysis of a Deep-Sea SedimentMetagenomic Fosmid Library from Qiongdongnan Basin, South China Sea. Mar Biotechnol,2010,12(6):719–727.
    106. Hu Y, Fu C, Huang Y, et al. Novel lipolytic genes from the microbial metagenomic library of theSouth China Sea marine sediment. FEMS Microbiol Ecol,2010,72(2):228–237.
    107. Huang S W, Lin Y Y, You E M, et al. Fosmid library end sequencing reveals a rarely knowngenome structure of marine shrimp Penaeus monodon. BMC Genomics,2011,12:242–261.
    108. Huse S M, Dethlefsen L. Huber J, et al. Exploring microbial diversity and taxonomy using SSUrRNA hypervariable tag sequencing. PLos Genet,2008,4(11): e1000255.
    109. Huson D H, Auch A F, Qi J, et al. MEGAN analysis of metagenomic data. Genome Res,2007,17(3):377–86.
    110. Itou M, Kawaguchi T, Taniguchi E, et al. Dipeptidyl peptidase-4: A key player in chronic liverdisease. World J Gastroenterol,2013,19(15):2298–2306.
    111. Iwaki-Egawa S, Watanabe Y, Kikuya Y, et al. DPP Ⅳ from human serum: purification,characterization, and N-terminal amino acid sequence. J Biochem,1998,124(2):428–433.
    112. Jalving R, Godefrooij J, Veen W J, et al. Characterisation of the Aspergillus niger dapB gene,which encodes a novel fungal type Ⅳ dipeptidyl aminopeptidase. Mol Genet Genomics,2005,273(4):319–325.
    113. Jellouli K, Bougatef A, Manni L, et al. Molecular and biochemical characterization of anextracellular serine-protease from Vibrio metschnikovii J1. J Ind Microbiol Biotechnol,2009,36(7):939–948.
    114. Jensen K, stergaard P R, Wilting R, et al. Identification and characterization of a bacterialglutamic peptidase. BMC Biochemistry,2010,11:47.
    115. Jeon J H, Lee H S, Kim J T, et al. Identification of a new subfamily of salt-tolerant esterases from ametagenomic library of tidal flat sediment. Appl Microbiol Biotechnol,2012,93(2):623–631.
    116. Jobin M C, Martinez G, Motard J, et al. Cloning, curifcation, and enzymatic properties ofdipeptidyl peptidase Ⅳ from the swine pathogen Streptococcus suis. Journal of Bacteriology,2005,187(2):795–799.
    117. Jones B V, Sunand F, Marchesi J R. Using skimmed milk agar to functionally screen a gutmetagenomic library for proteases may lead to falsepositives. Letters in Applied Microbiology,2007,45(4):418–420.
    118. Kabashima T, Yoshida T, Ito K, et al. Cloning, sequencing, and expression of the dipeptidylpeptidase Ⅳ gene from Flavobacterium meningosepticum in Escherichia coli. Archives ofBiochemistry and Biophysics,1995,320(1):123–128.
    119. Kabashima T, Ito K, Yoshimoto T. Dipeptidyl peptidase Ⅳ from Xanthomonas maltophilia:sequencing and expression of the enzyme gene and characterization of the expressed enzyme. JBiochem,1996,120(6):1111–1117.
    120. Kakimoto S, Okazaki K, Sakane T, et al. Isolation and taxonomic characterization ofurease-producing bacteria. Agricultural and Biological Chemistry,1989,53(4):1111–1118.
    121. Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments inKEGG. Nucleic Acids Res,2006,34(Database issue): D354–D357.
    122. KholováI, Ludvikova M, Ryska A, et a1. Immunohistochemical detection of dipeptidyl peptidaseⅣ(CD26) in thyroid neoplasia using biotinylated tyramine amplification. Neoplasma,2003,50(3):159–164.
    123. Khin E E, Kikkawa F, Ino K, et a1. Dipeptidyl peptidase Ⅳ expression in endometrialendometrioid adenocarcinoma and its inverse correlation with tumor grade. Am J Obstet Gynecol,2003,188(3):670–676.
    124. Kim D, Kim S N, Baik K S, et al. Screening and characterization of a cellulase gene from the gutmicroflora of abalone using metagenomic Library. The Journal of Microbiology,2011,49(1):141–145.
