土壤宏基因组文库PKS基因的筛选及其代谢物杀线虫活性测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是微生物最主要的栖息地,据估计土壤中有4-5×1030个微生物细胞。然而,由于99%的微生物不能培养,所以难以得到非培养微生物的全部信息。宏基因组方法克服传统微生物培养的局限性,能够充分挖掘和利用土壤非培养微生物基因资源。本研究采用宏基因组方法,从西藏高寒草甸土壤、华北温室黄瓜地土壤微生物中筛选具有杀线虫活性的基因。
     1.土壤微生物总DNA的提取方法比较
     由于土壤含有丰富的有机质和腐植酸,微生物DNA提取和纯化极其困难,采用直接法和间接法提取土壤微生物总DNA,并比较不同土样的的产率以及纯度的,经电泳纯化法后更适合于构建大插入片段文库。另外,发现土壤pH、有效P、有效K及有机质会影响DNA的产率。
     2.西藏高寒草甸土壤、华北温室黄瓜地土壤微生物PKS KS和NRPS A基因的筛选和功能分析
     采用直接法提取的2种土壤微生物总DNA,简并引物进行PCR扩增,对土壤微生物的PKS和NRPS基因家族多样性进行研究,结果表明:从2种土壤微生物总DNA中共计得到37个PKS-KS基因(草甸土样28个、温室土样9个),40个NRPS-A基因(草甸土样24、温室土样16个)。经过BLASTX比对发现这些基因与已知的PKS(相似性57-82%)和NRPS(相似性47-67%)基因相似性较低,表明它们为新基因类型。
     3.西藏高寒草甸土壤、华北温室黄瓜地土壤微生物宏基因组Fosmid文库构建
     采用间接法提取和纯化2种土壤微生物总DNA,构建西藏米拉山高原草甸土壤、华北温室黄瓜地土壤微生物宏基因组Fosmid文库。西藏土壤Fosmid文库包含30 624个克隆,华北温室土壤Fosmid文库包含31 008个克隆,克隆的平均插入片段为30 kb;文库克隆稳定,无插入片段丢失或重排。通过末端测序分析发现华北温室土壤Fosmid文库中无同源序列占92.75%,而西藏土壤Fosmid文库中无同源序列占94.3%。这表明2个文库包含大量未知微生物物种,从而为挖掘新的功能基因研究奠定基础。
     4.含PKS基因克隆筛选及其杀线虫活性测定
     设计PKS基因KS域的简并引物,从2个土壤宏基因组文库克隆中进行PCR扩增序列筛选,共计得到7个含PKS基因的克隆。从华北温室文库获得的4个含PKS基因克隆,其PKS基因片段的长度为693 bp、699 bp、699 bp、698 bp。从西藏文库得到3个含PKS基因的克隆,其中K99携带有2个KS基因。
     对筛选的PKS基因克隆经LB液体培养基培养4 d,以培养菌液浸泡线虫法测定对南方根结线虫J2、松材线虫J2的致死活性,结果表明克隆K99的杀线活性最强,其培养菌液处理12 h对两种靶标线虫的致死率为100%。温室盆栽实验表明,克隆K99对南方根结线虫的防效为89%。
     5.克隆K99杀线虫活性物质的研究
     通过正丁醇萃取克隆K99培养菌液和甲醇萃取菌体来检测克隆K99的活性物质,结果表明,培养菌液和菌体粗提物对松材线虫的12 h致死率分别为100%和96%。粗提物经121℃处理20min后活性不变,表明活性物质的热稳定性良好。用薄层层析追踪法表明:极性中等的C1、C2、C3条带均有杀线虫活性,而极性小的C5和极性大的C4无活性。这表明克隆K99的杀线虫活性物质可能为一种极性中等、热稳定性好的聚酮类物质。
     6.一株含PKS基因放线菌杀线虫活性鉴定
     根结线虫拮抗放线菌F001的发酵液对松材线虫也有致死活性,采用PCR的方法验证其是否PKS KS域基因和NRPS A域基因,并优化其发酵条件。结果表明,F001基因组中含有PKS基因和NR S基因,经Blastx比对,与已知的放线菌的相关基因相似性较高;得到最佳产杀线活性物质的培养条件是培养温度28℃、摇床转速180 r/min、装液量200mL(250 mL三角瓶)、初始pH7.0培养9 d。
     总之,从2个宏基因组文库中获得多个具有杀线虫活性的克隆,尤其是克隆K99具有较高的活性,其代谢产物为极性中等,且热稳定性良好的聚酮类物质。这值得进一步研究开发。
Screening of PKS gene from Soil Metagenomics Library and Identification of the Active Substance against Nematodes
     The soil is the most main habitats for microorganisms with estimated numbers of 4-5×1030 in per gram soil. However, it is difficult to obtain the whole information of unculturable microorganisms, due to over 99% of microorganisms could not be cultured by the traditional culturable methods. Metagenome break through the limitation of culturabe method, and bring a new technology for utilization for resources of non-culturable microorginasm in soil. In this papper, genes with nematocidal activity were screened from soil metagnomic library derived from Tibet and greenhouse in Huabei.
