福州温室黄瓜枯萎病微生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以福州市超大现代农业集团黄山农场为试验地,调查了温室黄瓜的生态环境、病害种类及发病规律,较为系统地研究了温室黄瓜枯萎病的微生态环境,并初步探讨了温室黄瓜枯萎病的微生态控制技术。
     1温室生态环境因子与黄瓜枯萎病关系分析
     在温湿方面,2月温度达10℃左右,2月下旬及3月上旬,昼夜相对湿度最大值均可达90%以上,晚上甚至达到100%,这种低温高湿条件导致了温室黄瓜枯萎病早发。在土壤方面,温室黄瓜常采用砂质土壤栽培,枯萎病随土壤砂性增加而加剧。在病原菌方面,伴随温室连作栽培,尖孢镰刀菌逐年累积,同时逐年加重的温室根结线虫侵染为害形成的根部伤口易于枯萎病菌的侵染,导致黄瓜枯萎病常发和重发。
     2温室黄瓜枯萎病胁迫下黄瓜微生态变化
     染病黄瓜在不同生长期根际微生物数量结构性变化。在发芽期,染病黄瓜根际的细菌数量低于健康黄瓜;在结果期,染病黄瓜根际的真菌和放线菌的数量低于健康黄瓜。维持黄瓜根际微生态平衡中,前期细菌数量作用大,后期真菌和放线菌的作用大。
     根据真菌形态特征,从温室黄瓜不同生态位初步鉴定出的丝状真菌35属,酵母菌6属,其中根际初步鉴定出25属,以镰刀菌属、青霉属、木霉属为优势菌。患病植株各生育期根际真菌种类均少于正常植株,在花期,黄瓜枯萎病发病处于高峰期时,患病植株的根际真菌多样性水平降到最低。病株的根、茎维管束真菌以镰刀菌为主,但种类较正常植株少;枯萎病株叶栖真菌以木霉为主;枯萎病植株的花表、果表的以酵母菌为主,真菌多样性较正常植株丰富。
     根据放线菌形态特征,从温室黄瓜根际共分离并鉴定出放线菌15个属,以链霉菌属、链轮菌属为优势菌。正常根际全生育期都存在链轮菌属、链霉菌属,而病害根际在前期以链霉菌属为主,末期才分离到链轮菌属。
     根据细菌形态特征、生理生化及16 srDNA序列,从温室黄瓜根际分离并鉴定出的细菌种类有9属。主要种类为芽孢杆菌,似杆菌类群,假单胞菌,短稳杆菌,类球红细菌,奇异变形菌。病菌降低的黄瓜根际细菌种类丰富度。T-RFLP及PCR-DGGE方法对黄瓜枯萎病、根结线虫病、黄瓜枯萎病与根结线虫病复合侵染的根际细菌的多样性进行分析。在PCR-DGGE分析中发现,除枯萎病和根结线虫复合侵染样品外,假单胞菌是优势菌。T-RFLP及PCR-DGGE方法则显示病菌提高了根际细菌种类丰富度,只是细菌种群的均度下降。
     黄瓜患枯萎病后,亚硝化细菌、硝化细菌、纤维素分解细菌、氨化细菌、硫化细菌等功能菌群数量相应减少,反硝化细菌、反硫化细菌功能菌群数量相应增加,而自生固氮菌变化不稳定。秋茬患病植株功能菌群数量减少幅度比春茬减少幅度大。黄瓜感染枯萎病后,黄瓜根际过氧化氢酶活性、脲酶活性、纤维素酶活性、碱性磷酸酶活性减弱。
     3温室黄瓜枯萎病的微生态控制技术探讨
     通过菌株平板对峙检测实验,从黄瓜枯萎病根际筛选出真菌、细菌、放线菌拮抗菌株各2株,对枯萎病的抑制效果较好。经鉴定,这六株菌分别是:短稳杆菌,巨大芽胞杆菌,钦氏菌属,链轮菌属,木霉属,头孢霉属。拮抗真菌木霉菌、头孢霉菌与两株拮抗细菌的协同培养效果不好,两株放线菌链轮丝菌、钦氏菌对短稳杆菌有一定的拮抗效果,其他菌株两两间均未出现拮抗作用。对筛选出的木霉菌株、钦氏菌株、巨大芽孢杆菌株3株拮抗菌进行了发酵条件初步研究。同时对钦氏菌株进行发酵罐发酵条件摸索,获得该菌株大量产孢的条件,但还需进一优化发酵参数。盆栽接种试验表明,3株拮抗菌菌株防的效果均比治好。
Ecological environment, disease species and occurrence regularity of greenhouse cucumber were investigated Fujian Huangshan Chaoda Modern Agriculture (Holdings) Limited farm. Micro-ecological enviroment of greenhouse cucumber Fusarium wilt was systematically studied, and micro-ecological control technique was preliminarily investigated.
