经冠状静脉窦路径行MSCs~(Ad.HGF)移植治疗缺血性心脏病的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     随着分子生物学、现代生物技术等学科研究的发展,生物治疗在缺血性心脏病中的应用研究已取得了长足的进步。现有研究结果证明,促血管生长因子基因治疗及自体骨髓间质干细胞移植等,对急慢性缺血性心脏病均有显著的治疗作用。其中,促血管生长因子重组腺病毒以其转染细胞效率高,目的蛋白表达量大且持续时间适中等优点在同类研究中备受青睐。动物实验及临床治疗研究结果表明促血管生长因子能有效促进缺血心肌血管新生,改善血供。但进一步的研究发现基因治疗对于心功能的改善作用并不明显,其原因可能与心脏自身归巢干细胞数量较少,不足以补充坏死心肌细胞有关。
     心肌梗死区细胞移植是目前研究的热点,专家在充分肯定生物治疗缺血性心脏病疗效的同时,也指出了该方法目前存在的不足。其核心是缺血微环境对移植细胞存活率的影响及细胞移植后梗死灶局部纤维化加重的倾向。由于干细胞本身以及其子代细胞的存活、生长需要合适的微环境,当骨髓干细胞植入损伤的心肌后,虽然梗死灶边缘得到了良好的改善,但梗死灶中心区域由于局部组织缺血缺氧严重,微环境恶劣,大部分的移植干细胞并不能够有效存活,因而最终影响了治疗效果。因此,如何提高干细胞移植后细胞的存活率已成为缺血性心脏病生物治疗的一个新的研究热点。此外,移植细胞向成纤维细胞分化也是细胞移植治疗所不容忽视的潜在制约因素。由于干细胞具有多向分化能力,移植至疤痕组织后,受所处微环境影响,具有明显向成纤维细胞分化的倾向。从某种程度上讲,植入细胞甚至有进一步加重纤维疤痕形成的可能。
     已有的研究结果表明,肝细胞生长因子(Hepatocyte growth factor,HGF)除具有促进内皮细胞修复和血管新生功能外,还可使梗死区域细胞凋亡率显著下降。更为重要的是,HGF还具有明显抑制细胞纤维化的作用。作为一种兼具促血管生长,抑制细胞凋亡和纤维化的多功能细胞因子,HGF是一种潜在的改善缺血组织微环境的理想的细胞因子。
     此外,细胞移植方法也是制约移植效果的重要因素,以往的移植方法大都采用开胸直视下进行细胞注射,手术创伤大;移植细胞在心肌内呈“细胞岛”状聚集,不能均匀分布,呈移植细胞纤维化加重趋势,易造成心律失常,严重影响细胞移植的治疗效果。随着介入技术的发展,通过介入的方法到达心肌缺血部位进行细胞移植,可以更好的贴近临床,有望提高移植细胞的治疗效果。因此,在本研究中,我们拟采用猪缺血性心脏病为研究模型,通过冠状静脉窦路径进行Ad.HGF-MSCs治疗,在促进血管生长的同时,抑制细胞凋亡和纤维化形成,以期达到提高移植细胞存活率,缩小纤维疤痕面积的治疗效果。
     本课题主要研究方法:
     1.骨髓间充质干细胞(MSCs)的体外分离及腺病毒转染
     采用Percoll密度梯度分离和贴壁相结合的方法分离MSCs,培养于含10%胎牛血清的DMEM培养基内;观察培养细胞的生长状态;通过CD71、CD34、CD44及desmin的免疫组化染色和流式细胞技术进行细胞成份鉴定;电镜观察MSCs超微结构。以不同转染倍数(MOI)的Ad.LacZ转染体外培养的MSCs,通过X-Gal染色测定转染效率,确定最佳MOI值,以最佳MOI值的Ad.HGF转染MSCs,通过免疫组化染色、Western-blot和ELISA检测转染后的MSCs目的蛋白的细胞内表达及分泌情况;免疫组化检测表面标记和功能的变化。
     2.Ad.HGF-MSCs生物学特性的研究
     Ad.HGF、Ad.VEGF分别转染MSCs,用MTT法检测转染后MSCs数量变化;流式细胞仪测定MSCs细胞周期分布;缺氧环境下用Annexin-FITC和PI双标记凋亡检测MSCs凋亡情况;ELISA检测Ⅲ型胶原纤维的合成与分泌。通过上述实验来比较两者转染后对MSCs的影响。
     3.缺血性心脏病模型的建立及经冠状静脉窦进行细胞移植方法的探讨
     标准实验猪,在基础麻醉下分离右下股动脉,由动脉导管经右下股动脉进管行冠状动脉造影确定冠状动脉前降支远端,球囊封堵90min建成缺血性心脏病动物模型。由静脉导管经右颈内静脉进管到冠状静脉窦行冠状静脉造影确定心室前静脉远端行细胞移植治疗,移植CM-DiI标记的MSCs,球囊封堵3min。通过DSA冠脉造影、心脏彩超及SPECT扫描;肌钙蛋白检测、荧光显微镜下观察移植细胞存活分布情况等方法评价动物模型及细胞移植效果。
     4.经猪冠状静脉窦路径行MSCs~(Ad.HGF)移植治疗缺血性心脏病的疗效评价
     按实验3的标准筛选出心梗后的实验猪20只,随机分2组,每组10只。组Ⅰ为移植转染HGF腺病毒的MSCs,组Ⅱ是移植转染VEGF腺病毒的MSCs。移植细胞量为10~8个细胞,制成2ml细胞悬液,并在移植前以CM-DiI标记细胞。通过DSA冠脉造影、心脏彩超及超声造影、SPECT扫描,比较治疗前后的Rentrop分值、射血分数(EF)、短轴缩短率(FS)、收缩期节段性室壁增厚率(RSWT)等。动物处死后进行组织切片缺血区血管计数,TUNEL染色观察心肌细胞凋亡,荧光显微镜下观察移植细胞及通过免疫组化染色观察移植细胞的分化,Westernblot检测心肌组织目的蛋白表达。
     本课题主要结果:
     1.MSCs的形态、表面标记、分化潜能及腺病毒高转染率经形态学观察和免疫组化检测,显示所培养细胞呈成纤维细胞样形态,CD71、CD44免疫组化阳性,CD34、desmin组化阴性,符合MSCs的形态和表面标记;流式细胞仪分析,CD71、CD44阳性细胞分别占73.9%、85.4%,说明采用Percoll密度梯度和贴壁相结合的方法,可分离获得较高纯度的MSCs;电镜显示MSCs核/浆比例大,含有大量吞噬小泡。MSCs体外增殖速度快,7~8天可达80%~90%融合。体外经HGF等生长因子诱导后MSCs的CD34的免疫组化转为阳性,说明MSCs向内皮系分化,其具有多向分化能力。腺病毒对于MSCs具有很高的转染效率,MOI值为50时,转染率达95%以上。Ad.HGF转染MSCs后,细胞免疫组化和Western blot检测显示细胞内有目的蛋白的表达。ELISA检测显示细胞培养上清中有目的蛋白的表达。
     2.Ad.HGF转染MSCs后的生物学特性HGF对缺血缺氧引起的MSCs细胞生长抑制有明显拮抗作用,在未转染HGF的情况下,缺血缺氧可诱导明显MSCs细胞凋亡,在转染HGF组,细胞凋亡明显被抑制;在转染HGF后,MSCs的PCNA表达增强并表达内皮细胞标记物,MSCs~(AdHGF)组的PCNA阳性表达率明显高于MSCs~(AdVEGF)组;HGF能有效降低Ⅲ型胶原纤维的分泌。上述结果不仅提示HGF抑制MSCs凋亡、诱导其增殖,在一定程度上HGF还有望通过降低Ⅲ型胶原纤维的分泌而抑制缺血心肌的重构从而提高心功能。从这一点上讲,HGF可能比VEGF更适宜于缺血性心脏病的生物治疗。
     3.猪缺血心肌模型和细胞移植方法的评价冠状动脉前降支远端封堵后静脉血检肌钙蛋白明显升高(P<0.01),心电图ST-T段变化明显。1周后,DSA显示全部动物模型LAD闭塞,心脏彩超示心肌明显变薄,心肌收缩功能降低,SPECT检查负荷显像、延迟显像表现为固定性缺损,经VB染色左室侧壁可见胶原纤维增生,符合缺血性心脏病模型标准。MSCs经冠状静脉窦路径移植后在缺血心肌处弥漫分布存活,无岛样聚集。
     4.MSCs~(Ad.HGF)移植治疗改善心功能的作用治疗后4周,两组彩超提示MSCs~(Ad.HGF)组(组Ⅰ)的EF,FS,RSWT均优于MSCs~(Ad.VEGF)组(组Ⅱ)(P<0.05),超声造影显示前者心肌灌注改善;SPECT得出的结果与心脏彩超结果一致。心脏短轴面观察及梗塞体积比计算,组Ⅰ梗塞区的百分比(3.12±1.10%),组Ⅱ(8.45±3.73%),有统计学差别(P<0.05);荧光显微镜下,组Ⅰ可见大片CM-DiI标记的移植细胞,较组Ⅱ增多;血管计数显示:组Ⅰ的血管密度为30.3±3.5个/HPF;组Ⅱ为34.5±3.7个/HPF;两组比较无统计学差异(P>0.05);缺血区心肌细胞TUNEL染色组Ⅰ阳性率为3.3±0.8%,组Ⅱ为9.5±1.3%,组Ⅰ的凋亡细胞阳性率明显低于组Ⅱ(P<0.01)。说明MSCs~(Ad.HGF)更有效抑制心肌细胞凋亡,减少心肌梗死面积,从而保护和改善心脏功能。
     结论:
     1、采用Percoll密度梯度和贴壁相结合的方法,可分离获得较高纯度的MSCs,这些细胞具有多向分化能力;腺病毒可以安全、有效的转染MSCs,其携带的目的基因不论在体外或体内均可获得较高的表达水平。
     2、HGF不仅促进MSCs的增殖、抑制其凋亡的发生,且降低细胞胶原纤维的分泌。
     3、冠状动脉球囊封堵、经冠状静脉窦进行细胞移植治疗是一种新的有效的动物模型建立方法和细胞移植方法,可以更好的贴近临床。
     4、MSCs~(Ad.HGF)移植促进了缺血心肌局部再血管化同时,有效地降低心肌细胞凋亡和心肌纤维化,减轻左室重构的发展,保护和改善心脏功能。
Background:
     With the development of molecular biological and modern biotechnological techniques, the research of biological treatment for the ischemic heart disease has made significant progress.Existing research results have proved that angiogenic growth factor gene therapy and autologous bone marrow mesenchymal stem cell transplantation have significant therapeutic effects on both acute and chronic ischemic heart disease.The angiogenic growth factor recombinant adenovirus can effectly transfected cells,and have large quantity of protein expression and the advantages of moderate duration,so it is thought to be good in similar studies.Animal and clinical study results show that the angiogenic growth factor can effectively promote angiogenesis in ischemic myocardium and improve the blood supply.But further research found that the improvement of cardiac function can is not significant,the reason may be associated with that the number of the heart homing stem cells is too small to replenish necrotic myocardial cells.
     The study on myocardial cell transplantation in the region of myocardial infarction is popular noe.The experts fully affirmed the effect of biological treatment for ischemic heart disease,but they also pointed out that the methods still have disadvantages.The core is micro-environment of ischemic affects the survival rate of transplanted cells and increase of the tendency of local fibrosis after regional cell transplantation.The survivorship and growth of stem cells,as well as their offspring cells,need appropriate micro-environment. When the bone marrow stem cells are implanted after myocardial injury,infarction marginal have been well improved,but the most of the transplanted stem cells in the core region of infarction can not survive effectively,as a result of serious local tissue hypoxia-ischemia,micro-poor environment,and eventually affect the therapeutic effect. Therefore,how to improve the survival rate of transplanted stem cells has become a new hotspot the of treatment for ischemic heart disease.
     In addition,the differentiation of transplanted cells to fibroblasts in the treatment should not be overlooked as the potential constraints.Because of the ability of multi-directional differentiation,stem cells have a clear tendency differentiation to fibroblasts after transplantation to the scar tissue in which the micro-environmental impacts.In a certain sense,implanted cells can even further increase the possibility of fiber scar formation.
     Existing research results show that hepatocyte growth factor(HGF) can not only promote the restoration of endothelial cell and the promotion of angiogenesis functions, but can also significantly decrease the apoptosis of the cell in the infarctial region. Moreover,HGF can also significantly inhibite fibrosis.As a multi functional cytokine which both can promote angiogenic growth,inhibite of apoptosis and fibrosis,HGF is a kind of can ideal cytokines which can potential improve the micro-environment of ischemic tissue.
     Methods:
     1.MSCs isolation,culture and adenovirus transfected
     MSCs were harvested from pig ilium and isolated by combination of gradient centrifugation of Percoll and preplating treatment,then were cultured in EMDM medium with 10%fetal bovine serum.Cell growth curve was obtained by the continual cell counting and the ultra-structure of cells were observed by electron microscope.The cells were identified by the immunohistology staining and flow cytometer of CD71,CD34,CD44 and desmin.MSCs were incubated with HGF and other growth factors to observe their pluripotential differentiation.Transfection efficiency of adenovirus vector to MSCs were evaluated by infection with various titrations of Ad.LacZ.MSCs were transfected by Ad.HGF.HGF expression were measured by immunohistochemical staining and western blot.The concentration of secretive protein in the medium were measured by ELISA.The cells proliferation effect of secretive proteins were evaluated by proliferation of the endothelial cells.