     1. Comparison of methods for DNA extraction from soil
     Because of amount of organic matter and humic acid in soil, it is extremely difficult to extract and purify microbial DNA from soil. Comparison of various methods for extraction and purification of DNA showed that DNA of direct extraction were short fragments and large amounts, contained high impurities and fitted for analysis of microbial diversity. However, DNA of indirect extraction that combined with differential centrifugation and Nycodenz density gradient centrifugation were long fragments, high purity and fitted for construction of large insert fragment library after purified with gel electrophoresis. In addition, pH, available P, available K and organic matter in soil had influences to DNA quantities.
     2. Screening and functional analysis of PKS and NRPS from Tibet alpine meadow soil and Huabei
     The diversity of family of PKS gene and NRPS gene were revealed by PCR method with degenerate primer from DNA diectly extacted from two soil samples. The result showed that 37 PKS-KS genes (28 from Tibet,9 from north China) and 40 NRPS-A genes (24 from Tibet,16 from north China) were obtained and these genes have lower similarity with knowed genes by BLASTX (similarity to PKS from 57% to 82%, similarity to NRPS from 47% to 67%), which indicated that they were probably new genes.
     3. Construction of metagenomic fosmid library from Tibet and Huabei
     Two metagenomic fosmid libraries were constructed using microbial DNA indirect extracted from 2 soil samples. Fosmid library from Tibet contained 30 624 clones and Fosmid library the soil example from Huabei contained 31 008 clones. The average length of insert fragments were 30 kb, and the stability of that was good without losing or resetting. The results of end sequencing of clones indicated that the percent of no significant homo logy sequences in library of the soil example from Huabei were 92.75%, yet that in library of Tibet were 94.3%. This showed that the two libraries contained many unknowed microbial speics and would lay the foundation for exploiting novel functional gene from soil.
     4. Screening for clones contained PKS gene and evaluation of its nematictdal activity
     A total of 7 clones contained PKS gene were obtained from two metagenomic libraries by PCR sequence selection according to degenerate primer designed from KS domain of PKS gene (4 from Huabei library,3 from Tibet library), of which K99 clone contained 2 domains. The nematocidal activity for root knot nematode and pine wood namtode was evaluated by steeping method with cultural liquid of clones for 4 days. The result showed that the nematocidal activity of clone K99 was high than others, and the rate of knockdown to two speices nematode treated with cultured liquid of clone K99 for 12 hours was 100%. The result of pot culture experiment in greenhouse also revealed that control efficiency of clone K99 against root knot nematode was 89%.
     5. Identification of nematocidal active substance produced by clone K99
     The lethallty rate of pine wood nematode treated with crude extact from culture liquid by normal butanol and bacterial cell of clone K99 by methanol for 12 hours were 100% and 96%, respectively. The activity of crude extract treated with hot at 121℃for 20 minuties was unchanging, which implied that the active substance was thermal stability. The result of tracking method by thin-layer chromatography showed that the channels with medium polar including channels 1, channels 2 and channels 3 possessed nematocidal activity, but the channel 5 with small polar and channel 4 with more polar did not kill nematode. From the results above, it was draw some conclusions that the active substance produced by clone K99 probably was polyketides with medium polar and thermal stability.
