微囊化VEGF基因修饰细胞移植促进脱细胞真皮血管化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮肤缺损创面的修复一直是外科领域不断深入研究的课题,而理想的创面愈合应含有真皮层结构。目前已研究证实异种脱细胞真皮是较理想的真皮替代物,异种脱细胞真皮基质与自体薄皮片复合移植修复皮肤缺损创面在国内外已有报道。异种脱细胞真皮的来源广,成本低,有望在临床上广泛应用。但不具备血管结构的脱细胞真皮层血管化速度慢,这是导致其上方表皮细胞营养缺乏、局部感染和移植失败的主要原因。因而促进脱细胞真皮移植后的早期血管化是移植成功的关键。
     在目前实验研究中,为了提高移植皮片的存活能力,许多能诱导新生血管形成的生长因子应用于移植皮片的研究。其中血管内皮生长因子(vascular endothelial growthfactor,VEGF)是作用最强、特异性最高的因子,其促进血管生成作用已得到认可。但VEGF蛋白质的半衰期较短,限制了临床应用。目前尚无一个完善的释放传递系统以延长VEGF与组织的接触时间(即作用时间),让其发挥最大的生物效应。VEGF基因治疗可克服单纯蛋白质治疗的缺点,因此人们考虑应用VEGF基因治疗。实践中遇到的问题是导入的基因难以在体内持续表达;有些难以获得有效基因转移;而且还存在安全性问题;体外细胞增殖困难,自体细胞来源少及再移植后存活率低等。1993年加拿大的Sun和Chang最早提出了异体体细胞基因治疗的策略,即将目的基因导入已建立的细胞系内,使其表达基因产物,再将其移入病人体内。这样大大扩展了细胞来源,但是免疫排斥反应又限制了其应用。微囊化细胞移植技术为解决这一问题提供了新方法,异体或异种细胞微囊后移植可避免宿主的免疫排斥反应,同时可发挥分泌等功能。
     20世纪80年代初,微囊化技术与组织细胞移植相结合,其特点在于选择性透过膜,可避免免疫系统对囊内细胞的攻击,起到免疫隔离作用,而小分子的营养物质和囊内生物活性物质及代谢产物可自由出入。之后,微囊化细胞技术广泛应用于神经内分泌疾病的基础和临床研究,并已取得可喜成绩。至90年代,随着基因重组技术的发展,人们尝试以微囊作为转基因细胞的免疫隔离和运载工具,利用基因修饰的异体或异种细胞的代谢产物调节机体生理功能,治疗相关疾病。
     微囊化基因工程细胞技术是将微囊化技术与基因工程细胞技术的有机结合,使基因工程细胞即基因修饰细胞借助微囊的免疫隔离作用在受体体内长期存活,并持续表达目的蛋白,有助于克服传统基因工程药物半衰期短,活性不高等缺点,相对于基因治疗则具有不改变受体基因组,更加安全,且可以批量生产,冻存后随时移植给所需患者,有降低工作量与成本的优点。所以理论上将微囊化技术与基因工程技术及组织移植技术相结合,通过转VEGF基因的方式使囊内细胞具有分泌VEGF的功能,可促进移植组织血管化。然而,微囊化VEGF基因修饰细胞能否在创面异种真皮移植中起到加快早期血管化作用,目前国内外未见相关报道。为此我们设计了本课题实验,进行了以下四个部分的实验研究。
     第一部分:目的:构建携带人血管内皮生长因子一165(hVEGF_(165))基因的重组腺病毒载体(Ad.VEGF),为后续基因转染、微囊化基因修饰细胞制备等研究提供实验基础。方法:采用脂质体转染法,将pAxCAwt.hVEGF_(165)与DNA-TPC共转染人胚肾293细胞,扩增后获得载hVEGF_(165)基因的复制缺陷型重组腺病毒。使用PCR、酶切证实重组腺病毒中的目的基因。并根据半数组织感染量(TCID_(50))法计算病毒滴度。结果:采用脂质体法可使pAxCAwt.VEGF_(165)与DNA-TPC有效转染293细胞,扩增出载hVEGF_(165)基因的复制缺陷型重组腺病毒。PCR的产物进行NcoI酶切鉴定,可得到597bp、146bp两个片段,与GeneTool软件理论上计算的结果完全一致。计算病毒滴度为2.2×10~(12)pfu/ml。结论:成功构建复制缺陷型重组腺病毒Ad.VEGF_(165),其滴度高,毒性低,效率高,体外转染安全。
     第二部分:目的:探讨腺病毒介导人血管内皮细胞生长因子(hVEGF_(165))基因转染NIH3T3细胞后目的基因表达情况及对NIH3T3细胞增殖分化的影响。方法:应用Ad.VEGF感染传代培养的NIH3T3细胞后,用荧光显微镜和流式细胞仪检测转染效果和转染率,免疫组化、RT-PCR和ELISA方法分别检测hVEGF_(165)基因转染NIH3T3细胞后VEGF的表达情况,MTT检测细胞增值活性。结果:腺病毒介导的hVEGF_(165)基因对于NIH3T3细胞具有较高的转染效率,转染效率与病毒感染复制数(multiplicities ofinfection,MOD具有量效关系。MOI为100倍时,转染效率达95%,转染VEGF后,RT-PCR、免疫组化显示NIH3T3细胞可有效表达VEGF,ELISA示7d时表达达到高峰(1052 pg/mL),13d后仍可检测到VEGF的表达。两周内采用MTT动态检测OD值,转染组细胞与未转染组细胞相比无显著性差异(P>0.05)。结论:腺病毒介导的hVEGF_(165)基因可以有效的转染NIH3T3细胞,NIH3T3细胞是一种较理想的基因载体细胞,其携带的VEGF基因可获得较高的表达水平。
     第三部分:目的:制备微囊化VEGF基因修饰NIH3T3细胞,并研究微囊化技术对VEGF基因修饰NIH3T3细胞增殖与活性及代谢分泌功能的影响。方法:应用纯化海藻酸钠-氯化钡技术制备微囊化VEGF基因修饰NIH3T3细胞,并与未微囊化细胞对照培养,在倒置相差显微镜下观察微囊及细胞形态,用MTT和PI染色流式细胞术检测细胞的增殖及活性情况,并每48h更换和收集微囊化和未微囊化基因修饰NIH3T3细胞培养液,-20℃保存,通过ELISA检测培养液VEGF的含量,两组进行对比分析。结果:微囊形态较圆整,细胞生长良好,两组细胞增殖与活性及培养液中VEGF的含量的差异无统计学意义(P>0.05)。结论:微囊化并不影响基因修饰细胞的生长代谢功能,与对照组比较,在体外培养时生物学特性无明显差异,从而为研究微囊化基因修饰细胞体内移植打下实验基础。
     第四部分:目的:探讨微囊化VEGF基因修饰NIH3T3细胞移植对猪脱细胞真皮早期血管化及其复合皮存活的影响,从而探讨其应用于创面促进猪脱细胞真皮血管化的可行性。方法:以豚鼠背部急性皮肤全层缺损创面为模型,且对称性分为4个区,按移植物不同分为四组:微囊化VEGF-NIH3T3+复合皮移植组(A组)、未微囊化VEGF-NIH3T3+复合皮移植组(B组)、空囊+复合皮移植组(C组)、PBS空白对照+复合皮移植组(D组)。观察移植一周后微囊化细胞及未微囊化细胞在组织中病理形态改变;一周后ADM微血管化程度和两周后复合皮的存活率;术后3,7,14天取脱细胞真皮组织,采用免疫组化SP法检测hVEGF与CD34的表达,并计算微血管密度(microvessel density,MVD),进行统计学分析。结果:微囊化基因修饰细胞移植一周后微囊形态较好,细胞有增值现象,囊周围无明显淋巴细胞浸润,而未微囊化基因修饰细胞周围有明显淋巴细胞浸润。一周后大体解剖及病理切片显示,A组血管化程度明显强于B组。两周后A组皮片存活率(91±7%)明显高于其他三组(B,C,D组分别为79±5%,76±2%,77±4%)(P<0.01),B、C、D三组之间无明显差异(P>0.05)。移植后的3,7,14天A组hVEGF及CD34表达明显强于其他三组,且7,14天MVD明显高于其他三组(P<0.01),而其他三组之间无明显区别(P>0.05)。结论:微囊化基因修饰细胞移植可促进创面异种脱细胞真皮早期血管化,提高复合皮片存活率,改善创面愈合质量。
     综上所述,本研究初步证实了微囊化基因修饰细胞制备的可行性,在体外培养微囊内细胞增值活性好,VEGF稳定表达。体内植入可促进创面脱细胞真皮早期快速血管化,改善创面愈合质量。可以期待,随着微囊化和基因工程技术的不断深入研究,必将产生一系列成果,为组织移植及难愈创面的血管化提供新的临床治疗策略。
