BCRP在食管鳞癌中的表达及作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管鳞状细胞癌(Esophageal squamous cell carcinoma,ESCC)是我国常见的恶性肿瘤,严重威胁人民群众的健康。经过多年研究,虽然其诊断与治疗状况有了很大的发展,但其发病率仍居高不下,5年生存率仍在15%-24%左右,并未得到根本性的改善。导致食管癌治疗失败的主要原因是肿瘤的复发,而造成其复发主要原因就是体内仍残存有癌细胞。
     两种主要因素导致体内癌细胞残留,即癌细胞的转移和肿瘤细胞对化疗药物的耐药性,前者受癌细胞的自身生物学特性影响,后者则受癌细胞耐药基因的调控。乳腺癌耐药蛋白(BCRP)作为一种肿瘤多药耐药(MDR)蛋白,同时也被认为是肿瘤干细胞的标志,因此其不仅仅影响到肿瘤的耐药性,而且还对肿瘤的很多其他生物学特征有影响,包括侵袭性、增殖能力、致瘤性等。通过研究BCRP对肿瘤的生物学特性的影响以及对转移、复发、化疗药物耐药性的关系,对指导临床上对肿瘤的早期诊断与治疗、判断患者的预后均有重大的意义,这些已在一些肿瘤中有了初步的研究,但目前尚无BCRP在食管癌生物学特性中的作用以及和食管癌转移、复发、耐药性的关系。因此,有必要对食管癌中BCRP的表达以及其作用做一个研究。
     鉴于以上原因,本实验首先研究BCRP在食管鳞状细胞癌组织中的表达及与患者病理分型、转移、复发、预后等的关系,然后通过建立表达BCRP的食管鳞状细胞癌细胞系来研究BCRP在食管癌耐药性中的作用及对其生物学特性的影响,并探讨其可能的机理,为食管癌的早期珍断和治疗提供新的思路和理论依据。
     第一部分BCRP在食管鳞癌中的表达及其临床病理意义
     目的:研究BCRP在人食管癌组织中的表达及与临床病理的相关性,以初步探讨BCRP在人食管癌中表达的生物学意义。
     方法:50例新鲜食管癌及对应癌旁正常食管组织标本,采用免疫组化法和Western-blot检测BCRP蛋白的表达,30例2年前手术的食管癌石蜡标本,采用免疫组化法检测BCRP蛋白的表达,结合临床资料对实验结果统计分析,探寻BCRP基因在人食管癌中表达的临床意义。
     结果:1、Western-blot结果显示食管癌组织中BCRP的蛋白表达水平高于癌旁组织,经图像分析系统分析表明,癌与癌旁组织BCRP和β-actin产物条带积分光密度值之比分别为0.37±0.19和0.30±0.15,BCRP蛋白在食管癌组织中的表达水平为正常组织的1.22倍,统计分析显示差异有显著统计学意义(P<0.01)。2、免疫组化结果显示在食管癌组织中有50%为BCRP阳性,癌旁组织为33.75%,两者有显著统计学意义(P<0.01);3、BCRP表达程度与患者中期生存率及早期复发相关(P<0.05),与其他临床因素无关。(4)、术前化疗可引起癌组织BCRP的上调
     结论:BCRP上调表达于食管鳞癌组织,其表达与患者中期生存率、患者的早期复发有关,可以作为判断肿瘤预后的标记;化疗药物可引起BCRP的上调表达。
     第二部分表达BCRP的食管鳞癌可传代细胞系的建立
     目的:通过建立表达BCRP的食管癌可传代细胞系,为下一步研究BCRP在食管癌中的作用奠定基础。
     方法:通过化疗药物cDDP和羟喜树碱作用于食管癌可传代细胞株,筛选出食管癌耐药细胞株。流式细胞仪检测细胞株中BCRP阳性细胞的比例,Western-blot和细胞免疫荧光检测该细胞株中的BCRP的蛋白表达情况。检测细胞中已知对顺铂耐药起关键性作用的谷胱甘肽—S转移酶(GST)、肺耐药蛋白(LRP)的表达,检测P-gp和MRP1在细胞株中的表达,将其与BCRP表达的升高进行相关性分析,以对化疗药物引起食管鳞癌中BCRP升高的机制做初步的探讨。
     结果:建立了对顺铂耐药的细胞株SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0,流式细胞仪检测SHEC-4、SHEC-4-D-0.3、SHEC-4-D-0.75、和SHEC-4-D-1.0中BCRP阳性细胞的比率依次上升,SHEC-4与其他三种细胞的BCRP阳性细胞比率有统计学差异(p<0.01),其他三种细胞系之间的差异无统计学意义(p>0.05),Western-blot结果显示SHEC-4-D-0.3、SHEC-4-D-0.75和SHEC-4-D-1.0中BCRP的蛋白表达水平高于SHEC-4,细胞免疫荧光显示SHEC-4无荧光细胞,而SHEC-4-D-0.3、SHEC-4-D-0.75和SHEC-4-D-1.0中均可见大量的荧光细胞。LRP在SHEC-4与SHEC-4-D-1.0中的表达与其他细胞系有统计学差异(p<0.05),GST在四种细胞系中的表达依次升高,有统计学意义(p<0.01)。
     结论:通过化疗药物筛选建立了高表达BCRP的食管癌可传代细胞株。顺铂引起BCRP升高的机制可能和顺铂筛选的耐药细胞同时高表达BCRP及其他耐药蛋白有关
     第三部分BCRP对食管鳞癌耐药性的作用
     目的:研究食管癌可传代细胞系的耐药性与BCRP的关系,探讨BCRP在食管癌耐药中的作用。
     方法:1、BCRP的表达对食管癌耐药性的作用:SHEC-4、SHEC-4-D-0.3、SHEC-4-D-0.75和SHEC-4-D-1.0分别用不同浓度的cDDP、5-FU、卡铂、羟喜树碱、柔红霉素进行处理48小时,绘制细胞抑制率曲线,计算细胞耐药指数(RF),评价其对化疗药物耐受性的差异。2、抑制BCRP和GST活性后食管癌耐药细胞系的耐药性的变化:将BCRP的特异性抑制剂双嘧达莫和GST的特异性抑制剂利尿酸与细胞系共培养,分别用不同浓度的cDDP、5-FU、卡铂、羟喜树碱、柔红霉素进行处理,绘制细胞抑制率曲线,计算细胞耐药指数(RF)及抑制剂的逆转指数(RI)。并与未加抑制剂的细胞系进行比较。
     结果:SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0对cDDP、卡铂、柔红霉素、羟喜树碱的耐药指数均升高,而对5-FU的耐药指数降低。在加入双嘧达莫后,SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0对柔红霉素、羟喜树碱的RI降低,而对其他药物的RF无明显影响;加入利尿酸后,SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0对cDDP、卡铂的RF下降,对其他药物的RF无明显影响。
     结论:BCRP的高表达是引起食管癌耐药的一个重要原因。
     第四部分BCRP对食管鳞癌细胞系生物学特性的影响
     目的:研究BCRP对食管鳞癌细胞系生物学特性具有何种作用
     方法:检测食管癌可传代细胞系SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0与SHEC-4的生物学性状的异同。包括:
     一、BCRP对食管癌可传代细胞系体外生物学性状的作用:
     1、细胞形态观察;
     2、免疫组织化学染色检测细胞爬片的CK及Ki67表达