     6. Evaluation of nematictdal activity of one strain actinomyces contained PKS gene
     PKS gene and NRPS gene were amplified from one strain actinomyces F001 with nematocidal activity and the ferment condition for F001 was optimized. The result indicated that PKS gene and NRPS gene from F001 had high similarity to know gene from others actinomyces. The optimal ferment condition for F001 was culture under 28℃for 9 days, pH of medium was 7.0, rotational speed was 180 r/min and the liquid volume was 200 mL in 250 mL.
     In a conclusion, some clones with nematocidal activity were obtained from two metagenomic fosmid libraries, especially clone K99 with high nematocidal activity in vivo and in pot culture experiment in greenhouse. The active substance produced by clone K99 probably was polyketides with medium polar and thermal stability. It was worth to further study.
引文
[1]周兴民.中国嵩草草甸[M].2001:科学出版社.
    [2]王启兰,曹广民,王长庭.高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J].生态学杂志,2007.26(007):1002-1008.
    [3]芦晓飞.西藏米拉山高寒草甸土壤微生物多样性研究[J].2009,中国农业科学院.
    [4]彭岳林,蔡晓布,薛会英.退化高寒草原土壤微生物变化特性研究[J].西北农业学报,2007.16(004):112-115.
    [5]Handelsman J. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry & biology,1998.5(10):245-249.
    [6]Ginolhac A. Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones[J]. Applied and Environmental Microbiology, 2004.70(9):5522.
    [7]Taylor MW. Sponge-associated microorganisms:evolution, ecology, and biotechnological potential[J]. Microbiology and Molecular Biology Reviews,2007.71(2):295.
    [8]Van Elsa JD. The metagenomics of disease-suppressive soils-experiences from the METACONTROL project[J]. Trends in Biotechnology,2009.26(11):591-601.
    [9]. Chung, E.J. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli[J]. Applied and environmental microbiology,2008.74(3):723.
    [10]滕应.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析[J].土壤学报,2004.41(003):343-347.
    [11]Yeates C. Methods for microbial DNA extraction from soil for PCR amplification[J]. Biological Procedures Online,1998.1(1):40-47.
    [12]Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiology and Molecular Biology Reviews, 1995.59(1):143.
    [13]Rohdon MR. Toward functional genomics in bacteria:analysis of gene expression in E. coli from a bacterial artificial chromosome library of Bacillus cereus[J]. Proceedings of the National academy of sciences of the United States of America,1999.96(11):6451.
    [14]Eyers L. Environmental genomics:exploring the unmined richness of microbes to degrade xenobiotics[J]. Applied microbiology and biotechnology,2004.66(2):123-130.
    [15]Nalin R. Method for the expression of unknown environmental DNA into adapted host cells[J].2003, Google Patents.
    [16]Martinez A. Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts[J]. Applied and Environmental Microbiology, 2004.70(4):2452.
    [17]Wexler M. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase[J]. Environmental Microbiology,2005.7(12): 1917-1926.
    [18]Wilkinson DE, Jeanicke T, Cowan DA. Efficient molecular cloning of environmental DNA from geothermal sediments[J]. Biotechnology Letters,2002.24(2):155-161.
    [19]Courtois S. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products[J]. Applied and environmental microbiology,2003.69(1): 49.
    [20]Rondon MR. Cloning the soil metagenome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms [J]. Applied and Environmental Microbiology, 2000.66(6):2541.
    [21]Henne A. Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate[J]. Applied and Environmental Microbiology,1999.65(9):3901.
    [22]阎冰.宏基因组克隆——微生物活性物质筛选的新途径[J].中国生物学文摘,2007.21(009):14-14.
    [23]Liles MR. A census of rRNA genes and linked genomic sequences within a soil metagenomic library[J]. Applied and Environmental Microbiology,2003.69(5):2684.