Skin defect wound repairing is always topic studied deeply in surgical field, and ideal wound healing should contain dermal structure. So far it has demonstrated that xenogeneic acellular dermis is satisfactory substitute of dermis, and there have been some reports about transplantation of xenogenic ADM and autologous split thickness skin graft on wound at home and aboard. Broad source and lower cost of porcine ADM make its application become promising in clinic. But ADM without vessel structure develops angiogenesis slowly, which could lead to insufficient nutrition of epidermic cells, regional infection and failure of transplantation. Therefore it is crucial for successful transplantation that early angiogenesis of ADM is accelerated.
     In experimental studies of plastic surgery, many angiogenic factors have been applied in study of skin graft to promote survival rate. Of which VEGF is a most effective and highly specific factor, and it is well known that its angiogenic effect is obvious. However, short half-life of VEGF protein limits clinical application. To make VEGF exert more bioactive effect, now there has been no perfect releasing and delivering system to lengthen effective time in tissue. VEGF gene therapy may overcome drawback of protein therapy, therefore we try to undertake gene therapy. We may adopt two pathways, namely in vivo and in vitro, but common problem encountered in reality include delivering gene hard to persistent express in vivo, some gene hard to efficaciously transfer, existing safety tissue, cells in vitro proliferating difficultly, short resource of autlogous cell and low survival rate after cell implantation. In 1993, Sun and Chang in Canada firstly raised strategy of allogenic cell gene therapy, namely making desired gene delivering into cell line, and making these cells express gene product, then making them implant into body. Thus we may greatly enlarge resource of cell, but immune rejection reactions limit their application. Microencapsulated cell transplantation technique provides a novel approach for resolving the problem. Microencapsulated allogenic or xenogenic cells transplantation may avoid immune rejection reaction, and simultaneously don't influence their secreting function.
     In the early 20th century 80, microcapsule technique combined with tissue and cell transplantation, characteristic of which is its selective permeable membrane, and shelter cells from the recipient's immune system, but allows free exchange of small molecular nutrient, bioactive agent and metabolites. Since then, microencapsulating technique has been widely used in experimental and clinical study on neuroendocrine disease, and it has achieved gratifying results. To the 1990s,with the development of gene recombination technology, people try to use microcapsule as immune isolation and their means of delivery, and to regulate physical function and treat associated disease by metabolic product of genetically modified allogenic or xenogenic cells.
     Mircroencapsulation of recombinant cell lines is viewed as a new delivery system for gene therapy. This approach would allow nonautologous genetically modified cells to be implanted into any host to deliver the desired gene product without triggering graft rejection. The advantages of nonautologous method of gene delivery are: it does not require modification of the host's genome, thus providing additional measures of safety and cost saving; it provide ample material for quality assessment before implantation, a safety feature not available to most other forms of in vivo delivery. Therefore in theory by microencapsulation technique combining with genetically engineering and tissue transplantation technique, cells in microcapsule may secret VEGF through transferring gene, and promote angiogenesis of implanted tissue. However, so far there have been no reports about whether microencapsulated VEGF-secreting cells play a key role in accelerating angiogenesis for implanted ADM. So we designed this present experiment, and undertake following studies.