     2.Bionomics of MSCs transfected by Ad.HGF
     MSCs was transfected by AdHGF,AdVEGF respectly,and detected the change of MSCs through MTT method.Intensity of fluorescence and cell-distribution were measured by flow cytometer.Using Annexin V-FITC and PI to mark apoptosis of MSCs. Composition and externalization of collagen fiberⅢwere detected by ELISA in order to compare diversity of them.
     3.Establish of pig myocardium ischemic model and transplantation of MSCs
     The distal left anterior descending artery(LAD) was occluded with the balloon of an OpenSail dilatation catheter for 90 minutes to create myocardial infarction. Electrocardiography was used during the procedure to monitor the induction of ischemia, and to prevent premature death from excessive ventricular arrhythmia,guiding catheter was introduced into the ostium of the coronary sinus through the jugular vein under fluoroscopy.Next,the guiding catheter was inserted into the GCV,and advanced into the distal AIV.The cells were rotated inside the vial to achieve re-suspension before delivery, and loaded into a 10cc angiography syringe.The balloon was re-inflated,and an image was recorded(cine and still) to show the location of occlusion.To deliver the cells(all 10ml in about 10-15 sec),the injection syringe containing the cell suspension was attached to the infusion port of the infusion catheter,and the injection was performed. Saline(2ml) was injected to flush the infusion lumen,and the balloon was left inflated for 3 minutes before deflation and withdrawal of all catheters.Blood samples were collected at 0,90,and 150 minutes after ischemia,and were centrifuged to obtain the serum for measurement of pig cardiac Troponin I(cTnI) levels.One week after cell implantation, under general anesthesia,animals were euthanized by injection of 20ml of potassium chloride into the right atrium.The hearts were excised and stainied for analysis.
     4.Transplantation of autologous MSCs transfected by AdHGF gene in a porcine ischemic heart model through coronary sinus
     One weeks later,20 pigs were randomized(10 pigs for each group) to treatment with the MSCs transfected ex vivo by HGF group(GroupⅠ),or MSCs transfected ex vivo by VEGF group(GroupⅡ),The amount of total implated cells was 10~8 and the transfected virus titrations was 10~(10)pfu,.All cells were labeled by CM-DiI before injection.Four weeks after initiation of therapy,the animals were evaluated by regional perfusion,Rentrop score,ejection factor(EF),fraction shortening(FS),regional systolic wall thickening (RSWT) using DSA,echocardiography,contrast echocardiography or SPECT.After sacrificing the animals,the percentage of infarct area,vessels counting,TUNEL staining of the implanting sites were performed.The CM-DiI labeled cells were observed under fluorescence microscope and the target proteins were detected by western blot.
     Results:
     1.MSCs isolation culture and adenovirus transfected The MSCs demonstrated typical MSC fibroblastic morphology with the ability to proliferate in culture.They are positive for CD71 and CD44,while negative for CD34 and desmin by immunohistology staining. FACS analysis demonstrated that 73.9%cells expressed CD34 and 85.4%for CD 71.The cells displayed the MSCs characters under transmission electron microscope and possessed the capabilities of rapid proliferation and pluripotential differentiation.The cells showed CD34 positive when induced by HGF and other growth factors.The transduction efficiency of Adenovirus to MSCs was proved to be over 95%at MOI 50 using Ad.LacZ transfection in vitro.The MSCs were detected to express of target protein after Ad.HGF transfection by immunohistochemical staining and western blot.
     2.Bionomics of MSCs transfected by Ad.HGF MSCs was transfected by AdHGF and detected the change of MSCs through MTT method and found HGF may induce increment of MSCs,and antagonism apoptosis of MSCs.Intensity of fluorescence and cell-distribution were expression by flow cytometer.Using Annexin V-FITC and PI. Composition and externalization of collagen fiberⅢwere degrade compare to AdVEGEThis show that HGF was one better biotherapy to IHD than VEGF.
     3.Evaluation of pig myocardium ischemic model and transplantation of MSCs Of the total 40 animals,12 animals died from excessive ventricular arrhythrnia.yocardial infarction were obviously in animal mode,Di-I labeled cells seen at the site of implantation on fluorescence microscopy.TroponinI levels changed obviously(P<0.01).
     4.The improvement of perfusion and heart function after the transplantation of Ad.HGF-MSCs.4 weeks after treatment,compared with those before treatment,the perfusion were greatly enhanced in the GroupⅠ;partial enhanced in GroupⅡ(P<0.05).EF, FS,RSWT showed greatly improved in GroupⅠ,and the same results were reached by SPECT.The lateral infarctions were observed in the gross left ventricular(LV) cross-sections,consistent with the echocardiography results.The infarction areas in GroupⅠ(3.12%±1.10%) were much smaller than the other groups(P<0.05)(GroupⅡ8.45%±3.73%).GroupⅠshowed the apparent normal gross L V geometry and maintenance of wall thickness.There was successful engraftment of MSCs in all MSCs treated animals as shown by the Di-I labeled cells seen at the site of implantation on fluorescence microscopy.A large number of labeled MSCs could be identified in GroupⅠ,while only sporadic labeled MSCs were seen in GroupⅡ.Cells appeared to preferentially engraft in regions of necrotic tissue and adhere to the collagen rich matrix.The vessels counting of the ischemic area for each group were:30.3±3.5/HPF,34.5±3.7/HPF respectively.The vascular density in GroupⅠhave increased more diffusely than the other groups(P>0.05). For TUNEL staining,the positive rate in each group were:3.3±0.8%,9.5±1.3% respectively(P<0.01).
     Conclusions:
     1.High purified MSCs can be obtained by the combination of gradient centrifugation of Percoll and preplating treatment.The obtained cells showed MSCs surface markers and possessed the capabilities of pluripotential differentiation.The MSCs can be expanded rapidly in vitro;Transduction HGF gene to MSCs by adenovirus is safe and high efficient, and the target protein can be expressed in cell and secreted to surrounding at a high level in vitro or in vivo.
     2.MSCs was transfected by AdHGF may induce increment of MSCs,and antagonism apoptosis of MSCs.Intensity of fluorescence and cell-distribution were expression by flow cytometer.Collagen fiberⅢwere degrade compare to AdVEGF.This show that HGF was one better biotherapy to IHD than VEGF.
     3.The distal left anterior descending artery(LAD) was occluded with the balloon and implantation of MSCs through vena coronaria was feasible.This method consistent with clinical.
