长果大头茶的化学成分及生物活性研究&咔唑生物碱Claulansine F的合成及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长果大头茶是山茶科大头茶属植物,主要分布在我国西南部、缅甸和越南北部。本课题组前期对大头茶属植物黄药大头茶和广西大头茶进行了化学成分和生物活性研究,获得了以三萜皂苷、黄酮为主的化学成分,生物活性研究表明部分化合物具有细胞毒、抗炎、保肝和降血糖等活性。目前尚无有关长果大头茶的化学成分和生物活性的报道。
     药理活性筛选发现长果大头茶茎95%乙醇提取物水悬液萃取后的正丁醇部位具有降血糖活性。为寻找有效成分,本论文运用色谱学和波谱学方法,对长果大头茶茎95%乙醇提取物正丁醇部位进行了化学成分研究,从中分离得到20个化合物并鉴定了其化学结构,均为三萜皂苷,依次为3β-0-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-葡萄糖(1_→2)]-β-D-葡萄糖醛酸-16α-羟基-齐墩果-12-烯-28-酸(1),3β-O-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-半乳糖(1→2)]-β-D-葡萄糖醛酸-16α-羟基-齐墩果-12-烯-28-酸(2),3β-0-β-D-葡萄糖(1→2)-[a-L-阿拉伯糖(1→3)]-β-D-葡萄糖醛酸-16a-羟基-齐墩果-12-烯-28-葡萄糖酯(3),3β-O-β0-D-半乳糖(1→2)-[a-L-阿拉伯糖(1→3)]-β-D-葡萄糖醛酸-16a-羟基-齐墩果-12-烯-28-葡萄糖酯(4),3β-O-a-L-鼠李糖(1→3)-β-D-葡萄糖(1→2)-[a-L-阿拉伯糖(1→3)]-β-D-葡萄糖醛酸-16a-羟基-齐墩果-12-烯-28-葡萄糖酯(5),3β0-O-β-D-半乳糖(1→2)-[a-L-阿拉伯糖(1→3)]-β-D-葡萄糖醛酸-16α,28-二羟基-齐墩果-12-烯(6),3β-0-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-半乳糖(1-→2)]-β-D-葡萄糖醛酸-16a,28-二羟基-齐墩果-12-烯(7),3β-O-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-葡萄糖(1→2)]-β-D-葡萄糖醛酸-15a,16a,28-三羟基-21β,22a-二当归酰氧基齐墩果-12-烯(8),3β-O-β-D-半乳糖(1→2)-β-D-葡萄糖醛酸-16a-羟基-齐墩果-12-烯-28-葡萄糖酯(9),3β-O-a-L-阿拉伯糖(1→3)-β-D-葡萄糖醛酸-16a-羟基-齐墩果-12-烯-28-葡萄糖酯(10),3β-O-a-L-阿拉伯糖(1→2)-a-L-阿拉伯糖(1→3)-β-D-葡萄糖醛酸-16a-羟基-齐墩果-12-烯-28-葡萄糖酯(11),3β-O-a-L-鼠李糖(1→2)-a-L-阿拉伯糖(1→3)-β-D-葡萄糖醛酸-16a-羟基-齐墩果-12-烯-28-葡萄糖酯(12),3β-0-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[fβ-D-半乳糖(1→2)]-ββ-D-葡萄糖醛酸-16α-羟基-齐墩果-12-烯-28-葡萄糖酯(13),3β-0-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-葡萄糖(1→2)]-β-D-葡萄糖醛酸-16a,28-二羟基-22a-当归酰氧基齐墩果-12-烯(14),3β-O-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-半乳糖(1→2)]-β-D-葡萄糖醛酸-16a,28-二羟基-22a-当归酰氧基齐墩果-12-烯(15),3β-0-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