    [24]Knietsch A. Identification and characterization of coenzyme B12-dependent glycerol dehydratase-and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures[J]. Applied and Environmental Microbiology,2003.69(6):3048.
    [25]Mder, Soil fertility and biodiversity in organic farming[J]. Science,2002.296(5573):1694.
    [26]Johansson JF, Paul LR, Finlay RD. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture [J]. FEMS Microbiology Ecology,2004.48(1): 1-13.
    [27]Brady SF. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA[J]. Org. Lett,2001.3(13):1981-1984.
    [28]Brady SF, Clardy J. Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA[J]. J. Am. Chem. Soc,2000.122(51):12903-12904.
    [29]MacNeil I A. Expression and isolation of antimicrobial small molecules from soil DNA libraries[J]. Journal of Molecular Microbiology and Biotechnology,2001.3(2):301-308.
    [30]Gillespie DE. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA[J]. Applied and Environmental Microbiology,2002.68(9):4301.
    [31]Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes[J]. Environmental Microbiology,2004.6(9):981-989.
    [32]Riaz K. A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases[J]. Environmental microbiology,2008.10(3):560-570.
    [33]Venter JC. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004.304(5667):66.
    [34]Qin J. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature.464(7285):59-65.
    [35]Vogel TM. TerraGenome:a consortium for the sequencing of a soil metagenome[J]. Nature Reviews Microbiology,2009.7(4):252.
    [36]Vogel TM. Advantages of the metagenomic approach for soil exploration:reply from Vogel et al[J]. Nature Reviews Microbiology,2009.7(4):252.
    [37]Tyson GW. Community structure and metabolism through reconstruction of microbial genomes from the environmen[J]. Nature,2004.428(6978):37-43.
    [38]Yung Y. Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion[J]. Nucleic Acids Res,2009.37(21):e144.
    [39]Hugenholtz, G.W. Tyson. Microbiology:metagenomics[J]. Nature,2008.455(7212): 481-483.
    [40]Lee SW. Metagenome, the Untapped Microbial Genome, toward Discovery of Novel Microbial Resources and Application into the Plant Pathology[J]. The Plant Pathology Journal, 2005.21(2):93-98.
    [41]Staunton J, Weissman KJ. Polyketide biosynthesis:a millennium review[J]. Natural Product Reports,2001.18(4):380-416.
    [42]Ikeda H. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomycesavermitilis[J]. Proceedings of the National Academy of Sciences of the United States of America,1999.96(17):9509.
    [43]Schwecke T. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin[J]. Proceedings of the National Academy of Sciences,1995.92(17):7839.
    [44]Zotchev S. Identification of a gene cluster for antibacterial polyketide-derived antibiotic. biosynthesis in the nystatin producer Streptomyces noursei ATCC 11455[J]. Microbiology,2000. 146(3):611.
    [45]Novakova R, Bistakova J, Kormanec J. Characterization of the polyketide spore pigment cluster whiESa in Streptomyces aureofaciens CCM3239[J]. Archives of microbiology,2004. 182(5):388-395.
    [46]Cortes J. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea[J]. Nature,1990,348:176-178.
    [47]Malpartida F, Hopwood DA. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host[J]. Nature,1984,309:462-464.
    [48]Funa N. A new pathway for polyketide synthesis in microorganisms[J]. Nature,1999. 400(6747):897-899.
    [49]Khosla C. Structure and mechanism of the 6-deoxyerythronolide B synthase[J]. Annual Review of Biochemistry,2007,76:195-221.
    [50]Fernandez-Moreno MA. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3 (2) including the polyketide synthase for the antibiotic actinorhodin[J]. Journal of Bio logical Chemistry,1992.267(27):19278.
    [51]Sherman DH. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tu22[J]. EMBO J,1989.8(9):2717-2725.
    [52]Bibb MJ. Analysis of the nucleotide sequence of the Streptomyces glaucescens tcml genes provides key information about the enzymology of polyketide antibiotic biosynthesis[J]. The EMBO Journal,1989.8(9):2727.
    [53]Miyanaga A, Horinouchi S. Enzymatic synthesis of bis-5-alkylresorcinols by resorcinol-producing type Ⅲ polyketide synthases[J]. The Journal of Antibiotics,2009.62: 371-376.