     4.The implantation of AdHGF-MSCs developed the collateral vessel,improved the local reperfusion,attenuate contractile dysfunctons and pathologic remodeling of the ventricular wall after infarction and significantly augmented left ventricular function.
引文
1.Dennis JE,Charbord R Origin and differentiation of human and murine stroma.Stem Cells 2002;20:205-214
    2.Krause DS,Theise ND,Collector MI,et al.Multi-organ,multi-lineage engraftment by a single bone-marrow-derived stem cell[J].2001,Cell,105(3):369-377.
    3.Friedenstein AJ,Petrakova KV,Kurolesova AI,et al.Heterotopic transplants of bone marrow,Analysis of precursor cells,for osteogenic and hematopotic tissues.Transplantation 1968;6:230-247.
    4.Piersma AH,Brockbank KG,Ploemacher RE,et al.Characterization of fibroblastic stromal cells from murine bone marrow.Hematol,1985,13:237-243.
    5.Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenhymal stem cells.Science,2004;284:143-147.
    6.Majumder MK,Thiede MA,Mosca JD,et al.Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(MSCs) and stromal cells.J Cell Physiol,2005;176:57-66.
    7.Olivares EL,Ribeiro VP,Castro JW,et al.Bone marrow stromal cells improve cardiac performance in healed infracted rat hearts.Am J Physiol Heart Circ Physiol.2004;287:H464-H470.
    8.Tang YL,Zhao Q,Zhang YC,et al.Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium.Regul Pept.2007;117:3-10.
    9.Taylor DA.Cell-based myocardial repair:How should we proceed? International J of Cardiology.2007;95(Suppll):S8-S12.
    10.Pittenger MF,Martin BJ.Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004; 95(1):9-20.
    11. Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev. 2004; 13(4):436-48.
    12. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999; 181(1):67-73.
    13. Simmons PJ, Torok-Strorb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, Stro-1. Blood, 2003; 78(1):55-62.
    14. 司徒振强,吴军正. 《细胞培养》,世界图书出版社, 2004= 107-121
    15. Pittenger MF, Mackay AM, Beck SC, et al.Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2, 284(5411): 143-7.
    16. Orlic D, Kaistura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium. Nature, 2001; 410:701-705
    17. Shintani S, Murohara, T, Ikeda H,et al. Augentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001; 103:897-903
    18. Wakitani Sm Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 1995, 18(12):1417-26.
    19. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cell in vitro. J Clin Invest, 1999, 103(5):697-705.
    20. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001, 98:2615-2625.
    21. Quinci Nadia, Soligo D, Caneva L, et al. Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells. British Journal of Haematology. 2001;115:186-192
    22. Isner JM, Kalka C, Kawamoto A, et al. Bone marrow as a source of endothelial cells for natural and istrogenic vascular repair. Ann NYAS. 2001;953:75-84
    23. Monaham PE, Samulski RJ. Adeno-associated virus vectors for gene therapy, more pros than cons? Mol Med Today, 2000; 6:433-440.
    24. Mh C, Byrne BJ, Flotte TR. Virus-base gene delivery systems. Clin Pharmacokinet, 2002; 41:901-911.
    25. Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear location signals for nonnviral gene transfer. Gen Ther, 2002; 9:157-167.
    26. LS Young, V Mautner. The promise and potential hazards of adenovirus gene therapy. Gut ,2005; 48:733-736.
    27. Rissanen TT, Rutanen J, Yla-Herttuala S. Gene transfer for therapeutic vascular growth in growth in myocardial and peripheral ischemia. Adv Genet. 2007; 52:117-164.
    28. Yeh P, Perricaudet M. Advances in adenoviral vectors: From genetic engineering to their biology. FASEB J. 2003,11:615-623.
    29. Ohara N, Koyama H, Miyata T, et al. Adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promotes collateral development in a rabbit model of hind limb ischemia. Gene Thr. 2004,8: 837-845
    30. Leor J, Quinones MJ, Patterson M, et al. Adenovirus-mediated gene transfer into myocardium: feasibility, timing, and location of expression. J Mol Cell Cardiol. 1996, 28:2057-2067.
    31. Yau TM, Fung K, Weisel RD, et al. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation. 2001,104:1218-1222.
    32. George JS. Gene therapy progress and prospects: adenoviral vectors. 2006; 10:1135-1141.
    33. Hong SS, Karayan L, Tournier J, et al. Adenovirus type 5 fiber knob binds to MHC class Iα_2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO 11997,16:2291-2306.
    34. Walters RW, Grunst T, Bergelson JM, et al. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem. 1999, 274:10219-10226.
    35. Frey M, Hackett NR, Bergelson JM, et al. High-Efficiency Gene Transfer Into Ex Vivo Expanded Human Hematopoietic Progenitors and Precursor Cells by Adenovirus Vectors. Blood. 1998; 91:2781-2792
    36. Jueren L, Fang X, Kurt M, et al. Gene therapy: Adenovirus-mediated himan bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cells proliferation and differentiation in vitro and bone formation in vivo. Journal of orthopaedic research. 2006; 17:43-50
    37. Tsutomu W, Charles K, Kazuhiko I, et al. Gene transfer into human bone marrow hematopoietic cells mediated by adenovirus vectors. Blood. 1996; 87:5032-5039
    38. Caplan AI. Stem cell delivery vehicleJ. Biomaterials ,2003 ,11 :44-46.
    39. Roingeard F, Binet C, Lecron JC, et al. Cytokines released in vitro by stromal cells from autologous bone marrow transplant patients with lumphoid malignancy. Eur J Haematol, 1998; 61:100-108.
    40. Yau TM, LI G, Weisel RD, et al. Vascular endothelial growth factor transgene expression in cell-transplanted hearts. J Thorac Cardiovasc Surg, 2004; 127:1180-1187.
    41. Tang YL, Zhao Q, Zhang YC, et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept, 2006; 117:3-10.
    42. Ohara N, Koyama H, Miyata T, et al. Adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promotes collateral development in a rabbit model of hind limb ischemia. Gene Thr. 2005,8: 837-845.
    1 Chen SL,Fang WW,Ye F,et al.Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.Am J Cardiol.2004;94(1):92-5
    2 Wang JS,Shum-Tim D,Galipeau J,et al.Marrow stromal cells for cellular cardiomyoplasty:feasibility and potential clinical advantages.J Thorac Cardiovasc Surg.2000;120(5):999-1005.
    3 Yinghua Guo,Jianguo He,Junlou Wu et al.Locally Overexpressing Hepatocyte Growth Factor Prevents Post-ischemic Heart Failure by Inhibition of Apoptosis via Calcineurin-mediated Pathway and Angiogenesis.Arch Med Res.2008;39(2):179-88.
    4 Lee ER,Kim JY,Kang YJ,et al.Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis.Biochim Biophys Acta.2006;1763(9):958-68.