     1. Relationship between greenhouse eco-environment and cucumber Fusarium wilt
     Temperature and humidity: the temperature reached about 10℃in February and the maximum relative humidity of day and night could reach 90% or more, even at 100% in night. The low temperature and high humidity led to the early outbreak of Fusarium wilt of cucumber in greenhouse.
     Soils: As sandy soil cultivation measures usually be used in cultivation of greenhouse cucumber, the Fusarium wilt of cucumber become more serious with increasing soil sand.
     Pathogens: Fusarium oxysporum accumulated year by year accompanying cropping greenhouse cultivation measures. Root wound caused by incognita is more conducive to cucumber wilt infection.
     2. Changes in micro-ecological of cucumber under the stress of cucumber wilt
     The number of rhizosphere microbe was changed at different growth stages in infected cucumbers. In the germination stage, the number of rhizosphere bacteria of infected cucumber was less than that of normal cucumbers. In fruiting stage stage, the number of rhizosphere fungi and actinomycetes from infected cucumbers was less than that of healthy cucumbers. During the micro-ecological balance stage of cucumber rhizosphere, bacteria played a major role in early stage, but fungi and actinomycetes played majors roles in later stage.
     According to fungi morphology, 35 species of filamentous fungi and 6 species of yeast were identified from different niches of cucumber. 25 species were identified from the rhizosphere of cucumber. Fusarium sp.., Penicillium sp.., and Trichoderma sp.. were dominant rhizosphere fungi. The infected cucumber had fewer rhizosphere fungi than that of healthly cucumbers. In the flower stage, when cucumber wilt outbroke at its peak, the diversity of rhizosphere fungi was declined to its lowest level. On the root vascular of infected cucumber, Fusarium sp. was the dominant strain and had few species. On the leaf surface of infected cucumber, Trichoderma sp. was the dominant strain. On the surface of flower and fruit of infected cucumber, yeast was the dominant strain and the infected cucumber had more species than normal cucumber.
     According to actinomycetes morphology, 15 species were identified from the rhizosphere of cucumber. Streptomyces sp. .and Sprocket sp. .were dominant in normal. Contemporarily, Streptomyces sp.. was dominant in infected rhizosphere of cucumber in early stage and Sprocket sp. was isolated in late stage.
     According to bacterium morphology, physiological and biochemical, and 16S rDNA sequence, 9 bacterial species were isolated and identified from cucumber rhizosphere in greenhouse. Bacillus、Pseudomonas、Bacteroidetes、Empedobacter、Proteus were dominant strains. The number of isolated bacterium species in infected rhizosphere was less than that of normal rhizosphere. Cultured-independent molecular technique was used to analyze the microbial diversity of cucumber rhizosphere soil. There were Fusarisum oxysporum infection rhizosphere soil, Meloidogyne incognita infection rhizosphere soil, complex infection by Meloidogyne incognita and Fusarisum oxysporum rhizosphere soil and normal soil inside and outside greenhouse. Based on denaturing gradient gel electrophoresis (DGGE), Pseudomonas was the dominant bacterium, except complex infected by Meloidogyne incognita and Fusarisum oxysporum. Compared with the normal, the infected had higher diversity index and smaller species eveness by T-RFLP and PCR-DGGE.
     The quantity of Nitrite bacteria, Nitrobacteria, Cellulose-utilizing bacteria, Ammonifying bacteria and Sulphate reducer decreased in the rhizosphere of infected Fusarisum oxysporum cucumber respectively, but the quantity of Denitrifier, Desulphate reducer increased respectively. Change was unstable to erobic azotobacter in infected Fusarisum oxysporum. There was greater decrease in fall stubble than spring crop. Under Fusarium oxysporum stress, the activity of Catelase, Urease, Cellulase, Phosphatase were declined respectively.