     Part one: Objective: To construct the recombinant adenovirus vector containing human vascular endothelial growth factor-165(hVEGF_(165)), so as to lay a foundation for study on genetically modified cells. Methods: pAxCAwt.VEGF_(165) and DNA-TPC cotransfected into 293 cells by lipofection method. Being propagated in HEK293 cells and purified by cesium chloride gradient centrifugation, recombinant replication-deficient adenovirus named Ad.VEGF_(165) was obtained. Then the titer of virus was detected by TCID_(50) method. The Ad. VEGF_(165) was identified by PCR restriction enzyme digestion and DNA sequencing methods. Results: An efficient and reliable method of constructing recombinant Ad vectors was established. Replication-deficient adenovirus vectors coding for VEGF_(165) DNA were generated in high titer. 597bp and 146bp were obtained by NcoI restriction enzyme .the result was consistent with that of Gene Tool software calculating, virus titers was 2.2×10~(12) pfu / ml. Conclusions: pAxCAwt.VEGF_(165) and DNA-TPC can be used to construct replication-deficient recombinant Ad vectors with high titer and purity. It is proved to be efficacy and reliable.
     Part two: Objective: To investigate the expression of adenovirus transfected hVEGF165 in NIH3T3 cells in vitro and the effect of transfection on NIH3T3 cells proliferation. Methods: NIH3T3 cells were passaged and expanded, then infected by Ad. VEGF and Ad. GFP. The infection efficiency of adenovirus vector to NIH3T3 cells was tested by Ad.GFP infection procedure. Ad.VEGF expression in NIH3T3 cells was detected by immunohistochemical staining and RT-PCR, and its secretion in culture medium were measured with ELISA method. Proliferation of cells was determined by MTT. Results: NIH3T3 cells could be effectively transfected by adenovirus containing hVEGF165 gene in vitro, the transfection efficiency has the dose-effect relationship with multiplicities of infection (MOI). When MOI was 100, the infection efficiency was more than 95% and stable. The expression of VEGF was traced both in cell lysate and in culture medium. A maximum production of VEGF was observed at 5~9 days after infection (1052 pg/mL at the 7th day), and VEGF was found even in day 13. The result of MTT demonstrated there was no significant difference between infected cells and uninfected cells (P>0.05). Conclusion: Gene transfer technology mediated by adenoviral vector can transfect VEGF gene into NIH3T3 cells with high efficiency. NIH3T3 cells transfected by hVEGF165 gene could efficiently express VEGF.
     Part three: Objective: To prepare microencapsulated VEGF-expressing NIH-3T3 cells , and study the effect of microencapsulated process on cellular metabolic functions and proliferation. Methods: Microencapsulated VEGF-expressing NIH-3T3 cell was made by Alginate-BaCl2 process. Morphological appearances of the microcapsule were observed under inverted phase microscope. The concentrations of VEGF in culture supernatant were measured by ELISA; The proliferation of microencapsulated VEGF-expressing NIH-3T3 cell was detected by MTT, and viability was tested by PI and flow cytometry. Unencapsulated VEGF-expressing NIH3T3 cells were used as control. Results: The morphological appearances of microcapsules were round and uniform, and the microencapsulated VEGF-expressing NIH-3T3 cells in vitro survived well. There was no statistical significance in concentration of VEGF, MTT value and viability of cells between two groups in vitro culture(P>0.05). Conclusion: The physiologically metabolic functions of NIH3T3 cells within Alginate-BaCl2 microencapsule have not been impacted by microcapsule membrane. In vitro culture, there is no significant difference in biocharacteristic between microencapsulated VEGF-expressing NIH3T3 cells and unencapsulated cells. Then it lays experimental foundation for exploring further transplantation of microencapsulated VEGF-expressing NIH3T3 cells in vivo.
     Part four: Objective: To investigate the angiogenic effect of microencapsulated VEGF-expressing NIH3T3 cells transplantation on xenogenic acellular dermis on acute wound. Methods: Each guinea pig dorsal was divided into four symmetrical areas, cutting off the skin to fascia, causing the size of 2cm x 2cm skin defect region, then composite skin (porcine acellular dermis + autologous split thickness skin) were use to cover wound. According to different injected agent under ADM, experiment were further divided into four groups: Microencapsulated VEGF-NIH3T3 cells group (A group), unencapsuled VEGF-NIH3T3 group (B group) ,empty microcapsules grafted group (C group ) , PBS blank control (D group ). The morphological appearances of microcapsules and cells, the early angiogenesis of acellular ADM at one week and survival of composite skin at two week were observed, the expression of VEGF and CD34 were detected by IHC on the 3th, 7th and the 14th day. The microvessel density (MVD) was calculated. Results: The morphological appearances of microcapsules were smooth and round one week after implantation, of which the cells surviving well, and immersion of lymphocytes were not obvious surrounding microcapsule, but there were obvious lymphocytes surrounding unencapsuled cells, the extent of angiogenesis at one week in A group was obvious.the survived rate of composite skin at end of two weeks in A group(91±7%) was higher than that in other three groups(79±5%,76±2%,77±4%,respectively in B,C,D group) (P<0.01), but there was no statistical difference among B,C,D groups(P>0.05).Compared with other three groups, the expression of hVEGF and CD34 were marked in A group, and MVD at 7,14 day in A group was higher than other three groups (P<0.01). Conclusion: Transplantation of microencapsulated VEGF-expressing NIH3T3 cells could augment angiogenesis of ADM in wound healing early stage, and elevate survive rate of composite skin.