    5 Fassetta M, D'Alessandro L, Coltella N, Di Renzo MF, Rasola A. Hepatocyte growth factor installs a survival platform for colorectal cancer cell invasive growth and overcomes p38 MAPK-mediated apoptosis. Cell Signal. 2006; 18(11): 1967-76.
    6 Coltella N, Rasola A, Nano E, et al.p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis.Int J Cancer. 2006; 118(12):2981-90.
    7 Parekkadan B, van Poll D, Megeed Z, Kobayashi N, Tilles AW, Berthiaume F, Yarmush ML. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells.Biochem Biophys Res Commun. 2007;363(2):247-52.
    8 Yu Y. Yao AH, Chen N. et al Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration.Mol Ther. 2007 ;15(7):1382-9.
    9 Gnecchi M, He H, Noiseux N.et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement.FASEB J. 2006;20(6):661-74.
    10 Jayasankar V, Woo YJ, Pirolli TJ,et al. Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemic heart failure. J Card Surg. 2005;20(1):93-101.
    11 Jayasankar V, Woo YJ, Bish LT, et al.Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure.Circulation. 2003;108 Suppl 1:11230-6.
    12 Wang Y, Ahmad N, Wani MA, et al.Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis.J Mol Cell Cardiol. 2004;37(5): 1041-52.
    13 Yang JF, Zhou WW, Tang T, et al.Effects of myocardial transplantation of mesenchymal stem cells transfected with vascular endothelial factor gene on improvement of heart function and angiogenesis after myocardial infarction: experiment with rats. Zhonghua Yi Xue Za Zhi. 2006;86(15): 1027-34. Chinese
    14 Gnecchi M, He H, Noiseux N, et al.Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement.FASEB J. 2006;20(6):661-9.
    15 Gao F, He T, Wang H, et al.A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats.Can J Cardiol. 2007;23(11):891-8.
    16 Yang ZJ, Ma DC, Wang W, et al.Experimental study of bone marrow-derived mesenchymal stem cells combined with hepatocyte growth factor transplantation via noninfarct-relative artery in acute myocardial infarction.Gene Ther. 2006 ;13(22): 1564-8.
    17 Tang J, Xie Q, Pan G, et al.Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion.Eur J Cardiothorac Surg. 2006;30(2):353-61.
    18 Li W, Ma N, Ong LL, Nesselmann C, et alBcl-2 engineered MSCs inhibited apoptosis and improved heart function.Stem Cells. 2007;25(8):2118-27.
    19 Lim SY, Kim YS, Ahn Y, et al.The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc Res. 2006;70(3):530-42.
    20 Jin H, Yang R, Li W, et al.Early treatment with hepatocyte growth factor improves cardiac function in experimental heart failure induced by myocardial infarction.J Pharmacol Exp Ther. 2003;304(2):654-60.
    21 Yang Z, Wang W, Ma D, et al.Recruitment of stem cells by hepatocyte growth factor via intracoronary gene transfection in the postinfarction heart failure.Sci China C Life Sci. 2007;50(6):748-52.
    1 Rabbani S,Ahmadi H,Fayazzadeh E,et al.Development of an ovine model of yocardial infarction.ANZ J Surg.2008;78(1-2):78-81.
    2 Kim WG,Park JJ,Oh SI,et al.Chronic heart failure model with sequential ligation of the homonymous artery and its diagonal branch in the sheep.ASAIO J.2001;47(6):667-72.
    3 Menasche P,hagege AA,Vilquin JT,et al.Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction.J Am Coll Cardiol,2003,41:1078-1083.
    4 Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow monomuclear cell implantation. Lancet, 2003, 361:47-49.
    5 Spiegelstein D, Li RK, Yau TM,et al. Combined transmyocardial revascularization and cell-based angiogenic gene therapy increases transplanted cell survival.Am J Physiol Heart Circ Physiol. 2007;293(6):H3311-6.
    6 Wang Y, Dong Y, Li R, Wang D, et al. Transmyocardial revascularization and vascular endothelial growth factor administration enhance effect of cell transplantation for myocardial infarct repair in rats.Coron Artery Dis. 2006; 17(3):275-81.
    7 Pelletier MP, Giaid A, Sivaraman S, Dorfman J, Li CM, Philip A, Chiu RC. Angiogenesis and growth factor expression in a model of transmyocardial revascularization.Ann Thorac Surg. 1998;66(1): 12-8.
    8 Yau TM, Fung K, Weisel RD, et al. Enhanced myocardial angiogenesis by gene transfer with transplanted cells.Circulation. 2001;104(12 Suppl 1):I218-22.
    9 Memon IA, Sawa Y, Miyagawa S, et al. Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy.J Thorac Cardiovasc Surg. 2005;130(3):646-53.
    10 Kim WG, Shin YC, Hwang SW, et al. Comparison of myocardial infarction with sequential ligation of the left anterior descending artery and its diagonal branch in dogs and sheep.Int J Artif Organs. 2003;26(4):351-7.
    11 Ikonen TS, Patila T, Virtanen K, et al. Ligation of ameroid-stenosed coronary artery leads to reproducible myocardial infarction--a pilot study in a porcine model.J Surg Res.2007;142(1):195-201.
    12 Radke PW, Heinl-Green A, Frass OM, Post MJ, Sato K, Geddes DM, Alton EW. Evaluation of the porcine ameroid constrictor model of myocardial ischemia for therapeutic angiogenesis studies.Endothelium. 2006; 13(1):25-33.
    13 Patila T, Ikonen T, Rutanen J, Ahonen A, et al. Vascular endothelial growth factor C-induced collateral formation in a model of myocardial ischemia.J Heart Lung Transplant. 2006;25(2):206-13.
    14 Roth M, Almeda FQ, Glock D, et al. The effect of percutaneous transmyocardial laser revascularization on left ventricular function in a porcine model of hibernating myocardium: a pilot study.Cardiovasc Radiat Med. 2004;5(3): 132-5.
    15 Shen YT, Kudej RK, Bishop SP, et al. Inotropic reserve and histological appearance of hibernating myocardium in conscious pigs with ameroid-induced coronary stenosis.Basic Res Cardiol. 1996;91(6):479-85.
    16 Leshnower BG, Sakamoto H, Hamamoto H, et al. Progression of myocardial injury during coronary occlusion in the collateral-deficient heart: a non-wavefront phenomenon.Am J Physiol Heart Circ Physiol. 2007;293(3):Hl799-804.
    17 Strauer W, Rutanen J, Ahonen A, et al. Bone marrow mesenchymal cell transplantation reduces left ventricular remodeling in heart failure following acute myocardial infarction Am J Physiol Heart Circ Physiol. 2006;34(9):784-8.