     3. Technology of micro-ecological control of cucumber Fusarium wilt in greenhouse
     2 fungi, 2 bacterium, and 2 actinomycetes were selected from isolated microbe by confrontation to Fusarium oxysporum between the culture plate respectively. They were Empedobacter brevis sp., Bacillus megaterium sp., Chainia sp. , Sprocket sp. , Trichoderma sp., Cephalosporium sp. . The cooperative between antagonistic Trichoderma and antagonistic bacterium was ineffective, the same as that between antagonistic Cephalosporium sp. and antagonistic bacterium. Certain antagonistic effect was found between antagonistic Chainia sp. and Empedobacter brevis sp., the same antagonistic effect as between antagonistic Sprocket sp. and Empedobacter brevis sp. . Other antagonistic strains could be collaborative culture. Selected antagonistic strains Trichoderma sp., Bacillus megaterium sp. , Chainia sp. were studied on fermentation conditions by shaker respectively, accessing to a large number of conditions. The conditions for Chainia sp. fermentation were explored .But for fermentation bubbles, the fermentation parameters were needed to further optimize. By root injury treatment with Fusarium oxysporum, the result showed that prevention was more effective than remedy in pot inoculation test.
引文
[1].巴尼特H L,B B亨特.半知菌属图解[M].北京:科学出版社,1977,54-210.
    [2].巴尼特J A,R W佩恩,D亚罗著,胡瑞卿译,方善康校.酵母菌的特征与鉴定手册[M].青岛:青岛海洋大学出版社,1991.
    [3].陈德富,陈喜文主编.现代分子生物学实验原理与技术[M].北京:科学出版社, 2006.
    [4].陈捷.植物病害生物防治技术与我国设施农业发展[A].农业技术革命与中国农业现代化论文集[C].北京:科学技术文献技术出版社, 1998:96-101.
    [5]. Booth C,陈其英译.镰刀菌属[M].北京:农业出版社, 1988.
    [6].陈延熙,陈璧,潘贞德,等.增产菌的应用与研究[J].生物防治通报, 1985(2):22-23.
    [7].陈天寿.微生物培养基的制造与应用[M].北京:中国农业出版社,1995.
    [8].崔宗均,李美丹,朴哲,等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J].环境科学, 2002, 23(3):36-39.
    [9].单卫星.植物附生微生物与叶部病害生物防治研究进展[J].生态学杂志,1992,11(1):48-53.
    [10].东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [11].东秀珠,洪俊华.原核微生物的多样性[J].生物多样性,2001,9(1):18-24.
    [12].董慧明,张颖,张德民,等.DNA指纹图谱技术在土壤微生物多样性研究中的应用[J].微生物学杂志,2007,27(1):45-49.
    [13].董金皋,李树正.植物病原菌毒素研究进展[M].北京:中国科学技术出版社,1997.
    [14].范寰.防治黄瓜枯萎病拮抗细菌的筛选[J].天津轻工业学院学报,2000,3:29-31.
    [15].冯树,张忠泽.混合菌---一类值得重视的微生物资源[J].世界科技研究与发展, 2000(3):44-47.
    [16].付艳芳,唐李斐,万军庭,等.细菌的信息交流,氨基酸和生物资源[J].2004,26(4):62-64.
    [17].高淑静,吴凤芝. PCR-DGGE技术在土壤微生物多样性研究中的应用[J].生物信息学, 2007,5(4):174-175,189.
    [18].葛芸英,陈松,孙辉,等.土壤细菌群体多样性的T-RFLP分析[J].应用探讨中国法医学杂.2008, 23(2):104-107.
    [19].关松荫.土壤酶及其研究法[M].北京:农业出版社, 1986:206-339.
    [20].韩旭,菅野绍雄.部分隐性基因控制黄瓜枯萎病抗性的试例[J].北方园艺,1996(2):7-9.
    [21].侯安福,尹彦.黄瓜枯萎病抗性遗传规律的研究.李树德主编.中国主要蔬菜抗病育种进展[M].北京:科学出版社,1995:439-444.