-半乳糖(1-→2)]-β-D-葡萄糖醛酸-15a,16a,28-三羟基-22a-当归酰氧基齐墩果-12-烯(16),3β-0-β-D-木糖(1→2)-α-L-阿拉伯糖(1→3)-[β-D-半乳糖(1→2)]-β-D-葡萄糖醛酸-15a,16a,28-三羟基-21β-乙酰氧基-22a-当归酰氧基齐墩果-12-烯(17),3β-O-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-葡萄糖(1→2)]-β-D-葡萄糖醛酸-16a,28-二羟基-21β,22a-二当归酰氧基齐墩果-12-烯(18),3β-0-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-半乳糖(1→2)]-β-D-葡萄糖醛酸-16a,28-二羟基-21β,22a-二当归酰氧基齐墩果-12-烯(19),3β-O-β-D-木糖(1→2)-a-L-阿拉伯糖(1→3)-[β-D-半乳糖(1→2)]-βD-葡萄糖醛酸-15a,16a,28-二羟基-21β,22α-二当归酰氧基齐墩果-12-烯(20)。其中化合物1-8为新化合物,依次命名为longicarposide A-H。体外降血糖活性筛选表明,化合物1和16对醛糖还原酶抑制率超过50%。在细胞毒活性筛选模型中,化合物8、14、15、16和18对HCT-8、Bel-7402、BGC-823、A549和A2780五种肿瘤细胞株显示出了非选择细胞毒活性,化合物17、19和20表现出了选择性细胞毒性。
     本课题组在研究黄皮化学成分和生物活性过程中获得一系列咔唑生物碱,其中部分化合物显示了体外神经细胞保护活性。新化合物Claulansine F在硝普钠诱导的大鼠大脑神经元模型中显示了强于阳性对照药依达拉奉的保护作用。Claulansine F在细胞中显示了与依达拉奉相似的自由基清除作用,对硝普钠诱导的PC12细胞凋亡的保护呈剂量依赖性。为进一步开展动物模型评价和毒性、机制及构效关系研究,我们设计并合成了Claulansine F。
     以2-甲基-5硝基苯胺为原料,经过9步反应最终合成了Claulansine F,总收率为3.3%。利用制备的取代苯胺和碘甲醚,在乙酸钯催化下经过Buchwald-Hartwig反应合成了二苯胺型中间体,继而在钯的催化下进行分子内氧化脱氢得到了咔唑。这是首次全合成Claulansine F。所得产物与从天然产物中分离得到的Claulansine F理化数据完全一致。本论文还对中间体和最终产物进行了进一步生物活性研究,Claulansine F在大鼠脑梗塞模型中,有效减少了梗塞面积,与阳性对照药依达拉奉相当,说明Claulansine F在脑中的自由基清除作用仍然有效。
Polyspora longicarpa Chang, belonging to Polyspora of the Theaceae family, is distributed widely in the southwestern China and northern Vietnam and Cambodia. Our previous researches on Polyspora chrysandra Cowan and Polyspora kwangsiensis had provided a diverse array of new saponins and flavonoids, with a range of bioactivities such as cytotoxic, anti-inflammatory, hepatoprotective and hypoglycemic activities. Until now, there are no reports on chemical constituents and bioactivities of Polyspora longicarpa Chang.