    125. Kim Y J, Choi G S, Kim S B, et al. Screening and characterization of a novel esterase from ametagenomic library. Protein Express Purif,2006,45(2):315–323.
    126. Kirk J M, Woodward C L, Ellis W C, et al. Glutamine synthetase and protease enzyme activitiesand growth response of ruminal bacterium Prevotella ruminicola strain B14to nitrogen source andconcentration. Journal of Environmental Science and Health,2000,35(1):103–120.
    127. Kiyama M, Hayakawa M, Shiroza T, et al. Sequence analysis of the Porphyromonas gingivalisdipeptidyl peptidase Ⅳ gene. Biochim Biophys Acta,1998,1396(1):39–46.
    128. Kleeberg I, Welzel K, Vandenheuvel J, et al. Characterization of a new extracellular hydrolasefrom Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules,2005,6(1):262–270.
    129. Knietsch A, Waschkowitz T, Bowien S, et al. Construction and screening of metagenomic librariesderived from enrichment cultures: generation of a gene bank for genes conferring alcoholoxidoreductase activity on Escherichia coli. Appl Environ Microbiol,2003,69(3):1408–1416.
    130. Knietsch A, Bowien S, Whited G, et al. Identification and characterization of coenzymeB12-dependent glycerol dehydratase-and diol dehydratase-encoding genes from metagenomicDNA libraries derived from enrichment cultures. Appl Environ Microbiol,2003,69(6):3048–3060.
    131. Kopecny J, Logar R M, Kobayashi Y. Phenotypic and genetic data supporting reclassification ofButyrivibrio fibrisolvens isolates. Folia Microbiology (Praha),2001,46(1):45–48.
    132. Kothary M H, McCardell B A, Frazar C D, et al. Characterization of the zinc-containingmetalloprotease encoded by zpx and development of a species-specific detection method forEnterobacter sakazakii. Appl Environ Microbiol,2007,73(13):4142–4151.
    133. Kristie M, Keene Y, Brett F. Enteric pathogen exploitation of the microbiota-generated nutrientenvironment of the gut. Curr Opin Microbiol,2011,14(1):92–98.
    134. Kumagai Y, Konishi K, Gomi T, et al. Enzymatic properties of dipeptidyl aminopeptidase Ⅳproduced by the periodontal pathogen Porphyromonas gingivalis and Its participation in virulence.Infection and Immunity,2000,68(2):716–724.
    135. Kumagai Y, Yagishita H, Yajima A, et al. Molecular mechanism for connective tissue destructionby dipeptidyl aminopeptidase Ⅳ by the periodontal pathogen Porphyromonas gingivalis. Infectionand Immunity,2005,73(5):2655–2664.
    136. Labutti K, Sikorki J, Schneider S, et al. Complete genome sequence of Planctomyces limnophilustype strain (Mü290). Stand Genomic Sci,2010,3(1):47–56.
    137. Lambeir A M, Proost P, Scharpe′S, et al. A kinetic study of glucagon-like peptide-1andglucagon-like peptide-2truncation by dipeptidyl peptidase Ⅳ, in vitro. Biochem Pharmacol,2002,64(12):1753–1756.
    138. Lange C, Holtgr we D, Schulz B, et al. Construction and characterization of a sugar beet (betavulfaris) fosmid library. Genome,2008,51(11):948–951.
    139. LaukováA, KoniarováI. Survey of urease activity in ruminal bacteria isolated from domestic andwild ruminants. Microbios,1995,84(338):7–11.
    140. Lee D G, Jeon J H, Jang M K, et al. Screening and characterization of a novel fbrinolyticmetalloprotease from a metagenomic library. Biotechnol Lett,2007,29(3):465–472.
    141. Lee S W, Won K, Lim H K, et al. Screening for novel lipolytic enzymes from uncultured soilmicroorganisms. Appl Microbiol Biotechnol,2004,65(6):720–726.
    142. Lefort F, Calmin G, Crovadore J, et al. Whole-Genome Shotgun Sequence of Pseudomonasviridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana. Genome Announc,2013,1(1):e00116–12.
    143. Leicht S, Shipkova M, Klett C, et al. CD26/dipeptidyl peptidase Ⅳ: A comparative study ofhealthy persons and kidney transplant recipients before and early after transplantation. ClinBiochem,2013, doi:10.1016/j.clinbiochem.