     3、细胞生长方面的检测:生长曲线、平板克隆形成率、细胞贴壁率、细胞周期;
     4、细胞运动实验;
     5、Transwell小室细胞侵袭性实验;
     二、BCRP对食管癌可传代细胞系体内生物学性状的作用;
     1、裸鼠接种成瘤实验:将不同浓度的ECCs接种于Balb/C裸鼠背部皮下,观察裸鼠皮下出现移植瘤的时间及所需细胞量;
     2、成瘤组织的常规病理及成瘤细胞的再培养
     3、流式细胞仪及western-blot检测成瘤组织中BCRP的表达;
     结果:一、BCRP对食管癌可传代细胞系体外生物学性状的作用:
     SHEC-4较另三种细胞体积略大,四种细胞形态差别不大;四种ECCs均呈CK及Ki67阳性,生长曲线均呈“S”型,群体倍增时间分别为28.79h、34.98h、35.69h、35.8h,后三组ECCs的群体倍增时间与SHEC-4相比明显延长,有显著的统计学意义(p<0.01)。后三组细胞系在平板形成细胞数大于50个的克隆形成率较SHEC-4明显上升,但无统计学意义(p>0.05);ECCs冻存复苏后细胞的接种率分别为70%~81%;细胞周期显示SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0的S期比例增加,SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0的细胞迁徙能力和细胞侵袭能力均较SHEC-4明显上升。
     二、BCRP对食管鳞癌可传代细胞株体内致瘤性的影响
     接种1×10~5个瘤细胞的SHEC-4、SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0在4周后各分别有75%、75%、100%、75%成瘤,接种1×10~4个瘤细胞SHEC-4未见成瘤,而SHEC-4-D-0.3、SHEC-4-D-0.75、SHEC-4-D-1.0的成瘤率均为25%,接种1×10~3个瘤细胞的成瘤率分别为0%、25%、50%和25%,接种1×10~2个瘤细胞组均未成瘤。成瘤的体积无明显差别。体内的肿瘤细胞的形态和BCRP含量与亲代无明显差别。
     结论:BCRP在食管鳞状细胞癌中的表达明显提高了肿瘤细胞的增殖能力、致瘤性、侵袭性,可能与食管癌的转移、复发相关。
     全文总结
     1、BCRP上调表达于食管鳞癌组织,其表达与患者中期生存率、患者的早期复发有关,化疗后患者BCRP表达升高,说明某些食管鳞癌天生具有耐药性,化疗药物可以调高BCRP在癌组织中的表达,BCRP可以作为预测患者的预后的一个指标。
     2、利用顺铂对ECCs进行筛选可建立高表达BCRP的食管鳞癌可传代细胞株,BCRP的表达升高的可能机制是BCRP与其他耐药蛋白如LRP共表达于同一细胞亚群并被优势克隆,因此,在临床上使用化疗药物会可能导致BCRP的高表达。
     3、BCRP的上调使食管癌对某些化疗药物(喜树碱类、柔红霉素等)具有耐药性,这些耐药性可为BCRP的抑制剂所逆转,为临床上解决食管癌对化疗药物的耐药提供了思路。
     4、BCRP的高表达在体内和体外均与食管鳞状细胞癌ECCs的增殖能力、侵袭性、致瘤性有关,可能与食管癌的转移、复发相关。
Esophageal squamous cell carcinoma(ESCC) is a common cancer in China with high incidence,which threaten the health of people seriously.Although great progress in the diagnosis and therapy of EC have been made in the last decades,the cure rate of EC has not been improved yet and 5 year survival rate still remained around 20%-30%. Recurrences occur frepuently in EC patients,which are the leading cause of death,and the main cause of recurrences is the remnant of cancer cell.
     Metastasis and drug resistance is the main cause of remnant of cancer cell.Metastasis was adjusted by bionomics of cancer,and drug resistance was adjusted by drug resistance gene.As a multi-drug resistance(MDR) protein,breast cancer resistance protein(BCRP) is a marker of tumor stem cell.So BCRP not only effect the drug resistance of cancer,but also effect the bionomics of cancer,including invasion activity,proliferation activity and oncogenicity.To study the effect of BCRP in cancer biological characteristics, metastasis,recurrences and drug resistance is owned important significance on caner early diagnosis,therapy and Prognostic in clinically,which indicated in some cancer.To our knowledge,there is no report about the effect of BCRP in ESCC's biological characteristics,neither report about the relationship between BCRP and ESCC's metastasis,recurrences and drug resistance now.So it is necessary to study the expression and effect of BCRP in ESCC.