    [54]Austin MB, Noel J. The chalcone synthase superfamily of type III polyketide synthases[J]. Natural Product Reports,2003.20(1):79-110.
    [55]Seshime Y. Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae[J]. Biochemical and Biophysical Research Communications,2005.331(1): 253-260.
    [56]Saxena.A new family of type Ⅲ polyketide synthases in Mycobacteriumtuberculosis[J]. Journal of Biological Chemistry,2003.278(45):44780.
    [57]Katsuyama Y. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa[J]. Journal of Biological Chemistry,2007.282(52):37702.
    [58]Brand S. A type III polyketide synthase from Wachendorfia thyrsiflora and its role in diarylheptanoid and phenylphenalenone biosynthesis[J]. Planta,2006.224(2):413-428.
    [59]明镇寰,潘建伟.非核糖体多肽合成酶研究进展[J].生物化学与生物物理进展,2002.29(005):667-669.
    [60]Sims JW, Schmidt EW. Thioesterase-like role for fungal PKS-NRPS hybrid reductive domains[J]. J Am Chem Soc,2008.130(33):11149-11155.
    [61]Lautru S, Challis GL. Substrate recognition by nonribosomal peptide synthetase multi-enzymes[J]. Microbiology,2004.150(6):1629.
    [62]Zhu. Molecular phylogeny and modular structure of hybrid NRPS/PKS gene fragment of Pseudoalteromonas s NJ6-3-2 isolated from marine sponge Hymeniacidon perleve[J]. J Microbiol Biotechnol,2009.19(3):229-37.
    [63]Zhao GR. fabC of Streptomyces lydicus involvement in the biosynthesis of streptolydigin[J]. Appl Microbiol Biotechnol,2009.83(2):305-313.
    [64]Zhu. Sequencing and modular analysis of the hybrid non-ribosomal peptide synthase-polyketide synthase gene cluster from the marine sponge Hymeniacidon perleve-associated bacterium Pseudoalteromonas s strain NJ631[J]. Can J Microbiol,2009.55(3):219-227.
    [65]连云阳,程元荣.杂合NRPS-PKS的研究进展[J].创新药物及新品种研究,开发学术研讨会论文集,2006.
    [66]Rausch C. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution[J]. BMC Evolutionary Biology,2007.7(1):78.
    [67]Bredel M, Jacoby E. Chemogenomics:an emerging, strategy for rapid target and drug discovery[J]. Nature Reviews Genetics,2004.5(4):262-275.
    [68]Dayem LC. Metabolic Engineering of a Methylmalonyl-CoA Mutase-Epimerase Pathway for Complex Polyketide Biosynthesis in Escherichia coli[J]. Biochemistry,2002.41(16): 5193-5201.
    [69]Pieper R. Remarkably broad substrate specificity of a modular polyketide synthase in a cell-free system[J]. Journal of the American Chemical Society,1995.117(45):11373-11374.
    [70]. De Leij F, Davies KG, Kerry BR. The use of Verticillium chlamydosporium Goddard and Pasteuria penetrans(Thorne) Sayre and Starr alone and in combination to control Meloidogyne incognita on tomato plants[J]. Fundamental and Applied Nematology,1992.15(3):235-242.
    [71]Stirling GR. Biological control of plant-parasitic nematodes[M]. Queensland Department of Primary Industries, Australia.1991:121-125.
    [72]Sayre RM, Wergin W. Bacterial parasite of a plant nematode:morphology and ultrastructure[J]. Journal of Bacteriology,1977.129(2):1091.
    [73]Siddiqui ZA, Mahmood I. Role of bacteria in the management of plant parasitic nematodes: A review[J]. Bioresource technology,1999.69(2):167-180.
    [74]Meyer SLF. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes[J]. Pest management science,2003.59(6-7):665-670.
    [75]Racke J, Sikora RA. Isolation, formulation and antagonistic activity of rhizobacteria toward the potato cyst nematode Globoderapallida[J]. Soil Biology and Biochemistry,1992.24(6): 521-526.