    18 Boost DX, Krugliakov PV, Sokolova IB, et al. Mesenchymal stem cell transplantation for myocardial reparation of rat experimental heart failure Tsitologiia. 2004;46(12):1043-54.
    19 Hagege MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance.Am J Physiol Heart Circ Physiol. 2006;290(6):H2196-203.
    1 Gheorghiade M,Bonow RO.Chronic heart failure in the United States:a manifestation of coronary artery disease.Circulation 1998;97:282-289.
    2 Bax JJ,Visser FC,Poldermans D,et al.Time course of functional recovery of stunned and hibernating segments after surgical revascularization. Circulation. 2001;104:I314-8.
    3 Panovsky R, Meluzin J, Janousek S, et al. Cell Therapy in Patients with Left Ventricular Dysfunction Due to Myocardial Infarction.Echocardiography. 2008. [Epub ahead of print]
    4 Ramos GA, Hare JM. et al. Cardiac cell-based therapy: cell types and mechanisms of actions.Cell Transplant. 2007;16(9):951-61.
    5 Hu X, Yu SP, Fraser JL, Lu Z, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis.J Thorac Cardiovasc Surg. 2008;135(4):799-808.
    6 Wold LE, Dai W, Dow JS, Kloner RA. et al. Stem cell therapy in the heart and vasculature.Methods Mol Med. 2007;139:355-66.
    7 Lemos PA, Nekrasova NN, Viide SV, et al. The promise of cell therapy for acute myocardial infarction.Catheter Cardiovasc Interv. 2008;71(3):282.
    8 Wang ZG, Li XS, Li XL, et al. Therapeutic angiogenesis induced by hepatocyte growth factor directed by ultrasound-targeted microbubble destruction Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2008;30(1):5-9. Chinese.
    9 Li X, Wang Z, Ran H, et al. Experimental research on therapeutic angiogenesis induced by hepatocyte growth factor directed by ultrasound-targeted microbubble destruction in rats.J Ultrasound Med. 2008;27(3):453-60.
    10 Maulik N, Thirunavukkarasu M. et al. Growth factors and cell therapy in myocardial regeneration.J Mol Cell Cardiol. 2008;44(2):219-27.
    11 Krugliakov PV, Sokolova IB, Amineva KhK, et al. The influence of mesenchymal stem cell transplantation time on myocardial reparation in rat experimental heart failure Tsitologiia. 2005;47(5):404-16.
    12 Li RK,Hu X, Wang J, et al. Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction.Eur J Cardiothorac Surg. 2007;31(3):438-43.
    13 Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy.Circulation. 2005;112(8):1128-35.
    14 Itescu S, Schuster, Kocher AA,et al. New directions in strategies using cell therapy for heart disease.J Mol Med. 2003;81(5):288-96.
    15 Piao H, Youn TJ, Kwon JS, et al. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium.Eur J Heart Fail. 2005;7(5):730-8.
    16 Ikonen TS, Patila T, Virtanen K, et al. Ligation of ameroid-stenosed coronary artery leads to reproducible myocardial infarction--a pilot study in a porcine model.J Surg Res. 2007;142(1):195-201.
    17 French BA, Mazur W, Geske RS, et al. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation. 2003, 90(5): 2414-2424.
    18 Abdelmoneim SS, Bernier M, Dhoble A, Mankad SV, et al. Assessment of the vascularity of a left atrial mass using myocardial perfusion contrast echocardiography.Echocardiography. 2008;25(5):517-20.
    19 Alexiou GA, Tsiouris S, Kyritsis AP, et al. (99m)Tc-Tetrofosmin SPECT for the detection of glioma recurrence.Eur J Nucl Med Mol Imaging. 2008. [Epub ahead of print]
    20 Yang ZJ, Ma DC, Wang W, et al. Experimental study of bone marrow-derived mesenchymal stem cells combined with hepatocyte growth factor transplantation via noninfarct-relative artery in acute myocardial infarction.Gene Ther. 2006;13(22):1564-8.
    21 Miyagawa S, Sawa Y, Fukuda K, Angiogenic gene cell therapy using suicide gene system regulates the effect of angiogenesis in infarcted rat heart.Transplantation. 2006;81(6):902-7.
    22 Kondo I, Ohmori K, Oshita A, Takeuchi H, et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction.J Am Coll Cardiol. 2004;44(3):644-53.
    23 Jin H, Wyss JM, Yang R, Schwall R. et al. The therapeutic potential of hepatocyte growth factor for myocardial infarction and heart failure.Curr Pharm Des. 2004;10(20):2525-33.
    24 Miyagawa S, Sawa Y, Taketani S, et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation. 2002;105(21):2556-61.
    25 Yasuda D,Shirakawa Y, Sawa Y, et al. Gene transfection with human hepatocyte growth factor complementary DNA plasmids attenuates cardiac remodeling after acute myocardial infarction in goat hearts implanted with ventricular assist devices.J Thorac Cardiovasc Surg. 2005;130(3):624-32.
    26 Yumoto A, Fukushima Kusano K, Nakamura K, et al. Hepatocyte growth factor g ene therapy reduces ventricular arrhythmia in animal models of myocardial ischemia.Acta Med Okayama. 2005;59(3):73-8.
    27 Mocini D, Colivicchi F, Santini M. et al. Stem cell therapy for cardiac arrhythmias.Ital Heart J. 2005;6(3):267-71.
    28 Sasano T, McDonald AD, Kikuchi K, et al. Molecular ablation of ventricular tachycardia after myocardial infarction.Nat Med. 2006;12(11):1256-8.
    1.Morishita R,Moriguchi A,Higaki J,et al.Hepatocyte growthfactor(HGF) as a potential index of severity of hypertension[J].Hypertens,1999,22(3):161 - 167.
    2...Michalopoulos G,Zarnegav R.Hepatocyte growthfactor[J].Haoatology,1992,15(1):149.
    3...姚月歌.肝细胞生长因子[J].日本医学介绍,2002,23(5).226.
    4.Bottaro DP,Rubin JS,Faletto DL,et al.Identification of the hepatocyte growth factor receptor as the c-met proto-onlogene product[J].Science,1991;251:802-804.
    5.Zhen Z,Giordano S,Longati P,et al.Structural and functional domains critical for constitutive activation of the HGF - receptor(Met)[J].Oncogene,1994,9(6):1691-1697.
    6.Bardelli A,Maina F,Gout I,et al.Autophosphorylation promotes complex formation of recombinant hepatocyte growth factor receptor with cytoplasmic effectors containing SH2 domains[J].Oncogene,1992,7(10):1973-1978.
    7.Tamura M,Arakaki N,Tsubouchi H,et al.Enhancement of human hepatocyte growth Factor production by interleukin-1 alpha and -1 beta and tumor necrosis factor-alpha by fibroblasts in culture[J].J Biol Chem,1993,268(11):8 140-8 145.