     To sum up, the results of experiment demonstrate that preparation of microencapsulated genetically modified cells is feasible, which may accelerate early angiogenesis of implanted ADM, and improve quality of wound healing. With study deeply in this regard, a serial of achievement will be to bring about expectantly, providing a novel strategy of augmenting angiogenesis for tissue transplantation and refractory wound.
引文
[1]Srivastava A,De Sagun EZ,Jennings LJ,et al.Use of porcine acellular derm matrix as a dermal substitute in rats.Ann Surg,2001,233:400-408.
    [2]冯祥生.异种(猪)脱细胞真皮与自体表皮复合移植研究.中华整形外科杂志,2000,16:40-42.
    [3]Bannasch H,Stark GB,Knam F,et al.Decellularized dermis in combination with cultivated keratinocytes in a short-and long-term animal experimental investigation.J Eur Acad Dermatol Venereol,2008,22(1):41-9.
    [4]Heimbach D,Luteman A,Burke JF,et al.Artificial dermis for major burns:A multi-center randomized clinical trial.Ann Surg,1988,208:313-320.
    [5]Supp DP,Supp AP,Bell SM,et al.Enhanced vascularization of culture skin substitutes genetically modified to overpress vascular endothelial growth factor.J Invest Dermatol,2000,114(1):5-13.
    [6]Kusumanto YH,Weel VV,Mulder NH,Smit AJ,Dunqen JJ,Hooymans JM,et al.Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia:a double-blind randomized trial.Hum Gene Ther,2006,17:683-691.
    [7]Lazarous DF,Shou M,Scheinowitz M,et al.Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury.Circulation,1996,94:1074-1082.
    [8]Henry TD,Annex BH,Mckendall GR,et al.The viva trial:vascular endothelial growth factor in ischemia for vascular angiogenesis.Circulation,2003,107:1359-1365.
    [9]Dulak J,Schwarzacher SP,Zwick RH,et al.Effects of local gene transfer of VEGF on neointima formation after balloon injury in hypercholesterolemic rabbits.Vase Med,2005,10:285-291.
    [10]Chang PL,Shen N,Westeott A.Delivery of recombinant gene products with microencapsulated cells in vivo.Hum Gene Ther,1993,4(4):433-440
    [11]郑岩,易成刚,何丽洁,等.转染血管内皮生长因子基因的小鼠NIH3T3细胞移植促进皮瓣早期血运重建的研究.中华外科杂志,2007,45:203-206.
    [12]Fink D,Mata M,Glonoso JC.Cell and gene therapy in the treatment of pain.Adv Drug Deliv Rev,2003,55(8):1055-1064.
    [13]Tai IT,Sun AM.Microencapsulation of recombinant calls:a new delivery system for gene therapy.FASEB J,1993,7(11):1061-1069.
    [14]马小军,何洋,雄鹰,等.组织细胞移植用生物微胶囊技术介绍.中华整形外科杂志, 2000,16 (5): 267-269.
    [15] Orive G,Hennandez RM,Gascon AR,et al.History,challenges and perspectives of cell microencapsulation.Trends Biotechnol,2004,22:87-92.
    [16] Robert PL, William LC. Transplantation of encapsulated cells and tissues. Surgery, 1997, 121(1): 1-9.
    [17] Gaumann A, Landes M, Jacob B, et al. Xenotransplantation of parathyroids in rats using barium-alginate an d polyacrylic acid muhilayer microcapsules. Exp Toxic Pathol, 2001, 53: 35-43
    [18] CironeP, Potter M, HirteH. etal. Immuno-isolation in cancer gene therapy. Curr Gene Ther,2006, 6(2): 181-191.
    [19] Zhang H,Zhu SJ,Wang W, et al.Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function.Gene Therapy,2008,15:40-48.
    [20] Hu ZH,Chen SZ,Jin Y,et al.Microencapsulated nerve growth factor-expressing NIH3T3 cells-incorporated tissue engineering skin: a preliminary study.Singapore Med J,2006,47(6):504-11.
    [21] Ferrara N, Henzel W J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun, 1989, 161:851-858.
    [22] Ferrara N. Vascular endothelial growth factor: basic science and clinical progress endocrine reviews. Surg,2004,25: 581—611.
    [23] Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis:A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb. J Clin Invest, 1994,93:662-670.
    [24] Kado G.Relative sensitivity of three cell substrates to the Sabin poliovirus strains. Dev Biol Strand, 1976, 37:261.
    [25] Edelstein ML, Abedi MR, Wixon J et al. Gene therapy clinical trials worldwide 1989-2004 — an overview. J Gene Med, 2004; 6: 597— 602.
    [26] Hayashi S, Leu D, Yamii Y, et al. Effect of adenovius mediated transfer of the CTLA4 IG gene in hamster-to-rat xenotransplantation. Transplantation, 2005, 80(4): 494-495.
    [27] Seino K,Kayagaki N,Okumura K,et al. Antitumor effect of locally produced CD95 ligand.Nat Med,1997,3(2):165-170.
    
    [28] Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nat Med, 1997,3:158-164.
    [29] Crystal RG Transfer of genes to humans:early lessons and obstacles to success. Science,1995,270:404-410.
    [30]李培建,李兵仓,戴宜武.携带脑源性神经营养因子基因腺病毒转染在大鼠坐骨神经基因表达的检测.中国组织工程研究与临床康复,2007,11(23):4453-4457.
    [31]Giunta RE,Holzbach T,Taskov C,et al.AdVEGF165 gene transfer increases survival in overdimensioned skin flaps.J Gene Med,2005,7:297-306.
    [32]李方成,李军亮,梁伟强,等.大鼠GLUT1基因的扩增及其重组腺病毒载体的构建.中国病理生理杂志,2006,22(11):2284-2286.
    [33]kanegae Y,Lee G,Sato Y,et al.Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase.Nucleic Acid Res,1995,23:3816-3821.