    [22].侯文邦,李定旭.黄瓜根结线虫病的发生规律及药剂防治研究[J].西南农业大学学报(自然科学版),2005,27(5):672-675.
    [23].胡开辉主编.微生物学实验[M].北京:中国林业出版社,2004.
    [24].胡元森,吴坤,刘娜,等.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学, 2004, 37(10):1521-1526.
    [25].黄仲生,杨玉茹,朱晓丹.中国黄瓜枯萎病菌生理小种鉴定及防治[J].华北农学报1994, 9(4):81-86.
    [26].江海龙,卢忠平,王诚,等.保护地蔬菜病虫发生的演变与对策[J].上海农业科技, 2004(3):62-63.
    [27].康白,袁杰利.微生态大循环是生命发生发展的根本条件[J].中国微生态学杂志,2005, l7(l):1-4.
    [28].康白.微生态学发展的历史轨迹[J].中国微生态学杂志, 2002, 14(6):311-314.
    [29].李宝聚.我国蔬菜病害研究现状与展望[J].中国蔬菜, 2006(1):1-5.
    [30].李阜棣.当代土壤微生物学的活跃研究领域[J].土壤学报, 1993, 30(3):229-236.
    [31].李阜棣,胡正嘉.微生物学(第六版)[M].北京:中国农业出版社,2007.
    [32].李刚,文景芝,吴凤芝,等.连作条件下设施黄瓜根际微生物种群结构及数量消长[J].东北农业大学学报,2006,37(4):444-448.
    [34].梁建根,张炳欣,喻景权,等.黄瓜根际重要病原与其拮抗菌消长规律的研究[J].应用生态学报,2005,16(5):911-914.
    [35].刘占良,翟红,刘大群.植物根际的微生物互作及其在植物病害生物防治中的应用[J].河北农业大学学报, 2003, 26(9):183-186.
    [36].罗剑飞,林炜铁,任杰,等. T-RFLP技术及其在硝化细菌群落分析中的应用[J].微生物学通报, 2008, 35(3):456-461.
    [37].马万里.土壤微生物多样性研究的新方法[J].土壤学报, 2004, 41(1):103-107.
    [38].马云华,王秀峰,魏珉,等.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用生态学报, 2005, 16 (11):2149-2153.
    [39].马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报, 2004, 15(6):1005-1008.
    [40].
    [41].梅汝鸿,徐维敏.植物微生态学[M].北京:中国农业出版社,1998.
    [42].苗则彦,赵奎华,刘长远,等.健康与罹病黄瓜根际微生物数量及真菌区系研究[J].中国生态农业学报,2004,(3):156-157.
    [43].贾国梅,吕红胜,唐巧珍,等.魔芋种植对土壤微生物的影响[J].安徽农业科学.2008,36(21):9176-9178.
    [44].戚佩坤,白金鎧,朱桂香.吉林省栽培植物真菌病害志[M].北京:科学出版社, 1966.
    [45].沈宏,严小龙.农业环境中根系分泌物及其应用研究[J].农村生态环境,2000,16:51-54.
    [46].沈菊培,张丽梅,郑袁明,等.土壤宏基因组学技术及其应用[J].应用生态学报, 2007, 18(1): 212-218.
    [47].孙波,赵其国,张桃标,等.土壤质量与持续环境Ⅲ、土壤质量评价的生物学指标[J].土壤, 1997, 29(5):225-234.
    [48].涂书新,孙锦荷,郭智芬,等.根系分泌物和根际植物营养的关系[J].土壤与环境, 2000, 9:64-67.
    [49].王拱辰,郑重,叶琪明,等.常见镰刀菌鉴定指南[M].北京:中国农业科技出版社, 1996:41.
    [50].王守正,王海燕,李洪连,等.植物微生物区系和植物抗病性研究[J].河南农业科学, 2001(5):20-23.
    [51].王政逸,李德葆.尖孢镰刀菌致病菌营养体亲和群研究[J].浙江农业学报, 2001, 13(2): 72-77.
    [52].翁祖信.黄瓜枯萎菌生理小种研究初报[J].中国蔬菜, l989, (1):I9-21.
    [53].吴风芝,赵风艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究,2002,18(1):20-22.