    144. Leng R A, Nolan J V. Nitrogen metabolism in the rumen. J Dairy Sci,1984,67(5):1072–1089.
    145. Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome. Nature,2010,463(7279):311–317.
    146. Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short readsequencing. Genome Res,2010,20(2):265–272.
    147. Li X, Yu H Y. Purification and characterization of novel organic-solvent-tolerant β-amylase andserine protease from a newly isolated Salimicrobium halophilum strain LY20. FEMS MicrobiolLett,2012,329(2):204–211.
    148. Liles M R, Manske B F, Bintrim S B, et al. A census of rRNA genes and linked genomic sequenceswithin a soil metagenomic library. Appl Environ Microbiol,2003,69(5):2684–2691.
    149. Lin J S, Lee S K, Chen Y, et al. Purification and characterization of a novel extracellular tripeptidylpeptidase from Rhizopus oligosporus. J Agric Food Chem,2011,59(20):11330–11337.
    150. Liu K L, Wang J Q, Bu D P, et al. Isolation and biochemical characterization of two lipases from ametagenomic library of China Holstein cow rumen. Biochemical and Biophysical ResearchCommunications,2009,385(4):605–611.
    151. Louren o P, Fri es F, Silva N, et al. Dipeptidyl-peptidase Ⅳ and mortality after an acute heartfailure episode. J Cardiovasc Pharmacol,2013,[Epub ahead of print].
    152. MacNeil I A, Tiong C L, Minor C, et al. Expression and isolation of antimicrobial small moleculesfrom soil DNA libraries. J Mol Microbiol Biotechnol,2001,3(2):301–308.
    153. Madden T E, Clark V L, Kuramitsu H K. Revised sequence of the Porphyromonas gingivalis prtTcysteine protease/hemagglutinin gene: homology with streptococcal pyrogenic exotoxinB/streptococcal proteinase. Infect Immun,1995,63(1):238–247.
    154. Madeira H M, Peng L, Morrison M. Biochemical and mutational analysis of a gingipain-likepeptidase activity from Prevotella ruminicola B(1)4and its role in ammonia production by ruminalbacteria. Appl Environ Microbiol,1997,63(2):670–675.
    155. Magrini V, Warren W C, Wallis J, et al. Fosmid-based physical mapping of the Histoplasmacapsulatum genome. Genome Res,2004,14(8):1603–1609.
    156. Maiga H A, Schingoethe D J, Henson J E. Ruminal degradation, amino acid composition, andintestinal digestibility of the residual components of five protein supplements. J Dairy Sci,1996,79(9):1647–1653.
    157. Majumder D R, Kanekar P P, Gaikwad S M. Purification and characterization of a thermolysin likeprotease from Thermoactinomyces thalpophilus MCMB-380. Protein Pept Lett,2013,[Epub aheadof print].
    158. Manabe S, Nariya H, Miyata S, et al. Purification and characterization of a clostripain-like proteasefrom a recombinant Clostridium perfringens culture. Microbiology,2010,156(Pt2):561–569.
    159. Marguet D, Bernard A M, Vivier I, et al. cDNA cloning for mouse thymocyte-activating molecule.A multifunctional ecto-dipeptidyl peptidase Ⅳ (CD26) included in a subgroup of serine proteases.J Biol Chem,1992,267(4):2200–2208.
    160. Matheeussen V, Waumans Y, Martinet W, et al. Dipeptidyl peptidases in atherosclerosis:Expression and role in macrophage differentiation, activation and apoptosis. Basic Res Cardiol,2013,108(3):350.
    161. Matsushita-Morita M, Tada S, Suzuki S, et al. Overexpression and characterization of anextracellular leucine aminopeptidase from Aspergillus oryzae. Curr Microbiol,2011,62(2):557–564.
    162. McGuffey R K, Richardson L F, Wilkinson J I D. Ionophores for dairy cattle: Current status andfuture outlook. J Dairy Sci,2001,84: E194–E203.
    163. McKain N, Wallace R J, Watt N D. Selective isolation of bacteria with dipeptidyl aminopeptidasetype I activity from the sheep rumen. FEMS Microbiology Letters,1992,74(2-3):169–173.
    164. McSweeney C S, Denman S E, Wright A D G, et al. Application of recent DNA/RNA-basedtechniques in rumen ecology. Asian-australasian J Anim. Sci.,2007,20(2):283–294.