    8.Mizuno S,Matsumoto K,Kurosawa T,et al.Reciprocal balance of hepatocyte growth factor and transforming growth factor-beta 1 in renal fibrosis in mice[J].Kidney Int,2000,57(3):937-948.
    9.Berk BC.Vascular smooth muscle growth:autocrine growth mechanisms[J].Physiological reviews,2001,81(3):999- 1030.
    10.Gohda E.Function and regulation of production of hepatocyte growth factor[J].Nippon Yakurigaku Zasshi,2002,119(5):287-294.
    11.Henry TD,Abraham JA.Review of preclinical and clinical results with vascular endothelial growth factors for therapeutic angiogenesis[J].Current interventional cardiology reports,2003,2(3):228-241.
    12.Bussolino F,Di Renzo MF,Ziche M,et al.Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth[J].J cell Biol,1992,119(3):629-641.
    13.Hayashi S,Morishita R.Autocrine-paracrine effects of overexpression of hepatocyte growth factor gene on growth of endothelial cells[J].Biochem Biophys Res Commun,1996,220(3):539-545.
    14.Nakarnnral Y,Morishita R,Higaki J,et al.Hepatocyte growth factor is a novel member of the endothelium- specific growth factors:additive stimulatory effect of hepatocyte growth factor with basic fibroblast growth factor but not with vascular endothelial growth factor[J].J Hypertens,1996,14(sep):1 067-1 072.
    15.Aoyagi M,Yamamoto S,Azuma H,et al.Localization and effects of hepatocyte growth factor on smooth muscle cells during neointimal formation after balloon denudation[J].Histochem Cell Bisl,1999,111(6):419-428.
    16. Nakamura Y, Morishita R, Nakamuras, et al. A vascular modulator, Hepatocyte growth Factor, Is Associated with systolic pressure[J]. Hypertension, 1996, 28(3): 409— 413.
    17. Fournier TM, Kamikura D, Teng K, et al. Branching Tubulogenesis but Not Scatter of Madin-Darby canine kidney cells Requires a Functional Grb2 Binding site in the Met Receptor[J]. J Biol Chem, 1996, 271 (36): 22 211-22 217.
    18. Ridley AJ, Comoglio PM, Hall A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells[J]. Mol cell Biol, 1995, 15 (2): 1 111-1 122.
    19. Nishimura M, Ushiyama M, Nanbu A, et al. Serum hepatocyte growth factor as a possible indicator of arteriosclerosis[J]. J Hypertens, 1997; 15(10): 1137—1142.
    20. Nishimura M, Ushiyama M, Nanbu A, et al. Vascular endothelium—related factors and atherosclerosis/arteriosclerosis: serum hepatocytee growth factor as a possible indicator of vascular lesions[J]. Rinsho—Byon, 1998; 46 (7): 671—677.
    21. Haug C, Schmid—kotsas A, Zorn U et al. Hepatocyte growth factor is upregulated by low—density lipoproteins and inhibits endothelin—1 release [J]. Am J Physiol Heart CirePhysiol, 2000, 279 (6): H2865-2871.
    22. Yasuda S, Noguchi T, GohdaM, et al. Single low—dose adminis—tration of human recombinant hepatocyte growth factor attenuates intimal hyperplasia in a balloon-injured rabbit iliac artery model[J]. Circulation, 2004, 101 (21): 2 5462— 549.
    23. Sato T, Yoshinouchi T, Sugimoto T, et al. Prognostic value of serum hepatocyte growth factor in patients with acute coronary syndromes [J].Jpn Circ J, 1999; 63(8): 583— 588.
    24. Matsumori A, Furukawa Y, Hashimoto T, et al. Increased circulating hepatocyte growth factor in the early stage of acute myocardial infarction [J]. Biochem—Biophys Res-commun, 1996, 221 (2): 391-395.
    25. Zhu Y, Hojo Y, Ikeda U, et al .Producion of hepatocyte growth factor during acute myocardial infarction [J].Heart, 2000; 83 (4): 450—455.
    26. Ono K, Matsumori A, shioi T, et al.Enhanced expression of hepatocyte growth factor/c —met by myocardial ischemia and reperfusion in a rat model[J]. Circuation, 1997, 95 (11): 2 552-2 558.
    27. Van Belle E, Witzenbichler B, Chen D,, et al. Potentiated angiogenic effeet of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogensis[J]. Circulation, 1998, 97(4): 381 — 390.
    28. Ueda H, Sawa Y, Matsumoto K, et al. Gene transfection of hepatocyte growth factor attenuates reperfusion injury in the heart [J]. Ann Thorac Surg, 1999, 67 (6): 1 726— 1 731.
    1. Jackson KA, Mi T, Goode H. Hematopoietic potential of stem cells isolated from muine skeletal muscle. Proc Natl Acad Sci USA, 1999; 96(25): 14482-14486.
    2. Orlic D, Kaistura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium. Nature, 2001; 410:701-705.
    3. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplants of bone marrow, Analysis of precurson cells for osteogenic and hematopotic tissues. Transplantation, 1968; 6:230-247.
    4. Piersma AH, Brockbank KG, Ploemacher RE, et al. Characterization of fibroblastic stromal cells from murine bone marrow. Hematol, 1985; 13:237-243.
    5. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenhymal stem cells. Science, 1999; 284:143-147.
    6. Majumder MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol, 1998; 176:57-66.
    7. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999; 181(1):67-73.
    8. Simmons PJ, Torok-Strorb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, Stro-1. Blood, 1991; 78(1):55-62.
    9. Itescu S, Kocher AA, Schuster MD. Myocardial neovascularization by adult bonemarrow. derived angioblasts: strategies for improvement of cardiomyocyte function[J]. Heart Fail Rev, 2003, 8(3): 253-8.
    10. Itescu S, Schuster MD, Kocher AA. New directions instrategies using cell therapy for heart disease[J]. J Mol Med, 2003, 81(5): 288-96.
    11. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro[J]. J Clin Invest, 1999, 103(5): 697-705.
    12. Davani S, Deschaseaux F, Chalmers D, et al. Can stem cells mend a broken heart[J]. Cardiovasc Res, 2005, 65(2): 305-16.
    13. Fukuhara S, Tomita S, Yamashiro S, et al. Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro[J]. J Thorac Cardiovasc Surg, 2003, 125(6): 1470—80.
    14. Rangappa S, Entwistle JW, Wechsler AS, et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phen- type[J]. J ThoracCardiovasc Surg, 2003, 126(1): 124-32.
    15. Xu M, Wani M, Dai YS, et al. Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes[J]. Circulation, 2004, 110(17): 2658-65.