    [34]Chinnadurai G,Chinnadurai S,Brusca J.Physical mapping of a large-plaque mutation of adenovirus type 2.J Virol,1979,32:623-628.
    [35]Sanae M,Miho M,Yumi K,et al.Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome.Proc Natl Acad Sci USA,1996,93(2):1320-1324.
    [36]F.奥斯伯 等著,颜子颖 等译.精编分子生物学实验指南.北京:科学技术出版社.1998,276.
    [37]吴森,余佩武,王自强,等.反义B7—H1位置特异性腺病毒载体的构建与鉴定.第三军医大学学报,2006,28(5):387-390.
    [38]Lattermann C,Oxner WM,Ⅺao X,et al.The adeno associated viral vector as a strategy for intradiscal gene transfer in immune competent an pre-exposed rabbits.Spine,2005,30(5):497-504.
    [39]Lochmuller H,Jani A,Huard J,et al.Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (deltaE1+delta E3) during multiple passages in 293 cells.Hum Gene Ther,1994,5:1485-1491.
    [40]Schaack J,BenneU ML,Colbert JD,et al.E1A and E1B proteins inhibit inflammation induced by adenovirus.Proc Natl Acad Sci USA,2004,101(9):3124-3129.
    [41]Lei Ye,Husnain Kh.Haider,Shujia Jiang,et al.Improved angiogenic response in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF165 and angiopoietin-1.European Journal of Heart Failure,2007,9:15-22.
    [42]Tse H F,Kwong YI,Chan K F,et al.Angiogenesis in isehaemic myocardium by intramyocardial autologous bone marrow mononuclearcell implantation.Laincet,2003,361.:47-49.
    [43]贾勇,初同伟,周跃.Ad-huVEGF_(121)在NIH3T3细胞中的表达及其生血管活性.免疫学杂 志,2005,21:386-387.
    [44]张裕东,张宝仁,黄盛东,等.腺病毒介导的血管内皮生长因子体外转染心肌细胞的研究.第二军医大学学报,2004,25:485-488.
    [45]Ohara N,Koyama H,Miyata T,et al.Adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promotes collateral development in a rabbit model of hind limb ischemia.Gene Ther,2001,8:837-845.
    [46]Bates DO,Jones RO.The role of vascular endothelial growth factor in wound healing.Int J Low Extrem Wounds,2003,2:107-120.
    [47]Odorisio T,Cianfarani F,Failla CM,et al.The placenta growth factor in skin angiogenesis.J Dermatol Sci,2006,4,111-119.
    [48]Henry TD,Annex BH,Mckendall GR,et al.The viva trial:vascular endothelial growth factor in ischemia for vascular angiogenesis.Circulation.2003,107:1359-1365.
    [49]徐驯宇,黄盛东,陆方林,等.Ad.VEGF转染自体骨髓基质细胞移植治疗猪慢性缺血性心脏病.第二军医大学学报,2005,26(4):381-385.
    [50]华平,陈炬,张慧忠,等.腺病毒介导血管内皮细胞生长因子基因体外转染骨髓间充质干细胞.中山大学学报(医学科学版),2007,28:1-5.
    [51]Lim F,Sun AM.Microencapsulated islets as bioartificial endocrine pancreas.Science,1980,210:908-910.
    [52]Schneider S,Feilen PT,Brunnenmeier F,et al.Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice.Diabetes,2005,54:687-693.
    [53]林东岷,宋一民,宋纯.微囊化新生猪甲状旁腺细胞异种移植的实验研究.中华器官移植杂志,2002,23:170-172.
    [54]Basic D,Vacek I,Sun AM.Microecncapsulation and transplantation of genetically engineered cells:anew approach to somatic gene therapy.Artif Cells Blood Substit lmmobil Biotechnol,1996,24(3):219-255.
    [55]O'Shea GM,Sun AM.Encapsulation of rat islets of langerhans prolongs xenograft survival in diabetic mice.Diabets,1986,35:943-946.
    [56]Zhang W J,Laue C,Hyder A,Schrezenmeir J.Purity ofalginate affects the viability and fibrotic overgrowth of encapsulated porcine islet xenografts.Transplant Proc,2001,33:3517-3519.
    [57]李崇辉.罗芸,李新建,等.利用激光共聚焦显微镜测定APA微囊通透性.中国体视学与图像分析,1994,4:1619.
    [58]Sarkis R,Benoist S,Honiqer J,et al.Transplanted cryopreserved encapsulated porcine hepatocytes are as effective as fresh hepatocytes in preventing death from acute liver failure in rats.Transplantation,2000,70:58-64.
    [59]Orive G,Tam SK,Pedraz JL,Halle JP.Biocompatibility of alginate-poly-lysine microcapsules for cell therapy.Biomaterials,2006,27:3691-3700.
    [60]张武杰,李保国,谢鑫荟,汤亭亭.纯化海藻酸钠在间质干细胞微囊化中的应用.上海交通学报(医学版),2007,27:673-676.
    [61]Uludag H,DeVos P,Tresco PA.Technology of mammalian cell encapsulation.Adv Drug Deliv Rev,2000,42:29-64.
    [62]Zhang X,Wang W,Xie Y,et al.Proliferation,viability,and metabolism of human tumor and normal cells cultured in microcapsule.Appl Biochem Biotechnol,2006,134:61-76.
    [63]Mai G,Huy NT,Morel P,et al.Treatment of fulminant liver failure by transplantation of microencapsulated primary or immortalized xenogeneic hepatocytes.Transplant Proc,2005,37:527-529.
    [64]Keck PJ,Hauser SD,Kfivi G,et al.Vascular permeability factor,an endothelial cell mitogen related to PDGE.Science,1989,246:1309-1312.
    [65]Pareek G,Shevehuk M,Amenakas NA,et al.The effect of finasteride on the expression of vascular endothelial growth factor and microvessel densit:a possible mechanism for decreased prostatic bleeding in treated patients.J Urol,2002,169:20-23.