     In our preliminary screening, the n-BuOH part of95%EtOH extract of the stems was found to exhibit anti-inflammatory and hypoglycemic activities. As part of searching for bioactive constituents, we investigated the n-BuOH part of95%EtOH extract of the stems. By using various chromatographic and spectroscopic techniques,20triterpenoid saponins had been isolated and elucidated. They were3-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-glucuronopyranosyl-16a-hydroxy-olean-12-en-28-oic acid (1),3-O-β-D-xylopyranosyl-(1→2)-α-L-arabino-pyranosyl-(1→3)-[β-D-galactopyranosyl-(1→2)]-β-D-glucuronopyranosyl-16a-hydroxy-olean-12-en-28-oic acid (2),3β-O-β-D-glucopyranosyl-(1→2)-[a-L-arabino-pyranosyl-(1→3)]-β-D-glucuronopyranosyl-16α-hydroxy-olean-12-en-28-O-β-D-gluco-pyranoside (3),3β-O-β-D-galactopyranosyl-(1→2)-[α-L-arabinopyranosyl-(1→3)]-β-D-glucuronopyranosyl-16α-hydroxy-olean-12-en-28-O-β-D-glucopyranoside (4),3β-O-a-L-rhamnopyranosyl(1→3)-β-D-glucopyranosyl-(1→2)-[a-L-arabinopyranosyl-(1→3)]-β-D-glucuronopyranosyl-16α-hydroxy-olean-12-en-28-O-β-D-glucopyranoside (5),3β-O-β-D-galacto-pyranosyl-(1→2)-[a-L-arabinopyranosyl-(1→3)]-β-D-glucurono-pyranosyl-16α,28-dihydroxy-olean-12-ene (6),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-galactopyranosyl-(1→2)]-β-D-glucuronopyranosyl-16α,28-dihydroxy-olean-12-ene (7),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabino-pyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-glucuronopyranosyl-15a,16a,28-trihydroxy-21β,22α-diangeloyloxy-olean-12-ene (8),3β-O-β-D-galactopyranosyl-(1→2)-β-D-glucuronopyranosyl-16a-hydroxy-olean-12-en-28-O-β-D-glucopyranoside (9),3β-O-α-L-arabinopyranosyl-(1→3)-β-D-glucuronopyranosyl-16α-hydroxy-olean-12-en-28-O-β-D-glucopyranoside (10),3β-O-α-L-arabinopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-β-D-glucuronopyranosyl-16α-hydroxy-olean-12-en-28-O-β-D-glucopyranoside (11),3β-O-α-L-rhamnopyranosyl(1→2)-a-L-arabinopyranosyl-(1→3)-β-D-glucuronopyranosyl-16α-hydroxy-olean-12-en-28-O-β-D-glucopyranoside (12),30-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-galactopyranosyl-(1 →2)]-β-D-glucuronopyranosyl-16a-hydroxy-olean-12-en-28-O-β-D-glucopyranoside (13),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-glucuronopyranosyl-16a,28-dihydroxy-22a-angeloyloxy-olean-12-ene (14),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyI-(1→3)-[β-D-galactopyranosyl-(1→2)]-β-D-glucuronopyranosyl-16a,28-dihydroxy-22α-angeloyloxy-olean-12-ene (15),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-galactopyranosyl-(1→2)]-β-D-glucuronopyranosyl-15a,16a,28-trihydroxy-22a-angeloyloxy-olean-12-ene (16),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-galactopyranosyl-(1→2)]-β-D-glucuronopyranosyl-15a,16a,28-tirhydroxy-21β-acetyl-22a-angeloyloxy-olean-12-ene (17),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-glucuronopyranosyl-16a,28-dihydroxy-21β,22a-diangeloyloxy-olean-12-ene (18),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-galactopyranosyl-(1→2)]-β-D-glucurono-pyranosyl-16a,28-dihydroxy-21β,22a-diangeloyloxy-olean-12-ene (19),3β-O-β-D-xylopyranosyl-(1→2)-a-L-arabinopyranosyl-(1→3)-[β-D-galactopyranosyl-(1-D-glucuronopyranosyl-15a,16a,28-dihydroxy-21β,22a-diangeloyloxy-olean-12-ene (20). Compounds1-8are new compounds, which were given the trival names longicarposide A-H, respectively. For the hypoglycemic bioassay, compound1and16inhibited aldose reductase with a rate over50%. For the cytotoxic bioassay, compounds8,14,15,16and18exhibited nonselective cytotoxicity against HCT-8, Bel-7402, BGC-823, A549and A2780cell lines while compounds17,19and20exhibited selective cytotoxicity.
     Our previous investigations on the constituents and bioactivities of Clausena lansium (Lour.) Skeels had found a series of carbazole alkaloids which showed excellent neuroprotective activities in vitro. The new compound claulansine F exhibited better neuroprotective activities than the positive drug edaravone toward the apoptosis of rat cortical neuron. It acted as a free radical scavenger against reactive oxygen species (ROS) like edaravone and protected PC12cells in a dose-dependent manner against toxicity induced by sodium nitroprusside. In order to perform further researches on animal modle, toxicity, mechanism and structure-activity relationship,we carried out a synthetic study for the preparation claulansine F.