     According to the mentioned above,we performed the following experiments.Fistly, we investigated the expression of BCRP in esophageal cancer samples and explored its correlation with clinical and pathological characters.Then we established ESCC cell line. Based on above work,we investigated the effect of BCRP in ESCC's drug resistance and the relationship between BCRP and ESCC's biological characteristics.We also explored the possible mechanism of this effect.Purpose a new theoretical basis of early diagnosis and therapy for esophageal cancer.
     Part1:Expression of BCRP in ESCC and its possible implications
     Objective:To determined the expression of BCRP in ESCC,and to investigate the association of BCRP with ESCC.
     Methods:Western-blot and immunohistochemical technique were used to detect the expression level of protein of BCRP in 50 pairs of fresh esophageal cancer tissues and according para-cancer normal tissues.Paraffin-embedded sections were obtained from 30 patients with ESCC for immunohistochemical studies to detect the expression level of protein of BCRP.Implications between the expression of CBP and clinical and pathological characters was Analyzed.
     Results:1.The expression levels of BCRP by Western-blot in cancer tissues were 1.22-fold(P<0.05) higher than those in para-cancer normal tissues respectively.The decreased expression of CBP gene in lung cancer tissues was significantly associated with TNM stage(P<0.05)and lymph node metastasis(P<0.05);2.The positive rate of BCRP in cancer and normal tissue was 50%and33.75%respectively and the difference was very significant(P<0.01) by immunohistochemical;3.The increased expression of BCRP gene in esophageal cancer tissues was significantly associated with histology differentiated stage (P<0.05),survival time and recurrences(P<0.05).
     Conclusions:Increased expression of BCRP in esophageal cancer is tumor specific, contributed to survival time and recurrences in ESCC,may be considered as a supplementary predictor prognostic.
     Part 2:Establishment of ESCC continuous cell line which expressed BCRP
     Objective:To establish ESCC continuous cell line which expressed BCRP,in order to study its effects of BCRP on the biological behavior of esophageal cancer.
     Methods:To establish a multi drug-resistant cell line,ESCC continuous cell line cells were cultured with intermittent gradual-increasing-concentration of cisplatin(cDDP) and hydroxycamptotbecine(HCT).Detect proportion of BCRP positive cells of ESCC by FCM,and detect BCRP protein by Western-blot and cell immunofluorescence.Detection known to cisplatin resistance from the key role of glutathione-S-transferase(GST), pulmonary resistance protein(LRP),P-gp and MRP1 expression to identify whether resistant to cDDP was originated by BCRP.
     Results:Established SHEC-4-D-0.3,SHEC-4-D-0.75 and SHEC-4-D-1.0 which resistant to cDDP.The proportion of BCRP positive cells increased one by one(SHEC-4 vs SHEC-4-D-0.3(0.75,1.0),p<0.01),but not statistically significant between SHEC-4-D-0.3,SHEC-4-D-0.75and SHEC-4-D-1.0.Western-blot showed that protein expression level of SHEC-4-D-0.3 and SHEC-4-D-0.75,SHEC-4-D-1.0 increased to SHEC-4.Immunofluorescence showed SHEC-4 has no fluorescence cell,however,a great deal of fluorescence cells was found in SHEC-4-D-0.3/0.75/1.0.Expression of LRP in SHEC-4 and the three resistance cells with a significant difference(p<0.05),and GST in the four cell lines were increased in statistical significance(p<0.01).