    [54].吴营昌,王守正.利用弱致病菌株诱导黄瓜抗枯萎病研究[J].河南农业大学学报,1991, 25(4):433-437.
    [55].肖荣凤,刘波,林抗美,等.枯萎病原菌在黄瓜组培苗体内侵染特性的研究[J].厦门大学学报(自然科学版), 2004, 43(1):94-96.
    [56].谢联辉,林奇英,徐学荣.植病经济与病害生态防治[J].中国农业大学学报,2005, 10(4):39-42.
    [57].谢联辉.21世纪我国植物保护问题的若干思考[J].中国农业科技导报, 2003, (5):5-7.
    [58].徐丽华,李文均,刘志恒,等.放线菌系统学原理、方法及实践[M].北京:科学出版社,2007.
    [59].许光辉,郑洪元主编.土壤微生物分析方法手册[M].北京:农业出版社,1986, 268-294.
    [60].许煌泉,唐玮宁,郑有丽,等.筛选假单胞菌株MI8防治大棚黄瓜枯萎病害[J].上海交通大学学报, 1999, 33(50): 210-213.
    [61].闫敏,李平,李凤梅,等.黄瓜根际镰刀菌的分离及初步鉴定[J].西南农业学报,2004, 17(3):345-347.
    [62].阎初逊.放线菌的分类和鉴定[M].北京:科学出版社,1992.
    [63].杨建霞,范小峰,刘建新.温室黄瓜连作对根际微生物区系的影响[J].浙江农业科学, 2005, 6:441-443.
    [64].杨涛,张贵峰,关天舒.黄瓜、甜瓜专化型尖孢镰刀菌人工诱变非致病菌系筛选及其生防应用研究[J].辽宁农业科学, 2001, (4):11-13.
    [65].余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施[J].应用与环境生物学报,2006,12(6):861-868.
    [66]袁军.印度洋深海多环芳烃降解菌的多样性分析及降解菌新种的分类鉴定与降解机理初步研究[D].厦门大学,2008:53-55
    [67].余文英,郑宏,张绍升.温室黄瓜枯萎病根际微生物动态变化研究[J].中国农学通报, 2009,25(07):235-238.
    [68].俞大拔.中国镰刀菌属菌种的初步名录[J].植物病理学报, 1955, 1(1):1-18.
    [69].袁三青,薛燕芬,高鹏,等. T-RFLP技术分析油藏微生物多样性[J].微生物学报, 2004, 47(2):290-294.
    [70].岳秀娟,余利岩,张月琴.自然界中处于VBNC状态微生物的研究进展[J].微生物学通报,2004,31(2):108-l11.
    [71].张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    [72].张昕,张炳欣,喻景权,等.生防菌ZJY-1及ZJY-116的GFP标记及其在黄瓜根围的生态适应性[J].应用生态学报, 2005,16(11):2144-2148.
    [73].张昕,张炳欣,赵宇华,等.多功能菌群混合施用的生态效应[J].应用生态学报, 2005,16(10):1909-1912.
    [73].张旭霞,刘左军,陈正.土壤微生物多样性的研究方法[J].安徽农业科学,2007,35(32):10373-10374.
    [74].张中义,冷怀琼,张志铭,等.植物病原真菌学[M].成都:四川科学技术社,1988.
    [75]
    [76].郑爱萍,闫敏,李平,等.黄瓜枯萎病新型抑制蛋白L37的研究[J].园艺学报, 2005, 32 (6):1102-1104.
    [77].郑华,欧阳志云,方治国,等.BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报, 2004, 41:456-461.
    [78].郑金贵,范维培,余亚白,等.福建冬季农业开发研究[J].福建省农科院学报, 1994,9(2):1-7.
    [79].朱天辉,杨佐忠.枯草芽孢杆菌菌种退化及其控制[J].西南林学院学报,2000,20(1):31-35.
    [80].中国科学院南京土壤所微生物室编.土壤微生物研究法[M].北京:科学出版社, 1985:47-63.
    [81].中国科学院微生物研究所.常见与常用真菌[M].北京:科学出版社, 1973.
    [82].中国科学院微生物研究所放线菌分类组编著.链霉菌鉴定手册[M].北京:科学出版社,1975.