     A nine-step route was developed with2-methy-5-nitroaniline as the starting material, leading to the total synthesis of claulansine F with the overall yield3.3%. The coupling of prepared arylamine with commercial4-iodoanisole via a palladium-catalyzed Buchwald-Hartwig amination led to the diarylamine. An air-mediated oxidative cyclization catalyzed by palladium had been applied to the foundation of the carbazole skeleton. Claulansine F, obtained by total synthesis for the first time, has been characterized by comparison of its spectroscopic data with those of the natural product. Further investigations of bioactivities on the intermediates and Claulansine F were carried out in this thesis. Claulansine F significantly decreased the area of infarction induced by cerebral ischemia in the brain of rats, which indicated that the mechanism of free radicals scavenging still worked in vivo.
引文
[1]中国科学院中国植物志编辑委员会主编.中国植物志[M].北京:科学出版社.1994,49:206-211.
    [2]杨世雄.国产大头茶属的分类处理.热带亚热带植物学报,2005,13(4):363-365.
    [3]付辉政.大头茶属植物黄药大头茶和广西大头茶的化学成分及生物活性研究[D].北京:北京协和医学院,2012.
    [4]Herath HMTB, Athukoralage PS. Oleanane triterpenoids from Gordonia ceylanica [J]. Nat Prod Sci,1998,4(4):253-256.
    [5]Herath HMTB, Athukoralage PS, Jamie JF. Two oleanane triterpenoids from Gordonia ceylanica and their conversions to taraxarane triterpenoids [J]. Phytochemistry,2000,54(8):823-827.
    [6]Herath HMTB, Athukoralage PS, Jamie JF. A new oleanane triterpenoid from Gordonia ceylanica [J]. Nat Prod Lett,2001,15(5):339-344.
    [7]Herath HMTB, Athukoralage PS, Jamie JF. Triterpenoids and steroids from Gordonia dassanayakei [J]. ACGC Chem Res Commun,1999,9:3-8.
    [8]Herath HMTB, Athukoralage PS. Triterpenoids from Gordonia dassanayakei [J]. Nat Prod Sci,2000,6(2):102-105.
    [9]于磊.黄药大头茶和铁篱笆果的活性成分研究[D].北京:北京协和医学院,2009.
    [10]Wang K, Yang JZ, Zuo L, et al. Two new flavanonol glycosides from Gordonia chrysandra [J]. Chin Chem Lett,2008,19(1):61-64.
    [11]Chang CW, Yang LL, Yen KY, et al. New y-pyrone glucoside, and dimeric ellagitannins from Gordonia axillaris [J]. Chem Pharm Bull,1994,42(9): 1922-1923.
    [12]Athukoralage PS, Herath HMTB, Deraniyagala SA, et al. Antifungal constituent from Gordonia dassanayakei [J]. Fitoterapia,2001,72(5):565-567.
    [13]Wang CC, Chen LG, Yang LL. Camelliin B induced apoptosis in HeLa cell line [J]. Toxicology,2001,168(3):231-240.
    [1]Cioffi G, Dal PF, Vassallo A, et al. Antiproliferative oleanane saponins from Meryta denhamii [J]. J Nat Prod,2008,71(6):1000-1004.
    [2]Fu HZ, Li CJ, Yang JZ, et al. Potential anti-inflammatory constituents of the stems of Gordonia chrysandra [J]. J Nat Prod,2011,74(5):1066-1072.
    [3]于磊.黄药大头茶和铁篱笆果的活性成分研究[D].北京:北京协和医学院,2009.
    [4]付辉政.大头茶属植物黄药大头茶和广西大头茶的化学成分及生物活性研究[D].北京:北京协和医学院,2012.
    [5]Yoshikawa M, Morikawa T, Yamamoto K, et al. Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant(Camellia sinensis) [J]. J Nat Prod,2005,68(9):1360-1365.
    [1]Knolker HJ, Reddy KR. Isolation and synthesis of biologically active carbazole alkaloids [J]. Chem Rev,2002,102(11):4303-4428.