     Conclusions:Established ESCC continuous cell line which expressed BCRP by chemotherapy drugs.The up regulation mechanism of BCRP by Cisplatin may be cisplatin resistant cells at the same time high expression of BCRP and other resistance protein
     Part 3:Effect of BCRP to drug resistant of ESCC
     Objective:To study the relationship between ESCC continuous cells' drug resistant with BCRP,to explore the effect of BCRP to drug resistant of ESCC.
     Methods:1.Effect of expression of BCRP in ESCCs' drug resistant:SHEC-4, SHEC-4-D-0.3,SHEC-4-D-0.75 and SHEC-4-D-1.0 was cultured with different concentration of cDDP,5-Fu,Carboplatin,HCT and Daunorubicin(DNR) for 48 hours,then draw curve of cell inhibition ratio and calculate cell resistant index(RF) in order to evaluate their resistance to chemotherapy drugs.3.Drug resistant of ESCCs changed by use inhibitor of BCRP and GST:ESCCs were cultured with dipyridamole (specific inhibitor of BCRP) and Ethacrynic acid(specific inhibitor of GST),then cultured with different concentration of cDDP,5-Fu,Carboplatin,HCT and Daunorubicin(DNR) for 24 hours,draw curve of cell inhibition ratio and calculate cell resistant index(RF) and reverse index(RI) in order to evaluate their resistance to chemotherapy drugs,compared with ESCCs which not cultured with inhibitor.
     Result:SHEC-4-0.3 cDDP,SHEC-4-D-0.75,SHEC-4-1.0 pairs cDDP,carboplatin,DNR, HCT resistance index increased,while the 5-FU resistance index lower.After joining the dipyridamole,the RI of SHEC-4- cDDP-0.3,SHEC-4-D-0.75,SHEC-4-D-1.0 to daunorubicin and I hydroxycamptothecin lower,and on other drugs RF no significant impact.In SHEC-4—0.3 cDDP,SHEC-4-D-0.75,SHEC-4—1.0,RF dropped by join Ethacrynic acid,but no significant effect on the other drugs.
     Conclusion:The expression of BCRP in esophageal cancer is an important reason for drug resistance.
     PartⅣ:The Effect of BCRP on biological characteristics of esophageal squamous cell carcinoma
     Objective:To study the effect of BCRP in biological characteristics of esophageal squamous cell carcinoma cell line.
     Methods:Detect the similarities and differences of esophageal cancer cell lines SHEC-4—0.3 cDDP,SHEC-4-D-0.75,SHEC-4—1.0 cDDP SHEC-4's biological characteristics.Include:
     A:The effect of BCRP in biological characteristics of esophageal squamous cell carcinoma cell line in vitro:
     1.Cell morphology;
     2.Immunohistochemical staining of CK and Ki67 expression
     3.Detection of cell growth:Growth curve,flat colony formation rate,the rate of adherent cells,the cell cycle;
     4.Experimental of cell migration
     5.Transwell cave invasive experimental
     B:The effect of BCRP in biological characteristics of esophageal squamous cell carcinoma cell line in vivo:
     1.Tumorigenicity in nude mice inoculated experiment:Different concentrations of ECCs will be inoculated in Balb/C mice back subcutaneous,observed in nude mice transplanted tumor cells and the necessary amount of time to observe the size of a tumor;