    [66]Daniel A,Sabine A,Maura E,et al.Difference in dermal analogs inference subsequent pigmentation,epidermal differentiation,basement membrane,and fete ridge formation of transplanted composite skin grafts.Transplantation,1997,64:454-465.
    [67]Wainw right DJ.Use of an acellular allograft dermal matrix(Allo Derm) in the management of full-thickness burn.Burns,1995,21(4):243.
    [68]Ghosh MM,Boyce SG,Freedlander E,et al.A simple human dermal model for assessment of in vitro attachment efficiency of stored cultured epithelial autografts.J Burn Care Rehabil,1995,16(4):407-417.
    [69]Ho HO,Tsai YT,Chen RN,et al.Viscoelastic characterizations of acellular dermal matrix(ADM)preparations for use as injectable implants.J Bbioed Mater Res.Part A,2004,70A(1):83-96.
    [70]Madeddu P.Therapeutic angiogenesis and vasculogenesis for tissue regeneration.Exp Physiol,2005,90:315-326.
    [71]Senger DR,Ledbetter SR,Claffey KP,et al.Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanism involving the ανβ3 integrin,osteopontin,and thrombin.Am J Pathol,1996,149:293.
    [72]Kockel,Weich H,Brandner G,et al.Mutant p53 potentiates protein kinase c induction of vascular endothelial growth factor expression.Oncogene,1994,9:936.
    [73]Gruss CJ,Satuamoorthy K,Berking C,et al.Stroma formation and angiogenesis by overexpression of growth factors,cytokines,and proteolytic enzymes in human skin grafted to SCID mice.J Invest Dermatol,2003,120(4):683-692.
    [74]刘嘉锋,钟文慧,张一鸣,等.重组人VEGF基因对游离组织移植物血管形成的作用.中国美容医学,2007,16:1325-1328.
    [75]Stewart DJ,Hilton JD,Arnold JM,et al.Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease:a phase 2 randomized,controlled trial of AdVEGF(121) versus maximum medical treatment.Gene Therapy,2006,13:1503-1511.
    [76]Yla-Herttuala S,Rissanen TT,Vajanto I,et al.Vascular endothelial growth factors:biology and current status of clinical applications in cardiovascular medine.J Am Coll Cardiol,2007,49:1015-1026.
    [77]Cross SE,Robert M S.Defining a model to predict the distribution of topically applied growth factors and other solutes in excisional full-thickness wounds.J Invest Dermatol,1999,112(1):36-41.
    [78]Shima DT,Deutsch U,D'Amore PA.Hypoxic induction of vascular endothelial growth factor(VEGF) in human epithelial cells in mediated by increases in Mrna stability.EFBS Lett,1995,370:203-208.
    [79]Carmeliet P.VEGF gene therapy.stimulating angiogenesis or angiomagenesis.Nat Med,2000,6:1102-1103.
    [80]Kirmaz C,Ozbilgin K,Yuksel H,et al.Increased expression of angiogenic markers in patients with seasonal allergic rhinitis.Eur Cytokine Netw,2004,15(4):317-322.
    [81]王西樵,向军,胡庆沈,等.应用真皮模板改善创面愈合质量的研究.中国临床康复,7(23):3194-3195.
    [82]马隽宇,王为,王秀丽,等.移植用微囊化细胞低温保存的研究.中国病理生理杂志,2007,23(9):1867-1870.
    [83]苏爱华,王远亮,唐丽灵,等.无细胞猪真皮的生物相容性评价.重庆大学学报,2004,27(2):99-101.
    [84]Gibbs S,Hoogenband HM,Kirtschig G,et al.Autologous full-thickness skin substitute for healing chronic wounds.British Journal of Dermatology,2006,155:267-274.
    [85]Haynes DS,Vos JD,Labadie RF.Acellular allograft dermal matrix for tympanoplasty.Curr opin Otolaryngol Head Neck Surg, 2005,13(5):283-286.
    [86] Orive G,Hernandez RM,Gascon AR,et al.Survival of different cell lines in alginate-agrose microcapsules.Eur J Pharm Sci,2003,18:23-30.
    [87] Cirone P, Potter M, Hirte H, et al. Immuno-isolation in cancer gene therapy. Curr Gene Ther, 2006, 6(2): 181-191.
    [88] Robert PL, William LC.Transplantation of encapsulated cells and tissues. Surgery, 1997, 121(1): 1-9.
    [89] ZimmermannU, Mimietz S, Zimmerm ann H, et al.Hydrogel—based non-autologous cell and tisue therapy. Biotechniques, 2000,29(3): 564—572.
    [90] Sakai S,Ono T,Ijima H,et al.Synthesis and transport characterization of alginate / aminopropyl-silicate / alginate microcapsule:Application to bioartificial pancreas. Biomaterials, 2001, 22(21): 2827—2834.
    [91] Anna Aihua Li,Feng Shen,Tao Zhang,et al.Enhancement of Myoblast Microencapsulation for Gene Therapy.Appl Biomater, 2006,77B:296-306.
    [92] Shinji Sugiura, Tatsuya Oda, Yasuyuki Aoyagi,etal.Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules.Biomed Microdevices, 2007,9:91-99.
    [93] Chang PL, ShenN, Westcott A. Delivery of recombinant gene products with microencapsulated cells in viVO. Hum Gene Ther, 1993, 4(4): 433- 440.
    [94] Chang T M.Artificial cell biotechnology for medical applications.Blood Purif, 2000,18(2): 91.
    [95] Vallbacka J J. Nobrega J N, Sefton M V. Tissue engineering as a platform for controled release of therapeutic agents: implantation of microencapsulated dopamine producing cell in brains of rats. J Control Release, 2001,72(1-3): 93.