    [2]Akermark B, Eberson L, Jonsson E, et al. Palladium-promoted cyclization of diphenyl ether, diphenylamine, and related compounds [J]. J Org Chem,1975,40(9): 1365-1367.
    [3]Krahl MP, Jager A, Krause T, et al. First total synthesis of the 7-oxygenated carbazole alkaloids clauszoline-K,3-formyl-7-hydroxycarbazole, clausine M, clausine N and the anti-HIV active siamenol using a highly efficient palladium-catalyzed approach [J]. Org Biomol Chem,2006,4(17):3215-3219.
    [4]Forke R, Krahl MP, Dabritz F, et al. Transition metals in organic synthesis, part 87: An efficient palladium-catalyzed route to 2-oxygenated and 2,7-dioxygenated carbazole alkaloids-total synthesis of 2-methoxy-3-methylcarbazole, glycosinine, clausine I, mukonidine, and clausine V [J]. Synlett,2008,12:1870-1876.
    [5]Knolker HJ. Synthesis of biologically active carbazole alkaloids using selective transition-metal-catalyzed coupling reactions [J]. Chem Lett,2009,38(1):8-13.
    [6]Gruner KK, Knolker HJ. Palladium-catalyzed total synthesis of euchrestifoline using a one-pot Wacker oxidation and double aromatic C-H bond activation [J]. Org Biomol Chem,2008,6(21):3902-3904.
    [7]Knolker HJ, Knoll J. First total synthesis of the neuronal cell protecting carbazole alkaloid carbazomadurin A by sequential transition metal-catalyzed reactions [J]. Chem Commun,2003,10:1170-1171.
    [8]Fuchsenberger M, Forke R, Knolker HJ. Transition Metals in Organic Synthesis, Part 95:First total synthesis of the 1,7-dioxygenated carbazole alkaloids Clausine Q and Clausine R [J]. Synlett,2011,14:2056-2058.
    [9]Watanabe T, Oishi S, Fujii N, et al. Palladium-catalyzed direct synthesis of carbazoles via one-pot N-arylation and oxidative biaryl coupling:synthesis and mechanistic study [J]. J Org Chem,2009,74(13):4720-4726.
    [10]Liu Z, Larock RC. Synthesis of carbazoles and dibenzofurans via cross-coupling of o-iodoanilines and o-iodophenols with silylaryl triflates and subsequent Pd-catalyzed cyclization [J]. Tetrahedron,2007,63(2):347-355.
    [11]Bedford RB, Betham M. N-H Carbazole synthesis from 2-chloroanilines via consecutive amination and C-H activation [J]. J Org Chem,2006,71(25): 9403-9410.
    [12]Watanabe T, Ueda S, Inuki S, et al. One-pot synthesis of carbazoles by palladium-catalyzed N-arylation and oxidative coupling [J]. Chem Commun,2007,43: 4516-4518.
    [13]Knolker HJ, Frohner W. Palladium-catalyzed total synthesis of the antibiotic carbazole alkaloids carbazomycin G and H [J]. J Chem Soc, Perkin Trans 1,1998,2: 173-176.
    [14]Hsieh BR, Litt MH. Poly (N-acylethylenimines) with pendant carbazole derivatives. Synthesis [J]. Macromolecules,1985,18(7):1388-1394.
    [15]黄世亮,于红.4-羟基咔唑的新合成方法[J].中国药物化学杂志,2000,10(4):293-293.
    [16]翟富民,尤启冬,朱冰,等.1,2,6,7-四甲氧基-9H-咔唑和2,3,6,7-四甲氧基-9H-咔唑的合成方法研究[J].中国药物化学杂志,2003,13(5):280-282.
    [17]Takeuchi T, Oishi S, Watanabe T, et al. Structure-activity relationships of carboline and carbazole derivatives as a novel class of ATP-competitive kinesin spindle protein inhibitors [J]. J Med Chem,2011,54(13):4839-4846.
    [18]Iwao M, Takehara H, Furukawa S, et al. A regiospecific synthesis of carbazoles via consecutive palladium-catalyzed cross-coupling and aryne-mediated cyclization [J]. Heterocycles,1993,36(7):1483-1488.