    [83].周玥,刘小锦,朱晨光,等.细菌中群体感应调节系统[J].微生物学报,2004,44(1):122-126.
    [84].周琳,张晓君,李国勋,等.DGGE/TGGE技术在土壤微生物分子生态学研究中的应用[J].生物技术通报, 2006(5):67-71.
    [85].周茂繁编著.植物病原真菌属分类图索[M].武汉:华中农学院植保系,1983.
    [86].庄敬华,杨长成,高增贵,等.瓜类枯萎病菌粗毒素的致萎作用及其钝化研究[J].沈阳农业大学学报,2006,37(2):177-181.
    [87] . Aagot N, Nybroe O, Nielsen P, et a1. An altered Pseudomonas diversity is recovered from soil by using nutrient poor Pseudomonas selective soil extract media[J].Applied and Environmental Microbiology,2001,67:5233-5239.
    [88] .Alke Bruns,Ulrich Nübel, Heribert Cypionka, et a1.Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton[J].Applied and Environmental Microbiology,2003,69:1980-1989.
    [89].BéjàO,Aravind L,Koonin E V,et a1.Bacterial rhodopsin:evidence for a new type of phototrophy in the sea[J].Science,2000,289:1902-1906.
    [90].Bloomfieht S F,Stewart G S, Dodd C E, et a1.The viable but nonculturable phenomenon explained[J]. Microbiology,1998,144:1-3.
    [91].Borneman J,E W Triplett. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation[J]. Applied and Environmental, 1997, 63(7): 2647-2653.
    [92].Borneman J,PW Skroch,K M O'sullivan et al. Molecular Microbial Diversity of an Agricultural Soil in Wisconsin[J]. Applied and Environmental Microbiology,1996, 62(6): 1935–1943.
    [93].Bruggen A H C,Grunwald N J. Tests for risk assessment of root infection by plant pathogens. Doran J W,Jones A J eds. Methods for Assessing Soil Quality[M]. Madison: Soil Science Society of America,1996:293-310.
    [94].Bussmann I,Philipp B,Schink B.Factors influencing the cultivability of lake water bacteria[J].Journal of Microbiological Methods,2001,47:41-50.
    [95].Cho J C,Giovannoni S J.Cultivation and growth characteristics of adiverse group of oligotrophie marine C,ammaproteobacteria[J].Applied and Environmental Microbiology,2004,70:432-440.
    [96].Clement B G,Kehl L E,DeBord K L,et al. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for comparison of complex bacterial communities[J]. Journal of Microbiological Methods,1998,31:135-142.
    [97].Connon S A,Giovannoni S J.High throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates[J].Applied and Environmental Microbiology,2002,68:3878-3885.
    [98].DeLong E F. Diversity of naturally occurring prokaryotes[A] . In :Colwell R R ed. Microbial Diversity in Time and Space[C]. New York :Plenum, 1996:125-133.
    [99].Duineveld B M, Kowalchuk G A, Keijzer A, et al. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16 S rRNA[J]. Applied and Environmental Microbiology,2001,67:172-178.
    [100].Duineveld B M, Rosado A S, van Elsas J D, et al. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns[J]. Applied and Environmental Microbiology,1998,64: 4950-4957.
    [101].Egert M,Friedrich M W. Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure[J]. Applied and Environmental Microbiology, 2003, 69 (5) : 2555-2562.
    [102].Engebretson J J,Moyer C L. Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism[J]. Applied and Environmental Microbiology,2003,69 (8): 4823-4829.
    [103].Fjellbirkeland A, Torsvik V, Ovreas L. Methamotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF and 16S rDNA sequences[J]. Antonie Van Leeuwenhoek, 2001, 79 :209-217.
    [104].Garland J L,Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization[J]. Applied and Environmental Microbiology,1991,57: 2351-2359.
    [105].Garland J L. Analysis and interpretation of community-level physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology,1997,24: 289-300.
    [106].Gomes N C M,Fagbola O,et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics[J]. Applied and Environmental Microbiology,2003,69: 3758-3766.
    [107].Graham R D. Geonotypic differences in tolerance to manganese deficiency.In: Graham R D,R J Hannam &N C Uren eds. Manages in soil and plant[M].Dordrecht:Kluwer Acadamic publishers, 1988:75-85.