    165. Meng J, Wang F, Wang F, et al. An uncultivated crenarchaeota contains functionalbacteriochlorophyll a synthase. ISME J,2009,3(1):106–116.
    166. Mesrob B K, Vassileva B K. Preparation and some chemical characteristics of milk-clottingprotease from Bacillus mesentericus76. Int J Pept Protein Res,1981,17(1):89–92.
    167. Milton C T, Brandt R T, Titgemeyer E C. Urea in dry-rolled corn diets: finishing steer performance,nutrient digestion, and microbial protein production. Journal of Animal Science,1997,75(5):1415–1424.
    168. Misumi Y, Hayashi Y, Arakawa F, et al. Molecular cloning and sequence analysis of humandipeptidyl peptidase Ⅳ, a serine proteinase on the cell surface. Biochimica Biophysica Acta,1992,1131(3):333–336.
    169. Misumi Y, Ikehara Y. Dipeptidyl peptidase Ⅳ. In the handbook of proteolytic enzymes. London:Academic Press,1998.
    170. Miyamoto K, Nukui E, Hirose M, et al. A metalloprotease (MprⅢ) involved in the chitinolyticsystem of a marine bacterium, Alteromonas sp. strain O-7. Appl Environ Microbiol,2002a,68(11):5563–5570.
    171. Miyamoto K, Tsujibo H, Nukui E, et al. Isolation and characterization of the genes encoding twometalloproteases (MprⅠand MprⅡ) from a marine bacterium, Alteromonas sp. Strain O-7. BiosciBiotechnol Biochem,2002b,66(2):416–421.
    172. Miyoshi S, Shinoda S. Microbial metalloproteases and pathogenesis. Microbes Infect,2000,2(1):91–98.
    173. Mobley H L, Island M D, Hausinger R P. Molecular biology of microbial ureases. Microbiologyand Molecular Biology Reviews,1995,59(3):451–480.
    174. Nelson K E, Zinder S H, Hance I, et al. Phylogenetic analysis of the microbial populations in thewild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol2003,5(11):1212–1220.
    175. Newbold C J, McEwan N R, Eschenlauer S C P, et al. Characterisation of a glutamatedehydrogenase from the rumen ciliate Entodinium caudatum. Proceedings of Japanese Society forRumen Metabolism and Physiology,2000,11:74.
    176. Nimchua T, Thongaram T, Uengwetwanit T, et al. Metagenomic analysis of novellignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J MicrobiolBiotechnol,2012,22(4):462–469.
    177. Odongo N. E, Bagg R, Vessie G, et al. Long-term effects of feeding monensin on methaneproduction in lactating dairy cows. J Dairy Sci,2007,90(4):1781–1788.
    178. Ogasawara W, Tanaka C, Suzuki M, et al. Isoforms of dipeptidyl aminopeptidase Ⅳ fromPseudomonas sp. WO24: Role of the signal sequence and overexpression in Escherichia coli.Protein Expression and Puri Wcation,2005,41(2):241–251.
    179. Ogata S, Misumi Y, Ikehara Y. Primary structure of rat liver dipeptidyl peptidase Ⅳ deduced fromits cDNA and identification of the NH2-terminal signal sequence as the membrane-anchoringdomain. J Biol Chem,1989,264(6):3596–3601.
    180. Ogata S, Misumi Y, Tsuji E, et al. Identification of the active site residues in dipeptidyl peptidaseⅣ by affinity labeling an site-directed mutagenesis. Biochemistry,1992,31(9):2582–2587.
    181. Ogawa Y, Mamura Y, Murayama N, et al. Characterization and cDNA cloning of dipeptidylpeptidase Ⅳ from the venom of Gloydius blomhoffi brevicaudus. Comp Biochem Physiol BBiochem Mol Biol,2006,145(1):35–42.
    182. Ouyang Y, Dai S, Xie L, et al. Isolation of high molecular weight DNA from marine spongebacteria for BAC library construction. Mar Biotechnol (NY),2010,12(3):318–325.
    183. Palackal N, Lyon C S, Zaidi S, et al. A multifunctional hybrid glycosyl hydrolase discovered in anuncultured microbial consortium from ruminant gut. Appl Environ Microbiol,2007,74(1):113–124.
    184. Park J Y, Park J E, Park J W, et al. Purification and characterization of a novel alkaline serineprotease secreted by Vibrio metschnikovii. Int J Mol Med,2012,29(2):263–268.