    [19]Tsang WP, Zheng N, Buchwald SL. Combined C-H functionalization/C-N bond formation route to carbazoles [J]. J Am Chem Soc,2005,127(42):14560-14561.
    [20]Stokes BJ, Jovanovic B, Dong H, et al. Rh2(II)-Catalyzed synthesis of carbazoles from biaryl azides [J]. J Org Chem,2009,74(8):3225-3228.
    [21]Kitawaki T, Hayashi Y, Ueno A, et al. One-step construction of carbazoles by way of the palladium-catalyzed double N-arylation reaction and its application to the total synthesis of murrastifoline-A [J]. Tetrahedron,2006,62(29):6792-6801.
    [22]Scott TL, Yu X, Gorugantula SP, et al. Palladium-catalyzed syntheses of tetrahydro-carbazolones as advanced intermediates to carbazole alkaloids [J]. Tetrahedron, 2006,62(47):10835-10842.
    [23]Selvakumar N, Khera MK, Reddy BY, et al. An efficient total synthesis of 9-methoxycarbazole-3-carbaldehyde based on a novel methodology for the preparation of methoxyindoles [J]. Tetrahedron Lett,2003,44(37):7071-7074.
    [24]Tohyama S, Choshi T, Azuma S, et al. A new synthetic route to the 1-oxygenated carbazole alkaloids, Mukonine and clausine E (Clauzoline I) [J]. Heterocycles,2009, 79:955-965.
    [25]Oikawa Y, Yonemitsu O. Rections and synthetic applications of β-Ketosulfoxides. VII. A novel synthesis of pyranocarbazole alkaloids, girinimbine and murrayacine [J]. Heterocycles,1976,5:233-238.
    [26]Wada Y, Nagasaki H, Tokuda M, et al. Synthesis of N-protected staurosporinones [J]. J Org Chem,2007,72(6):2008-2014.
    [27]Frohner W, Krahl MP, Reddy KR, et al. Transition metal complexes in organic synthesis, part 73. Synthetic routes to naturally occurring furocarbazoles [J]. Heterocycles,2004,63(10):2393-2407.
    [28]Knolker HJ. Transition metal complexes in organic synthesis. Part 47.0rganic synthesis via tricarbonyl (η4-diene) iron complexes [J]. Chem Soc Rev,1999,28(3): 151-157.
    [29]Knolker HJ, Goesmann H, Hofmann C. Transition metal complexes in organic synthesis, part 31. A novel molybdenum-mediated synthesis of carbazole derivatives:Application to the total synthesis of mukonal and 1,1'-bis(2-hydroxy-3-methylcarbazole) [J]. Synlett,1996,(8):737-740.
    [30]Knolker HJ, Hofmann C. Transition metal complexes in organic synthesis, part 33. Molybdenum-mediated total synthesis of girinimbine, murrayacine, and dihydroxy-girinimbine [J]. Tetrahedron Lett,1996,37(44):7947-7950.
    [31]Gruner KK, Hopfmann T, Matsumoto K, et al. Efficient iron-mediated approach to pyrano[3,2-a]carbazole alkaloids-first total syntheses of O-methylmurrayamine A and 7-methoxymurrayacine, first asymmetric synthesis and assignment of the absolute configuration of (-)-trans-dihydroxygirinimbine [J]. Org Biomol Chem, 2011,9(7):2057-2061.
    [32]Stiborova M, Poljakova J, Martinkova E, et al. Ellipticine cytotoxicity to cancer cell lines-a comparative study [J]. Interdiscip Toxicol,2011,4(2):98-105.
    [33]Bush J, Long B, Catino J, et al. Production and biological activity of rebeccamycin, a novel antitumor agent [J]. J Antibiot,1987,40(5):668-678.
    [34]Oishi S, Watanabe T, Sawada J, et al. Kinesin spindle protein (KSP) inhibitors with 2,3-fused indole scaffolds [J]. J Med Chem,2010,53(13):5054-5058.