    [76]Tian H, Riggs RD. Effects of rhizobacteria on soybean cyst nematode, Heterodera glycines[J]. Journal of Nematology,2000.32(4):377.
    [77]Mahdy M, Hallmann J, Sikora RA. Influence of plant species on the biological control activity of the antagonistic rhizobacterium Rhizobium etli strain G12 toward the root-knot nematode, Meloidogyne incognita[J]. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen),2001.66(2b):655.
    [78]Meyer SLF. Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper [J]. Nematropica,2001.31(1): 75-86.
    [79]Siddiqui ZA, Mahmood I. Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea[J]. Bioresource technology,2001.79(1): 41-45.
    [80]Krechel A. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood[J]. Canadian journal of microbiology,2002.48(9):772-786.
    [81]Insunza V, Alstr m S. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato[J]. Plant and Soil,2002.241(2):271-278.
    [82]AliNI. Nematicidal activity of some strains of Pseudomonas sp. [J]. Soil Biology and Biochemistry,2002.34(8):1051-1058.
    [83]Becker JO. Effects of rhizobacteria on root-knot nematodes and gall formation[J]. Phytopa-thology (USA),1988,78(11):1466-1469.
    [84]罗红丽.根结线虫放线菌及其生物防治活性研究[J].微生物学报,2006.46(004):598-601.
    [85]陈立杰.放线菌Snea253的鉴定及对大豆胞囊线虫的抑制作用[J].中国生物防治,2009(001):66-69.
    [86]李洪涛.黄瓜根结线虫拮抗菌筛选及作用机理初探[J].河北大学学报:自然科学版,2006.26(001):91-96.
    [87]谢丙炎.松材线虫入侵种群形成与扩张机制[J].中国科学C辑,2009.39(4):333-341.
    [88]Wan FH, Zheng XB. Biology and management of invasive alien species in agriculture and forestry[M].Science Press,2005, China Beijing.
    [89]董锦艳,李铷,张克勤.松材线虫生物防治研究进展[J].植物保护,2005.31(005):9-15.
    [90]朱丽梅,吴小芹,蒋萍.细菌XS—JS3对松材线虫杀线活性的测定[J].南京林业大学学报:自然科学版,2008.32(001):79-82.
    [91]朱丽梅,吴小芹,徐旭麟.松材线虫拮抗细菌的筛选和鉴定[J].南京林业大学学报:自然科学版,2008.32(003):91-94.
    [92]张建平,赵博光.木腐菌及病死木中的真菌对松材线虫的影响[J].福建林学院学报,2003.23(003):245-248.
    [93]赵博光.苦豆碱对松材线虫的杀线活性[J].林业科学,1996.32(003):243-247.
    [94]Gaisser S. Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tu57[J]. Journal of bacteriology,1997.179(20):6271.
    [95]Zhao X. Construction of a doramectin producer mutant from an avermectin-overproducing industrial strain of Streptomyces avermitilis[J]. Can J Microbiol,2009.55(12):1355-63.
    [96]Martin E, Kampfer, Jackel U. Quantification and identification of culturable airborne bacteria from duck houses[J]. Annals of Occupational Hygiene,2009.
    [97]Torsvik V, Goksoyr J,. Daae FL. High diversity in DNA of soil bacteria[J]. Applied and Environmental Microbiology,1990.56(3):782.
    [98]Ogram A, Sayler GS, Barkay T. The extraction and purification of microbial DNA from sediments[J]. Journal of Microbiological Methods,1987.7(2-3):57-66.
    [99]王啸波,唐玉秋.环境样品中DNA的分离纯化和文库构建[J].微生物学报,2001.41(002):133-140.
    [100]陈灏,唐小树.不经培养的农田土壤微生物种群构成及系统分类的初步研究[J].微生物学报,2002.42(004):478-483.
    [101]Leff LG. Comparison of methods of DNA extraction from stream sediments[J]. Applied and Environmental Microbiology,1995.61(3):1141.
    [102]Miller DN. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples[J]. Applied and Environmental Microbiology,1999.65(11):4715.