    [108].Guetsky R,Shtienberg D,Elad Y,et a1.Combining biocontrol agents to reduce the variability of biological contro1[J]. Phytopathology,2001,91:621-627.
    [109].Jack Kozadroj, Jan Dirk Van Elsas. Application of polymerase chain reaction denaturing gradient gel electrophoresis for comparison of direct and indirect extraction methods of soil DNA used for microbial community fingerprinting[J] . Biology and Fertility of Soils, 2000,31(5):372-378.
    [110].KleopperJ W,Schipper B,Bakker P A H M. Proposed elimination of the term endorhizosphere [J]. Phytopathology,1992,82:726-727.
    [111].Lal R,Reddy M V. Soil management and soil biotic processes. Reddy M V. Management of tropical agroecosystems and the beneficial soil biota[M].Science Publishers, 1999: 67-81.
    [112].Louise M D, Gwyn S G,John H,et al. Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales[J]. Soil Biology Biochemical,2000,32(2):253-263.
    [113].Lynch J M,Whipps J M. Substrate flow in the rhizosphere[J].plant and Soil,1990, 129(1):l-10
    [114].Mandeel Q, Baker R.Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporumm[J].Phytopathology,1991,81(5):462-469
    [115].Martinei toledo M V. Root exudates of zea mays and production of auxins gibberellins and cytokinins by Azotobacter chroococcum[J]. Plant and Soil,1988,110: 149-155.
    [116].Moeseneder M M,Arrieta J M,Muyzer G,et al. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology,1999,65: 3518-3525.
    [117].Morel J L,I Habib,S Plantureux,et al. Influence of maize root mucilage on soil aggregatestability[J].Plant and Soil,1991,136:111-119.
    [118].Moyer C L,Dobbs F C,Karl D M. Estimation of diversity and community structure through estriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active,hydrothermal vent system,Loihi Seamount,Hawaii[J]. Applied and Environmental Microbiology,1994,60(3): 871-879.
    [119].Mukamolova G V, Kaprelyants A S, Young D L, et a1.A bacterial cytokine[J]. National Acad Sciences,1998,95(15):8916-8921.
    [120].Muyzer G . DGGE / TGGE a method for indenting genes from natural ecosystems [J]. Current Opinion in Microbiology,1999,(2):317-322.
    [121].Muyzer G,De Wall E C, Uitterlinden A G. Profiling of complex micombiol populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J].Applied and Environmental Microbiology,1993, 59 :695-700.
    [122].Neter D S,Niegro,Galun F. A dominant gene conferring resistance to fusarium wilt in cucumber[J]. Phytopathology,1977,67:525-527.
    [123].Nubel U,Engelen B,Felske A,et al.Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis [J].Journal of Bacteriology,1996,178(5):636-643.
    [124].Oliver Dilly,Jaap Bloem,A Vos,et al. Bacterial diversity in agricultural soils during litter decomposition[J].Applied and Environmental Microbiology,2004,70(1):468-474.
    [125].Olsen G J,D J Lane,S J Giovannoni,N R Pace,and D A Stahl.Microbial Ecology and Evolution: A Ribosomal RNA Approach[J]. Annual Review of Microbiology,1986,40: 337-365.
    [126].Ovreas L,Torsvik V. Microbial diversity and community structure in two different agricultural soil communities [J]. Microbial Ecology,1998,36(3):303-315.
    [127].Owen J H .Fusarum wilt of cucumber[J]. Phytopathology,1955,(45):435-439.
    [128].Owen J H. Cucumber wilt, caused by Fusarum oxysporum[J]. Phytopathology,1955, (46):153-157.
    [129].Park C S, Baker R. Biocontrol of Fusarium wilt of cucumber resulting from interaction between pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum[J]. Phytopathology,1988,78:190-194.
    [130].Paulitz T C,Park C S,Baker R. Biological control of Fusarium wilt of cucumber with non-pathogenic isolates of Fusarium oxysporum[J]. Canadian Journal Microbiology,1987,33(1):349-353.
    [131].Prestorr Mafham J, Boddy L,Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles a critique[J]. FEMS Microbial Ecology,2002,42: 1-14.