    16. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart[J]. Circulation, 2002, 105(1): 93-8.
    17. Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion[J]. Nature, 2002, 416(6880): 542-5.
    18. Ying QL, Nichols J, Evans EP, et al. Changing potency by spontaneous fusion[J]. Nature, 2002, 416(6880): 545-8.
    19.Alvarez-Dolado M,Pardal R,Garcia-Verdugo JM,et al.Fusion of bone-marrow-derived cells with Purkinje neurons,cardiomyocytes and hepatocytes[J].Nature,2003,425(6961):968-73.
    20.Nygren JM,Jovinge S,Breitbach M,et al.Bone marrowderived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion,but not transdiferentiation[J].Nat Med,2004,10(5):494-501.
    21.Oh H,Bradfute SB,Gallardo TD,et al.Cardiac progenitor cells from adult myocardium:homing,diferentiation,and fusion after infarction[J]Proc Natl Acad Sci USA,2003,100(21):12313-8.
    22.Yoon YS,Park JS,Tkebuchava T,et al.Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction[J].Circulation,2004,109(25):3154-7.
    23.Zhao P,Ise H,Hongo M,et al.Human amniotic meanchymal cells have some characteristics of cardiomyocytes[J].Transplantation,2005,79(5):528-35.
    24.Detillieux KA,Sheikh F,Kardami E,et a l.Biological activities of fibroblast growth factor-2 in the adult myocardium[J].Cardiovasc Res,2003,57(1):8-19.
    25.Okada-Ban M,Thiery JP,Jouanneau J.Fibroblast growth factor-2[J].Int J Biochem Cell Biol,2000,32(3):263-7.
    26.Rosenblatt-Velin N,Lepore MG,Cartoni C,et al.FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes[J].J Clin Invest,2005,115(7):1724-33.
    27.Song H,Kwon K,Lim S,et al.Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions[J].Mol Cells,2005,19(3):402-7
    28 cans RJ,Moseley AB,Mesenchymal stem cells:biology and potential clinical uses.Exp Hematol,2000,28(8):875-884.
    29 e Bari,C.,F.Dell'Accio,F.Vandenabeele,et al.Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane.J.Cell Biol.160:909-918.
    30 Fukuda K,Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering.Artif Organs,Mar 2001;25(3):187-93.
    31 Woodbury D,SchwarzEJ,Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res,2000;61(4):364-70.
    32 Davani S,Marandin A,Mersin N,et al.Mesenchymal Progenitor Cells Differentiate into an Endothelial Phenotype,Enhance Vascular Density,and Improve Heart Function in a Rat Cellular Cardiomyoplasty Model.Circulation,2003;108(suppl Ⅱ):253 - 258.
    33 Gojo S,Gojo N,Takeda Y,et al.In vivo cardiovasclogenesis by direct injection of isolated adult mesenchymal stem cells.Exp Cell Res,2003;288(1):51-59.
    34 黄盛东,刘晓红,杨立信等.血管内皮细胞生长因子基因转染诱导大鼠骨髓基质干细胞分化为内皮.第二军医大学学报2003:24(12):1280-1283.
    35 Rafii S,Lyden D.Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration.Nat Med,2003;9:702-712.
    36 Kamihata H,Matsubara H,Nishiue T,et al.Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiognic ligands, and cytokines. Circulation, 2001; 104:1046-1052.
    37 Shi Q, Rafii S, Wu MH, et al. Evidence for circulation bone marrow-derived endothelial cells. Blood, 1998; 92:362-367.
    38 Jackson KA, Majika SM, Wang HY, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest, 2001; 107(11):1395-1402.
    39 Hiasa H, Egashira K, Kitamoto S, et al. Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Res Cardiol, 2004; 99:165-172.
    40 Stamm C, Westphal B, Kleine HD, et al. Autologous bone marrow stem cell transplantation for myocardial regeneration. Lancet, 2003; 361:45-46.
    41 Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 2003; 361:47-49.
    42 Perm EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 2003; 107:2294-2302.
    43 Laham RJ, Rezaee M, Post M, et al. Intrapericardial administration of basic fibroblast growth factor: myocardial and tissue distribution and comparison with intracoronary and intravenous administration. Catheter Cardiovasc Interv. 2003; 58:375-381.
    44 Biswas SS, Hughes GC, Scarborough JE, et al. Intramyocardial and intracoronary basic fibroblast growth factor in porcine hibernation myocardium: a comparative study. J Thorac Cardiovasc Surg. 2004; 127:34-43.
    45 Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow celll transplantation for severe, chronic ischemic heart failure. Circulationn, 2003,361:47-49
    46 Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infracted heart, improving function and survival. Proc Natl Acad Sci USA, 2001; 98(18): 10344-10349.
    47 Rangogiannis NG, Smith CW, Mark LE. The inflammatory response in myocardial infaction. Cardiovasc Res, 2002, 53:31-47.
    48 Li RK, Donald AG, Richard DW, et al. Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorc Surg, 2001, 72:1957-1963.
    49 Menasche P, hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol, 2003,41: 1078-1083.
    50 Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow monomuclear cell implantation. Lancet, 2003,361:47-49.
    51 Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 2003, 107:2294-2302.
    52 Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 2003,4:39-42.
    53 Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol,2003,41: 1078-1083.
    54 Zhang F, Gao X, Yiang ZJ, et al. Cellular cardiomyoplasty: a preliminary clinical report. Cardiovasc Radial Med, 2003, 4:39-42.
    55 Khan TA, Sellke FW, Laham RJ. Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia Gene Ther. 2003; 10:285-291.
    56 Symes J F , Losordo D W , Vale P R , et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg , 1999 , 68 : 830 -837.
    57 Rosengart T K, Lee L Y, Patel S R, et al. Six2month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Ann Surg, 1999 , 230 :466 - 470.
    58 Chachques JC, Acar C, Herreros J, et al. Cellular cardiomyoplasty: clinical application. Ann Thorac Surg. 2004; 77:1121-1130.
    59 Strauer BE, Brehm M, Zeus T, et al. Intracoronary human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dutch Med Wochenschr, 2001,126(34-35):932-938.
    60 Assumus B, Schachiger V, toupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Circulation, 2002; 106(24):3009-3017.
    61 Perin EC, Dohman HF, Borojevic R, et al. Transendocardial, atologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 2003, 107(18):2294-2302.
    62 Hamano K, Nishida M, Hirata K, et al. Local implantation of autologous bone marrow cell for therapeutic angiogensis in patients with ischemic heart disease, clinical trial and preliminary results. Jpn Circ, 2001; 65(9)845-847.
    63 Strauer BE Brehm M, Zeus T, et al. Repair of infracted myocardium by autolgous intracoronary monouclear bone marrow cell transplantation in humans. Circulation, 2002, 106(15); 1913-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700