    [35]Takeuchi T, Oishi S, Watanabe T, et al. Structure-activity relationships of carboline and carbazole derivatives as a novel class of atp-competitive kinesin spindle protein inhibitors [J]. J Med Chem,2011,54(13):4839-4846.
    [36]Caulfield T, Cherrier M., Combeau C., Mailliet P., Substituted carbazoles as tubulin polymerization inhibitors and their use for the treatment of cancer. EP1253141, 2002.
    [37]Thongthoom T, Promsuwan P, Yenjai C. Synthesis and cytotoxic activity of the heptaphylline and 7-methoxyheptaphylline series [J]. Eur J Med Chem,2011,46(9): 3755-3761.
    [38]Arbiser JL, Govindarajan B, Battle TE, et al. Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar [J]. J Invest Dermatol,2006,126(6):1396-1402.
    [39]Tsao LT, Lee CY, Huang LJ, et al. Inhibition of lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages by a synthetic carbazole, LCY-2-CHO [J]. Biochem Pharmacol,2002,63(11):1961-1968.
    [40]Chang LC, Tsao LT, Chang CS, et al. Inhibition of nitric oxide production by the carbazole compound LCY-2-CHO via blockade of activator protein-1 and CCAAT/ enhancer-binding protein activation in microglia [J]. Biochem Pharmacol,2008, 76(4):507-519.
    [41]Kato S, Kawai H, Kawasaki T, et al. Studies on free radical scavenging substances from microorganisms. I. Carazostatin, a new free radical scavenger produced by Streptomyces chromofuscus DC 118 [J]. J Antibiot,1989,42(12):1879-1881.
    [42]Iwatsuki M, Iki E, Kato S, et al. Antioxidant activities of α-tocopherol and hydroxycarbazole against lipid peroxidation in homogeneous solution and in liposomal membranes [J]. Chem Lett,1992,9:1735-1738.
    [43]Kotoda N, Shin-ya K, Furihata K, et al. Isolation and structure elucidation of novel neuronal cell protecting substances, carbazomadurins A and B produced by Actinomadura madurae [J]. J Antibiot,1997,50(9):770-772.
    [44]Shin-ya K, Tanaka M, Furihata K, et al. Structure of carquinostatin a, a new neuronal cell protecting substance produced by Streptomyces exfoliatus [J]. Tetrahedron Lett,1993,34(31):4943-4944.
    [45]Shin-Ya K, Shimizu S, Kunigami T, et al. A new neuronal cell protecting substance, lavanduquinocin, produced by Streptomyces viridochromogenes [J]. J Antibiot, 1995,48(7):574-578.
    [46]Potterat O, Puder C, Bolek W, et al. Clausine Z, a new carbazole alkaloid from Clausena excavata with inhibitory activity on CDK5 [J]. Die Pharmazie,2005, 60(8):637-639.
    [47]Chakraborty DP. Glycozoline, a carbazole derivative, from Glycosmis pentaphylla [J]. Phytochemistry,1969,8(4):769-772.
    [48]Ma C, Case RJ, Wang Y, et al. Anti-tuberculosis constituents from the stem bark of Micromelum hirsutum [J]. Planta Med,2005,71(3):261-267.
    [49]Kaplancikli ZA, Yurtta L, Turan-Zitouni G, et al. Synthesis, antimicrobial activity and cytotoxicity of some new carbazole derivatives [J]. J Enzym Inhib Med Chem, 2011:1-7.
    [50]Nikolaidis LA, Poornima I, Parikh P, et al. The effects of combined versus selective adrenergic blockade on left ventricular and systemic hemodynamics, myocardial substrate preference, and regional perfusion in conscious dogs with dilated cardiomyopathy [J]. J Am Coll Cardiol 2006,47(9):1871-1881.
    [51]Gilmore DL, Liu Y, Matsumoto RR. Review of the pharmacological and clinical profile of rimcazole [J]. CNS Drug Rev,2004,10(1):1-22.
    [52]Meragelman KM, McKee TC, Boyd MR. Siamenol, a New Carbazole Alkaloid from Murraya siamensis [J]. J Nat Prod,2000,63(3):427-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700