    185. Paster B J, Russell J B, Yang C M J, et al. Phylogeny of the ammonia-producing ruminal bacteriaPeptostreptococcus anaerobius, Clostridium sticklandii and Clostridium aminophilum sp. nov.International Journal of Systematic Bacteriology,1993,43(1):107–110.
    186. Patra A K, Saxena J. The effect and mode of action of saponins on the microbial populations andfermentation in the rumen and ruminant production. Nutr Res Rev,2009,22(2):204–219.
    187. Pfister C A, Meyer F, Antonopoulos D A. Metagenomic profiling of a microbial assemblageassociated with the california mussel: A node in networks of carbon and nitrogen cycling. Ploseone,2010,6(9): e1001129.
    188. Pope P B, Denman S E, Jones M, et al. Adaptation to herbivory by the Tammar wallaby includesbacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci U SA,2010,107(33):14793–14798.
    189. Pope P B, Smith W, Denman S E, et al. Isolation of Succinivibrionaceae implicated in low methaneemissions from Tammar wallabies. Science,2011,333(6042):646–648.
    190. Potempa M, Potempa J, Kantyka T, et al. Interpain A, a cysteine proteinase from Prevotellaintermedia, inhibits complement by degrading complement factor C3. PLoS Pathog,2009,5(2):e1000316.
    191. Poza M, Prieto-Alcedo M, Sieiro C, et al. Cloning and expression of clt genes encodingmilk-clotting proteases from Myxococcus xanthus422. Appl Environ Microbiol,2004,70(10):6337–6341.
    192. Purushe J, Fouts D E, Morrison M, et al. Comparative genome analysis of Prevotella ruminicolaand Prevotella bryantii: Insights into their environmental niche. Microblal Ecology,2010,60(4):721–729.
    193. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomicsequencing. Nature,2010,464(7285):59–65.
    194. Quaiser A, Ochsenreiter T, Lanz C, et al. Acidobacteria form a coherent but highly diverse groupwithin the bacterial domain: Evidence from environmental genomics. Mol Microbiol,2003,50(2):563–575.
    195. Rajkumar R, Jayappriyan K R, Rengasamy R. Purification and characterization of a proteaseproduced by Bacillus megaterium RRM2: Application in detergent and dehairing industries. JBasic Microbiol,2011,51(6):614–624.
    196. Ramsak A, Peterka M, Tajima K, et al. Unravelling the genetic diversity of ruminal bacteria belongto the CFB phylum. FEMS Microbiology Ecology,2000,33(1):69–79.
    197. Ranjan R, Grover A, Kapardar R K, et al. Isolation of novel lipolytic genes from unculturedbacteria of pond water. Biochem Biophys Res Commun,2005,335(1):57–65.
    198. Rao M B, Tanksale A M, Ghatge M S, et al. Molecular and biotechnology aspects of microbialproteases. Microbiol Biol Rev,1998,62(3):597–635.
    199. Rees H C, Grant S, Jones B, et al. Detecting cellulase and esterase enzyme activities encoded bynovel genes present in environmental DNA libraries. Extremophiles,2003,7(5):415–421.
    200. Reichelt K L, Knivsberg A M, Nodland M. Nature and consequences of hyperpetiduria and bovinecasomorphins found in autistic syndromes. Dev Brain Dysfunct,1994,7:71–85.
    201. Reichelt K L, Hole K, Hamberger A, et al. Biologically active peptide-containing fractions inschizophreina and childhood autism. Adv Biochem Psycopharmacol,1981,28:627–643.
    202. Reichelt K L, Knivsberg A M. Can the pathophysiology of autism be explained by the nature of thediscovered urine peptides?. Nutr Neurosci,2003,6(1):19–28.
    203. Reichard U, Cole G T, Rüchel R, et al. Molecular cloning and targeted deletion of PEP2whichencodes a novel aspartic proteinase from Aspergillus fumigatus. Int J Med Microbiol,2000,290(1):85–96.
    204. Rhee J K, Ahn D G, Kim Y G, et al. New thermophilic and thermostable esterase with sequencesimilarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl EnvironMicrobiol,2005,71(2):817–825.