    [96] Uteza Y, Rouillot JS, Kobetz A, et al. Infravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor2 delays photoreceptor cell degeneration in Royal Colege of Surgeons rats. Proc Nail Acad SCi USA, 1999, 96(6): 3126—3131.
    [97] Xu W, Liu L, Charles IG. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J, 2002, 16(2): 213—215.
    [98] Van RJM,Ross CJ,Potter MA, et al .Treatment of hemophilia B in mice nonautologous somatic gene therapeutics. J Lab Clin Med, 2002, 139(1): 35—42.
    [99] Chris AT,Nikhil OD,Margaret AW,et al .Grafting of encapsulated BDNF-producing fibroblasts into the injured spinal cord without immune suppression in adult rats. J Neurotrau, 2001, ,18(3): 287—301.
    [100] De Groot M,Schuurs TA,van Schilfgaarde R,et al.Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res , 2004,121(l):141.
    [101] De Vos P,de Haan BJ,de Haan A,et al. Factors influencing functional survival of microencapsulated islet grafts. Cell Transplant, 2004,13(5):515.
    [102] King A,Andersson A,Sandler S.Cytokine—induced functional suppression of microencapsulated rat pancreaticislets in vitro. Trans- plantation, 2000,70(2): 380.
    [103] Salfey SA. Kapp JA. W eber CJ. Proliferative and cytokine responses in CTLA4-lg-treated diabetic NOD mice transplanted with microencapsulated neonatal porcine ICCs.Cell Transplant, 2002,11(7):695.
    [104] Rahman TM,Diakanov L,Selden C,et al.Co-transplantation of encapsulated HepG2 and rat Sertoli cells improves outcome in a thioacetamide induced rat model of acute hepatic failure.Transpl Int,2005,18:1001-1009.
    [105] Zhang WJ,Marx SK,Laue C,et al. HOE077 reduces fibrotic overgrowth around the barium alginate microcapsules. Transplant Proc, 2000,32(1): 206.
    [106] Calafiore R, Basta G, Luca G, etal. Standard Technical Procedures for Microencapsulation of Human Islets for Graft into NonimmunosuppressedPatients With Type 1 Diabetes Mellitus.Transplantation Proceedings, 2006,38:1156-1157.
    [107] Connolly DT, Heuvelman DM , Nelsen R, et al. Tumor vacular permeability factor stimulates endothelial cell growth and angiogenesis. Clin Invest, 1989,84:470.
    [108] Brekken RA,Thorpe PE .Vascular endothelial growth factor and vascular targeting of solid tumors. Anticancer Res, 2001, 21(6B):4221-4229.
    [109] Joukov V, Sorsa T. et al. Proinflammatory cytokines regulate expression of the lymphtic endothelial mitogen vascular endothelial growth factor—c.J Biol Chem,1998,20:273(12): 6599.
    [110] Himadri R, Shalini B, Seppo YH. Biology of vascular endothelial growth factors. FEBS Letters, 2006, 580: 2879-2887.
    [111]Saito A, Sugawara A, Uruno A, et al. All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: possible involvement of paracrine efects of endogenous vascular endothelial growth factor signaling. Endocrinology, 2007, 148: 1412— 1423.
    [112] Tischer E, Mitchell R. The human gene for vascular endothelial growth factor: multiple protein forms are encoded through alternative exon splicing. J Biol fihem, 1991, 266(11): 947.
    [113] Bellomo D,Headrick JP,Silins GU,et al.Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia.Circ Res,2000,86:E29-35.
    [114]Chilov D,Kukk E,Taira S,et al.Genomic organization of human and mouse genes for vascular endothelial growth factor C.J Biol Chem,1997,272:25176-25183.
    [115]Yamada Y,Nezu J,Shimane M,et al.Molecular cloning of a novel vascular endothelial growth factor,VEGF-D.Genomics,1997,42:483-488.
    [116]Rziha HJ,Bauer B,Adam KH,et al.Relatedness and heterogeneity at the near-terminal end of the genome of a parapoxvirus bovis 1 strain(B 177) compared with parapoxvirus ovis(Orf virus).J Gen Virol,2003,4:1111-1116.
    [117]Tombran—Tink J,Barnstable CJ.Osteoblasts and osteoclasts express PEDF,VEGF—A isoforms,and VEGF receptors:possible mediators of angiogenesis and matrix 30k protein.Biochem Biophys Res Commun,2004,2316(2):573-579.
    [118]Shibuya M,cLaesson—Welsh L.Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis.Exp Cell Res,2006.312(5):549-560.
    [119]Ferrara N,Davis ST.The biology of vascular endothelial growth factor.Endocr,1997,18:4—25.
    [120]Akira Wagatsuma.Endogenous expression of angiogenesis-related factors in response to muscle injury.Mol Cell Biochem,2007,298:151-159.
    [121]Yla-Herttuala S,Alitalo K.Gene transfer as a tool to induce therapeutic vascular growth.Nat Med,2003,9:694-701.
    [122]Josko J,Gwozdz B,Jedrzejowska SH,et al.Vascular endothehal growth factor(VEGF)and its efect on angiogenesis.Med Sci Monit,2000,6(5):1047.
    [123]Lebherz C,Von Degenfeld G,Karl A,et al.Theradpeutic angiogenesis/arteriogenesis in the chronic ischemic rabbit hindlimb:effect of venous basic fibroblast growth factor retroinfusion.Endothelium,2003,10:257-265.
    [124]Maharaj AS,Saint-Geniez M,Maldonado AE,et al.Vascular endothelial growth factor localization in the adult.Am J Pathol,2006,168:639-648.
    [125]Gerher HP,McMurtrey A,Kowalskj J,et al.Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3—kinase/AkI signal transduction pathway.Requirement fOr Flk—1/KDR activation.J Biol Chem,1998,273:30336-30343.
    [126]Gerher HP,Hillan KJ,Ryan AM,el al.VEGF is required for growth and surbibal in neonatal mice.Development,1999,126:1149-1159.