     2.The routine pathological of tumor tissue and cultured tumor cells again.
     3.FCM to tumor tissue in the expression of BCRP
     Result:A.The effect of BCRP in biological characteristics of esophageal squamous cell carcinoma cell line in vitro:
     SHEC-4 cell volume than the other three slightly,four cell morphology little difference;CK and Ki67 showed positive in four ECCs.Growth curve showed the "S" curve,population doubling time was 28.79 h,34.98h,35.69h,35.8h,the three ECCs' population doubling time compared with SHEC-4 was significantly prolonged,and have statistical significance(p<0.01).The number of colony formation rate of the three groups of cells increased than SHEC-4,but has no significance(p>0.05);ECCs frozen cells after vaccination recovery rate of 70%to 81%.Cell cycle show SHEC-4—0.3 cDDP, SHEC-4-D-0.75,SHEC-4—1.0 cDDP proportional to the S phase,SHEC-4—0.3 cDDP, SHEC-4-D-0.75.SHEC-4—1.0 cDDP cell migration and cell invasion capacity increased significantly than SHEC-4.
     B The effect of BCRP in biological characteristics of esophageal squamous cell carcinoma cell line in vivo:
     Four weeks after Vaccination of 1×10~5 cells SHEC-4,SHEC-4-D-0.3, SHEC-4-D-0.75,SHEC-4-D-1.0 the tumor occurred 25%,62.5%,50%,75%respective. For 1×10~4 cells:SHEC-4 no tumor,and SHEC-4—0.3 cDDP,SHEC-4-D-0.75,cDDP SHEC-4-DDP-1.0 rate of 12.5%,1×10~3 inoculated tumor cells into the rate was 0%,0%, 25%and 12.5%,1×10~2 inoculation of tumor cells did not found,no significant difference between volume,no significant difference of the shape of the tumor cells and BCRP% between pro-generation content and filial generation(p>0.05).
     Conclusion:Expression of BCRP in esophageal squamous cell carcinoma was significantly increased tumor cell proliferation,tumor,invasive,and may related with esophageal cancer metastasis and recurrence.
     Full summary:
     1.BCRP up-regulated expression in esophageal squamous cell carcinoma,correlated with differentiation,survival of patients with life,the recurrence rate.BCRP can be used for predicting the prognosis of patients.
     2.The use of cisplatin on ECCs screening can establish high expression in BCRP of esophageal squamous cell carcinoma.The possible mechanisms of the BCRP increased is the co-expression of LRP/BCRP expression in the same cell subsets and advantages cloning,therefore,clinical use of cisplatin also may lead high expression of BCRP.
     3.Up regulation of BCRP to esophageal cancer can lead resistant to some chemotherapeutic drugs(camptothecin,daunorubicin,etc.),these resistance can be reversed by the BCRP inhibitors.Clinical solution of esophageal cancer chemotherapy could use BCRP inhibitors too.
     4.Expression of BCRP in vivo and in vitro can be markedly increase esophageal squamous cell carcinoma's proliferation,invasiveness,tumorigenicity,and may be related to esophageal cancer metastasis and recurrence.
引文
1 Isono K, Sato H, Nakayama K. Results of a nationwide study on the three-field lymph node dissection of esophageal cancer. Oncology, 1991,48:411-20.
    