    205. Rondon M R, August P R, Bettermann A D, et al. Cloning the soil metagenome: a strategy foraccessing the genetic and functional diversity of uncultured microorganisms. Appl EnvironMicrobiol,2000,66(6):2541–2547.
    206. Russell J B, Rychlik J L. Factors that alter rumen microbial ecology. Science,2001,292(5519):1119–1122.
    207. Russell J B. Fermentation of peptides by Bacteroides ruminicola B(1)4. Appl Environ Microbiol,1983,45(5):1566–1574.
    208. Rychlik J L, LaVera R, Russell J B. Amino acid deamination by ruminal Megasphaera elsdeniistrains. Curr Microbiol,2002,45(5):340–345.
    209. Sales M, Lucas F, Blanchart G. Effects of ammonia and amino acids on the growth and proteolyticactivity of three species of rumen bacteria: Prevotella albensis, Butyrivibrio fibrisolvens, andStreptococcus bovis. Curr Microbiol,2000,40(6):380–386.
    210. Salzberg S, Delcher A, Kasif S, et al. Microbial gene identification using interpolated Markovmodels. Nucleic Acids Research,1998,26(2):544–548.
    211. Schleper C, DeLong E F, Preston C M, et al. Genomic analysis reveals chromosomal variation innatural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol.1998,180(19):5003–5009.
    212. Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: Open-source,platform-independent, community-supported software for describing and comparing microbialcommunities. Appl Environ Microbiol,2009,75(23):7537–7541.
    213. Schmeisser C, Steele H, Streit W R. Metagenomics, biotechnology with non-culturable microbes.Appl Microbiol Biotechnol,2007,75(5):955–962.
    214. Shattock P, Kennedy A, Rowell F, et al. Role of neuropeptides in autism and their relationship withclassicalneurotransmitters. Brain Dysfunct,1990,3:328–345.
    215. Silva L B, Reis A P, Pereira E J, et al. Partial purification and characterization of trypsin-likeproteinases from insecticide-resistant and-susceptible strains of the maize weevil, Sitophiluszeamais. Comp Biochem Physiol B Biochem Mol Biol,2010,155(1):12–9.
    216. Singh P, Springman A C, Davies H D, et al. Whole-genome shotgun sequencing of a colonizingmultilocus sequence type17Streptococcus agalactiae strain. J Bacteriol,2012,194(21):6005.
    217. Steele H L, Jaeger K E, Daniel R, et al. Advances in recovery of novel biocatalysts frommetagenomes. J Mol Microbiol Biotechnol,2009,16(1-2):25–37.
    218. Stein J L, Marsh T L, Wu K Y, et al. Characterization of uncultivated prokaryotes: isolation andanalysis of a40-kilobase-pair genome fragment front a planktonic marine archaeon. J Bacteriol,1996,178(3):591–599.
    219. Stevenson D M, Weimer P J. Dominance of Prevotella and low abundance of classical ruminalbacterial species in the bovine rumen revealed by relative quantification real-time PCR. ApplMicrobiol Biotechnol,2007,75(1):165–174.
    220. Suen G, Stevenson D M, Bruce D C, et al. Complete genome of the cellulolytic ruminal bacteriumRuminococcus albus7. J Bacteriol,2011,193(19):5574–5575.
    221. Suenaga H, Ohnuki T, Miyazaki K. Functional screening of a metagenomic library for genesinvolved in microbial degradation of aromatic compounds. Environ Microbiol,2007,9(9):2289–2297.
    222. Sulaiman S, Yamato S, Kanaya E, et al. Isolation of a Novel Cutinase Homolog with Polyethyleneterephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. ApplEnviron Microbiol,2012,78(5):1556–1562.
    223. Syngkon A, Elluri S, Koley H, et al. Studies on a novel serine protease of a ΔhapAΔprtV Vibriocholerae O1strain and its role in hemorrhagic response in the rabbit ileal loop model. PLoS One,2010,5(9): e13122.
    224. Tajima K, Noaka I, Higuchi K, et al. Influence of high temperature and humidity on rumenbacterial diversity in Holstein heifers. Anaerobe,2007,13(2):57–64.
    225. Tamminga S. A review on environmental impacts of nutritional strategies in ruminants. J Anim Sci,1996,74(12):3112–3124.
    226. Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis usingmaximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol,2011,28(10):2731–2739.