    [127]Benjamin LE,Golijanin D,Itin A,et al.Selective ablation Of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal.J Clin lnvest,1999,103:159-165.
    [128] Carmeliet P. Angiogenesis in life, disease and medicine. Nature, 2005,38:932- 936.
    
    [129] Shima DT, Deutsch U, and D'Amore PA. Hypoxic induction for vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett, 1995,370: 203-208.
    
    [130] Anderson WF. Gene therapy of genetic disease(deitorid).Hum Gene Ther, 1994,5(3): 281 —282.
    [131] Chen Y, Cheung K, KungRH, etal. In vivo new bone morphogenetic protein — 4 gene. Biochen Biophys Res Commun, 2002, 298(1): 121—127.
    [132] Baltzer AW, LaffermannC, whalenJD, etal. Potential role of direct adenoviral gene transfer in enhancing fracture repair. ClinOrthop, 2000, 379(1): 120—125.
    [133] Viggeswarapu M, Boden SD, Liu Y,et aLAdenoviral delivery of LIM mineralization protein — 1 indeces new bone formation in vitro and in vivo. J Bone joint Surg(Am),2001,83(3):364— 376.
    [134]BaoJJ, Zhang WW, Kuo MT. Adenoviral delivery of hepatocellular carcinomas. Hum Gene Ther, 1996, 7(3): 355—365.
    [135] Chang PL, ShenN, Westcott A. Delivery ofrecombinant gene products with microencapsulated cells in viVO. Hum Gene Ther, 1993,4(4): 433- 440.
    [136] Jenni fer JV,Miciiael VS.Vascularization and improved in vivo survival of VEGF-secreting cells microencapsulated in HEMA-MMA.Tissue Engineering,2007,13:2259-2269.
    [137] Lei Y,Husnain KH,Shujia J,et al. Improved angiogenic respone in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF165 and angiopoietin-1.European Journal of Heart Failure ,2007,9: 15-22.
    [138] Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Int Med,2002,136:54-71.
    [139] TA, Sellke FW , Laham RJ. Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gen Therapy,2003,10: 285 —291.
    [140] Ferrara N, Chen H, Davis-Smyth T,et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis.Nat Med ,1998,4:336-340.
    [141]HwuYM, Chen CP, Li SH, et al. Expression of vascular endothelial growth factor messenger ribonucleic acid and protein in human preimplantation embryos. Fertil Steril, 2006, 85(6): 1830 —1832.
    [142]Nevo O, Soleymanlou N, Wu Y, et al. Increased expression of sFlt— 1 in vivo and in vitro models of human placental hypoxia is mediated by HIF— 1. Am J Physiol Regul Integr Comp Physiol,2006, 291(4): 1085—1093.
    [143]ShimpoM , Ikeda U , MaedaY, etal. AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hind limb ischemia model. Cardiovasc Res , 2002 , 53: 993—1001.
    [144] Vale PR, lsner JM, Rosenfield K. Therapeutic angiogenesis in critical limb and myocardial ischemia. J Interv Cardiol, 2001, 14: 511—528.
    [145] Kusumanto YH, Weel W, Mulder NH, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia:a double-blind randomized trial. Hum Gene Ther, 2006,17:683-91.
    [146] Rutanen J, RissanenTT, Markkanen JE, etal. Adenoviral cathetermediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine eart. Circulation, 2004, 109: 1029-1035.
    [147] Kusumanto YH, Hospers GA, Mulder NH , et al. Therapeutic angiogenesis with vascular endothelial growth factor in peripheral and coronary arterv disease: a review. Lnt J Cardiovasc lntervent,2003, 5: 27—34.
    [148] O' Toole G, MacKenzie D, Lindeman R, et al. Vascular endothelial growth factor gene therapy in ischaemic rat skin flaps. Br J Plast Surg,2002,55: 55—58.
    [149] Lubiatowski P, Goldman CK, Gurunluoglu R, etal. Enhancement of epigastric skin flap survival by adenovirus-mediated VEGF gene therapy.Plast Reconstr Surg,2002,109:1986— 1993.
    [150] Losordo DW,Dimmeler S.Therapeutic angiogenesis and vasculogenesis For ischemic disease: Part I.Angiogenic cytokines. Circulation,2004,109:2487.
    [151] GaleanoM, DeodatoB, AhavillaD, etal. Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor transfer on wound healing after burn injury. Crit Care Med, 2003, 31: 1017—1025.
    [152] Deodato B, Arsic N. Zentilin L, et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther, 2002, 9: 777—785.
    [153] Galeano M , Deodato B, Altarilla D, et al. Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetologia, 2003, 46: 546 —555.
    [154] Saaristo, A, Tammela, T, Timonen, J, et al. Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J, 2004,18,1707 - 1709.
    [155] Shi W, Siemann DW. Inhibition of renal cell carcinoma angiogenesis and growth by antisense oligonucleotides targeting vascular endothelial growth factor.Br J Cancer,2002,7(1): 119— 126.
    [156] Buchler P, Reber HA, Buchler MW , et al. VEGF—RII Influences the prognosis of pancreatic cancer. Ann Surg, 2002, 236(6): 738—749.
    [157]Supp DM , Supp AP, Bell SM , et al. Enhanced vascularization of cultured skin substitutes genetically modifed to overexpress vascular endothelial growth factor. J Invest Derm atol, 2000,114: 5—13.
    [158] Paolo DC, Dawn D, Lynn F, et al. Angiogenic gene-modified muscle cells for enhancement of tissue formation. Tissue Engineering, 2005,11:1034-1044.
    [159] Howard LP, Michael AK, Michael L,et al. Therapeutic arteriogenesis by ultrasound-mediated VEGF_(165) plasmid gene delivery to chronically ischemic skeletal muscle.Circ Res,2007,101:295-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700