    [132].Prikryl Z,Vancura V. Root exudates of plants Wheat root exudation as dependent on growth,concentration gradient of the exudates and the presence of bacteria[J]. Plant and Soil,1980,57: 69-83.
    [133].Raupaeh G S,Kloepper J W.Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens [J]. Phytopathology,1998, 88:1158-1164.
    [134].Robinson A, Peter S C Wu, Stephen J Harrop,et al. Integron-associated mobile gene cassettes code for folded proteins: the structure of Bal32a, a new member of the adaptableα+βbarrel family[J]. Journal of Molecular Biology,2005,346(5): 1229-1241.
    [135].Sait M,Hugenholtz P,Janssen P H. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys[J]. Environment Microbiology,2002,4(11):654-666.
    [136].Schippers Betal. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annual Reviews of Phytopathelogy,1987, 25(3):339-358.
    [137].Schwieger F,Tebbe C. A new approach to utilize PCR-single-strand-conformation-polymorphism for 16S rRNA genebased microbial community analysis[J]. Applied and Environmental Microbiology,1998,64(12): 4870-4876.
    [138].Simu K,?ke Hagstr?m .Oligotrophic Bacterioplankton with a Novel Single-Cell Life Strategy [J].Applied and Environmental Microbiology,2004,70(4):2445-2451.
    [139].Singh P P,Shin Y C,Park C S et al. Biocontrol of Fusarium wilt of cucumber by chitinolytic bacteria[J].Phytopathology,1999,89: 92-99.
    [140].Smalla K,Wieland G, Buchner A,et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed[J]. Applied and Environmental Microbiology,2001,67(10): 4742-4751.
    [141].Stevenson B S,Eichorst S A,Wertz J T, et al. New strategies for cultivation and detection of previously uncultured microbes[J]. Applied and Environmental Microbiology,2004, 70(8):4748-4755
    [142].Summerell B A,Salleh B,Leslie J H.A utilitarian approach to Fusarium identification[J].Plant Disease,2003,87(2):l17-128.
    [143].Thomp son I P,BaileyM J,Fenlon J S, et al. Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet ( Beta vu lgari ) [J]. Plant and soil,1993,150(2):177-191.
    [144].Tonin C,Vandenkoornhuyse P,Joner E J,et al. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Violoa calaminaria and effect of these fungi on heavy metal uptake by clover[J]. Mycorrhiza,2001,10:161-168.
    [145].Vakalounkais D J.Inheritance and linkage of resistance in cucumher line SMR to races 1 and 2 of Fusarium oxysporum f.sp.cucumerium[J].Plant Pathology,1995,44:169-172.
    [146].Wardle D A,Nicholson K S.Synergetic effects of grassland species on soil microbial and activity: implications for ecosystem level effects of enriched plant diversity Funco [J].Ecology,1996,10:410-416.
    [147].Yang S S,Kim C H.Studies on cross protection of Fusarium wilt of cucumber IV. Protective effect by nonpathogenic isolate of Fusarium oxysporum in a greenhouse and fields[J]. Plant Patho1ogy,1996,12 (4):137-141.
    [148].Yang Y H,Yao J,S Hu, et al. Effects of agricultural chemicals on DNA sequences diversity of soil microbial community: a study with RAPD marker[J]. Microbial ecology, 2000, 39(1): 72-79.
    [149].Yao H,He Z,Wilson M J, et al. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use[J]. Microbial Ecology,2000,40: 223-237.
    [150].Yedidia I,Benhamou N,Chet I.Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum[J].Applied andEnvironmental Microbiology,1999, 65(3):l06l-1070.
    [151].Yun J,Kang S,Park S,et al. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library[J]. Applied and Environmental Microbiology,2004,70(12): 7229-7235.
    [152].Zak J C,Willig M R,Moorhead D L,et al . Functional diversity of microbial communities : a quantitative approach[J]. Soil Biology and Biochemistry,1994,26:1101-1108.
    [153].Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review[J]. Biology and Fertility of Soils,1999,29: 111-129.
    [154].Zengler K,Toledo G,Michael RappéS,et a1.Cultivating the uncultured[J].National Acad Sciences,2002,26:15681-15686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700