    2 Pisani P, Parkin DM, Bray F, et al. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer, 1999,83:18-29.
    
    3 Gariboldi MB, Ravizza R, Riganti L, et al. Molecular determinants of intrinsic resistance to doxorubicin in human cancer cell lines. Int J Oncol, 2003,22:1057-64.
    
    4 Bodo A, Bakos E, Szeri F, et al. The role of multidrug transporters in drug availability, metabolism and toxicity. Toxicol Lett, 2003,140-141:133-43.
    
    5 Lage H, Dietel M. Multiple mechanisms confer different drug-resistant phenotypes in pancreatic carcinoma cells. J Cancer Res Clin Oncol, 2002,128:349-57.
    
    6 Bush JA, Li G. Cancer chemoresistance: the relationship between p53 and multidrug transporters. Int J Cancer, 2002,98:323-30.
    
    7 Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 1998,95:15665-70.
    
    8 Gutmann H, Hruz P, Zimmermann C, et al. Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem Pharmacol, 2005,70:695-9.
    
    9 Diestra JE, Scheffer GL, Catala I, et al. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol, 2002, 198:213-9.
    
    10 Kawabata S, Oka M, Soda H, et al. Expression and functional analyses of breast cancer resistance protein in lung cancer. Clin Cancer Res, 2003,9:3052-7.
    
    11 Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002,99:507-12.
    
    12 Meissner K, Heydrich B, Jedlitschky G, et al. The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem, 2006,54:215-21.
    
    13 Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells, 2002,20:11-20.
    14 Zhou S, Morris JJ, Barnes Y, et al. Bcrpl gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A, 2002,99:12339-44.
    
    15 Hadnagy A, Gaboury L, Beaulieu R, et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res, 2006,312:3701-10.
    
    16 Smalley MJ, Clarke RB. The mammary gland "side population": a putative stem/progenitor cell marker?. J Mammary Gland Biol Neoplasia, 2005, 10:37-47.
    