    227. Tanaka H, Nariya H, Suzuki M, et al. High-level production and purification of clostripainexpressed in a virulence-attenuated strain of Clostridium perfringens. Protein Expr Purif,2011,76(1):83–89.
    228. Tasse L, Bercovici J, Pizzut-Serin S, et al. Functional metagenomics to mine the human gutmicrobiome for dietary fiber catabolic enzymes. Genome Res,2010,20(11):1605–1612.
    229. Tatusov R L, Fedorova N D, Jackson J D, et al. The COG database: an updated version includeseukaryotes. BMC Bioinformatics,2003,4:41.
    230. Tatusov R L, Koonin E V, Lipman D J. A genomic perspective on protein families. Science,1997,278(5338):631–637.
    231. Toyozaki M, Osaka M, Kondo K, et al. High fat and high cholesterol diet induces DPP-Ⅳ activityin intestinal lymph. J Oleo Sci,2013,62(4):201–205.
    232. Tringe S G, von Mering C, Kobayashi A, et al. Comparative metagenomics of microbialcommunities. Science,2005,308(5721):554–557.
    233. Tuffin M, Anderson D, Heath C, et al. Metagenomic gene discovery: how far have we moved intonovel sequence space?. Biotechnol J,2009,4(12):1671–1683.
    234. Turnbaugh P J, Mahowaid M A, Magrini V, et al. An obesity-associated gut microbiome withincreased capacity for energy harvest. Nature,2006,444(7122):1027–1031.
    235. Tyson G W, Chapman J, Hugenholtz P, et al. Community structure and metabolism throughreconstruction of microbial genomes from the environment. Nature,2004,428(6978):37–43.
    236. Uchiyama T, Abe T, Ikemura T, et al. Substrate induced gene-expression screening ofenvironmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol,2005,23(1):88–93.
    237. Uchiyama T, Abe T, Ikemura T, et al. Substrate-induced gene-expression screening ofenvironmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol,2004,23(1):88–93.
    238. Uchiyama T, Miyazaki K. Functional metagenomics for enzyme discovery: challenges to efficientscreening. Curr Opin Biotechnol,2009,20(6):616–622.
    239. Urade M, Uematsu T, Mima T, et al. Serum DPP Ⅳ activity in hamster buccal pouchcarcinogenesis with9,10-dimethyl-1,2-benzanthracene. J Oral Pathol Med,1992,21(3):109–112.
    240. Ustün O, Ongen G. Production and separation of dipeptidyl peptidase Ⅳ from Lactococcus lactis:scale up for industrial production. Bioprocess Biosyst Eng,2012,35(8):1417–1427.
    241. Van der Werf J H, Jonker L J, Oldenbroek J K. Effect of monensin on milk production by Holsteinand Jersey cows. J Dairy Sci,1998,81(2):427–433.
    242. Van Nevel C L, Demever D I. Effects of monensin on rumen fermentation in vitro and in vivo.Appl Environ Microbiol,1977,34(3):251–257.
    243. Velásqueza A, Picharda G. Effects of rumen fluid pre-incubation on in vitro proteolytic activity ofenzymatic extracts from rumen microorganisms. Animal Feed Science and Technology,2010,162(3-4):75–82.
    244. Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of theSargasso Sea. Science,2004,304(5667):66–74.
    245. Voget S, Leggewie C, Uesbeck A, et al. Prospecting for novel biocatalysts in a soil metagenome.Appl Environ Microbiol,2003,69(10):6235–6242.
    246. Walker N D, McEwan N R, Wallace R J. Cloning and functional expression of dipeptidyl peptidaseⅣ from the ruminal bacterium Prevotella albensis M384(T). Microbiology,2003,149(Pt8):2227–2234.
    247. Wallace R J, Brammall M L. The role of different species of bacteria in the hydrolysis of protein inthe rumen. Journal of General Microbiology,1985,131(4):821–832.
    248. Wallace R J, McKain N, Broderick G A, et al. Peptidases of the rumen bacterium, Prevotellaruminicola. Anaerobe,1997,3(1):35–42.
    249. Wallace R J, McKain N. A survey of peptidase activity in rumen bacteria. Journal of GeneralMicrobiology,1991,137(9):2259–2264.
    250. Wallace R J, McKain N. Analysis of peptide metabolism by rumen microorganisms. Appl EnvironMicrobiol,1989,55(9):2372–2376.