    [103]Koike S. Molecular monitoring and isolation of previously uncultured bacterial strains from the sheep rumen[J]. Applied and Environmental Microbiology.76(6):1887.
    [104]Tebbe CC, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast[J]. Applied and Environmental Microbiology,1993.59(8):2657.
    [105]刘炳辉.聚酮类化合物生物合成基因簇与药物筛选[J].生物技术通报,2008(004):30-33.
    [106]杨建,洪葵.宏基因组文库技术获得聚酮化合物[J].遗传,2006.28(010):1330-1336.
    [107]Watve MG. How many antibiotics are produced by the genus Streptomyces[J]? Archives of microbiology,2001.176(5):386-390.
    [108]Beja O. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage [J]. Environmental Microbiology,2000.2(5):516-529.
    [109]Cane DE, Walsh CT. The parallel and convergent universes of polyketide synthases and nonribosomai peptide synthetases[J]. Chemistry & biology,1999.6(12):319-325.
    [110]Schwarzer D, Marahiel MA. Multimodular biocatalysts for natural product assembly[J]. Naturwissenschaften,2001.88(3):93-101.
    [111]Stachelhaus T, Mootz HD. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases[J]. Chemistry & biology,1999.6(8):493-505.
    [112]Ginolhac A. Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones[J]. Applied and Environmental Microbiology,2004.70(9):5522.
    [113]Ayuso-Sacido, A. and O. Genilloud, New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes:detection and distribution of these biosynthetic gene sequences in major taxonomic groups[J]. Microbial ecology,2005.49(1):10-24.
    [114]Moffitt MC, Neilan BA. Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations[J]. Journal of molecular evolution,2003.56(4):446-457.
    [115]Siegl A, Hentschel'U. PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification[J]. Environmental Microbiology Reports, 2009,1111(10):1758-2229.
    [116]Kodumal SJ. Total synthesis of long DNA sequences:synthesis of a contiguous 32-kb polyketide synthase gene cluster[J]. Proceedings of the National Academy of Sciences,2004. 101(44):15573.
    [117]Kamagata Y, Tamaki H. Cultivation of uncultured fastidious microbes[J]. Microbes and Environments,2005.20(2):85-91.
    [118]Handelsman J. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry and biology,1998.5(10):245-R249.
    [119]Brady SF, Clardy J. N-acyl derivatives of arginine and tryptophan isolated from environmental DNA expressed in Escherichia coli[S]. Organic letters,2005.7(17):3613.
    [120]Rodr guez-Valera F. Environmental genomics, the big picture[J]? FEMS microbiology letters,2006.231(2):153-158.
    [121]Streit WR, Schmitz RA. Metagenomics-the key to the uncultured microbes[J]. Current opinion in microbiology,2004.7(5); 492-498.
    [122]魏学军.蔬菜根结线虫生防链霉菌菌株ZL-2的鉴定[J].植物保护学报,2009(002):191-192.
    [123]朱晓峰.黑曲霉Snf009发酵液对根结线虫的毒性测定及温室防效研究[J].河南农业科学,2009(004):84-85.
    [124]Couto GH. Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast[J]. Genetics and Molecular Research.9(1):514-523.
    [125]Entcheva. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia[J]. Applied and environmental microbiology,2001.67(1):89.
    [126]Waschkowitz T, Rockstroh S, Daniel R. Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries[J]. Applied and environmental microbiology,2009.75(8):2506.
    [127]Rajendhran J. Gunasekaran.Strategies for accessing soil metagenome for desired applications[J]. Biotechnology advances,2008.26(6):576-590.
    [128]Schloss D, Handelsman J. Biotechnological prospects from metagenomics[J]. Current Opinion in Biotechnology,2003.14(3):303-310.
    [129]Baltz RH. Antimicrobials from actinomycetes:back to the future[J]. Microbe-American society for Microbiology,2007.2(3):125.
    [130]茆振川,防治根结线虫的原核生防菌的筛选及作用[D].2004.
    [131]Sambrook J.分子克隆实验指导[M].第三版.2002,北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700