    251. Walter J, Mangold M, Tannock G W, et al. Construction, analysis,and β-glucanase screening of abacterial artificial chromosome library from the large-bowel microbiota of mice. Appl EnvironMicrobiol,2005,71(5):2347–2354.
    252. Wang H T, Hsu J T. Optimal protease production condition for Prevotella ruminicola23andcharacterization of its extracellular crude protease. Anaerobe,2005,11(3):155–162.
    253. Wang X B, Zhang Q Q, Sun X H, et al. Fosmid library construction and initial analysis of endsequences in female half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol,2009,11(2):236–242.
    254. Wang Y, Xue W, Sims A H, et al. Isolation of four pepsin-like protease genes from Aspergillusniger and analysis of the effect of disruptions on heterologous laccase expression. Fungal GenetBiol,2008,45(1):17–27.
    255. Waschkowitz T, Rockstroh S, Daniel R A. Isolation and characterization of metalloproteases with anovel domain structure by construction and screening of metagenomic libraries. Appl EnvironMicrobiol,2009,75(8):2506–2516.
    256. Weih D L, Wang T. Structural shifts of gutmicrobiota as surrogate endpoints formonitoring hosthealth changes induced by carcinogen exposure. Fems Microbiol Ecology,2010,73(3):577–586.
    257. Weinberg Z, Perreault J, Meyer M M, et al. Exceptional structured noncoding RNAs revealed bybacterial metagenome analysis. Nature,2009,462(7273):656–659.
    258. Wilson M, Hailer R, Slaton J, et a1. Dipeptidyl peptidase Ⅳ activities in prostatic secretions. AdvExp Med Biol,2003,524(2):257–260.
    259. Winter S E, Thiennimitr P, Winter M G, et al. Gut inflammation provides a respiratory electronacceptor for Salmonella. Nature,2010,467(7314):426–429.
    260. Wladyka B, Bista M, Sabat A J, et al. A novel member of the thermolysin family, cloning andbiochemical characterization of metalloprotease from Staphylococcus pseudintermedius. ActaBiochim Pol,2008,55(3):525–536.
    261. Wood J, Scott K P, Avgustin G, et al. Estimation of the relative abundance of different Bacteroidesand Prevotella ribotypes in gut samples by restriction enzyme profling of PCR-amplifed16SrRNA gene sequences. Appl Environ Microbiol,1998,64(10):3683–3689.
    262. Yamagata Y, Abe R, Fujita Y, et al. Molecular cloning and nucleotide sequence of the90K serineprotease gene, hspK, from Bacillus subtilis (natto) no.16. Curr Microbiol,1995,31(6):340–344.
    263. Yi X, Liang Y, Huerta-Sanchez E, et al. Sequencing of50human exomes reveals adaptation to highaltitude. Science,2010,329(5987):75–78.
    264. Yokoyama R, Fujii Y, Noguchi Y, et al. Physicochemical and biological properties of anextracellular serine protease of Aeromonas sobria. Microbiol Immunol,2002,46(6):383–390.
    265. Yun J, Kang S, Park S, et al. Characterization of a novel amylolytic enzyme encoded by a genefrom a soil-derived metagenomic library. Appl Environ Microbiol,2004,70(12):7229–7235.
    266. Zhang D, Spadaro D, Valente S, et al. Cloning, characterization, expression and antifungal activityof an alkaline serine protease of Aureobasidium pullulans PL5involved in the biological control ofpostharvest pathogens. Int J Food Microbiol,2012,153(3):453–464.
    267. Zhang K, Song L, Dong X. Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobicproteolytic bacterium isolated from yak rumen. Int J Syst Evol Microbiol,2010,60(Pt9):2221–2225
    268. Zhang L, Bao Z, Cheng J,et al. Fosmid library construction and initial analysis of end sequences inZhikong scallop (Chlamys farreri). Mar Biotechnol(NY),2007,9(5):606–612.
    269. Zhao S G, Wang J Q, Bu D P, et al. Novel Glycoside Hydrolases Identified by Screening a ChineseHolstein Dairy Cow Rumen-Derived Metagenome Library. Appl Environ Microbiol,2010,76(19):6701–6705.
    270. Zheng S, Wang H, Zhang G. A novel alkaline protease from wild edible mushroom Termitomycesalbuminosus. Acta Biochim Pol,2011,58(2):269–273.
    271. Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. New York:Academic Press,1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700