    17 Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 2001,7:1028-34.
    
    18 Uchida N, Dykstra B, Lyons K, et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood, 2004,103:4487-95.
    
    19 Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A, 2002,99:15649-54.
    
    20 Krishnamurthy P, Schuetz JD. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival. Biometals, 2005,18:349-58.
    
    21 Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem, 2004,279:24218-25.
    
    22 Sugimoto Y, Tsukahara S, Ishikawa E, et al. Breast cancer resistance protein: molecular target for anticancer drug resistance and pharmacokinetics/pharmacodynamics. Cancer Sci, 2005,96:457-65.
    
    23 Burger H, Nooter K. Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib. Cell Cycle, 2004,3:1502-5.
    
    24 Li Y, Fawcett JP, Zhang H, et al. Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers. J Pharm Pharmacol, 2007,59:503-11.
    
    25 Jain HD, Zhang C, Zhou S, et al. Synthesis and structure-activity relationship studies on tryprostatin A, a potent inhibitor of breast cancer resistance protein. Bioorg Med Chem, 2008.
    
    26 Liu XL, Tee HW, Go ML. Functionalized chalcones as selective inhibitors of P-glycoprotein and breast cancer resistance protein. Bioorg Med Chem, 2008,16:171-80.
    
    27 Su Y, Hu P, Lee SH, et al. Using novobiocin as a specific inhibitor of breast cancer resistant protein to assess the role of transporter in the absorption and disposition of topotecan. J Pharm Pharm Sci, 2007,10:519-36.
    
    28 Tsunoda S, Okumura T, Ito T, et al. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology, 2006,71:251-8.
    
    29 Candeil L, Gourdier I, Peyron D, et al. ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer, 2004,109:848-54.
    
    30 Xie Y, Xu K, Linn DE, et al. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem, 2008,283:3349-56.
    
    31 Takenaka K, Morgan JA, Scheffer GL, et al. Substrate overlap between Mrp4 and Abcg2/Bcrp affects purine analogue drug cytotoxicity and tissue distribution. Cancer Res, 2007,67:6965-72.
    
    32 Kuo MT. Roles of multidrug resistance genes in breast cancer chemoresistance. Adv Exp Med Biol, 2007,608:23-30.
    
    33 Bessho Y, Oguri T, Achiwa H, et al. Role of ABCG2 as a biomarker for predicting resistance to CPT-11/SN-38 in lung cancer. Cancer Sci, 2006,97:192-8.
    
    34 Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 2003,22:7340-58.
    
    35 PetracciaL, Onori P, Sferra R, et al. [MDR (multidrug resistance) in hepatocarcinoma clinical-therapeutic implications]. Clin Ter, 2003,154:325-35.
    
    36 Wang J, Wang X, Jiang S, et al. Partial Biological Characterization of Cancer Stem-like Cell Line (WJ(2)) of Human Glioblastoma Multiforme. Cell Mol Neurobiol, 2008.
    1 Isono K, Sato H, Nakayama K. Results of a nationwide study on the three-field lymph node dissection of esophageal cancer. Oncology, 1991;48(5):411-20.
    
    2 Pisani P, Parkin DM, Bray F, et al. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer, 1999;83 (1):18-29.
    
    3 Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 1998;95(26):15665-70.
    
    4 Allikmets R, Schriml LM, Hutchinson A, et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res, 1998;58(23):5337-9.
    
    5 Ross DD, Karp JE, Chen TT, et al. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood, 2000;96(1):365-8.
    
    6 Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res, 1999;59(1):8~13.
    
    7 Scheffer GL, Maliepaard M, Pi jnenborg AC, et al. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res, 2000;60(10):2589-93.
    
    8 Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res, 2001;61 (8):3458-64.
    
    9 Ross DD, Yang W, Abruzzo LV, et al. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst, 1999;91 (5):429-33.
    
    10 Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002;99(2):507-12.
    
    11 Zhou S, Morris JJ, Barnes Y, et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A, 2002;99(19):12339-44.
    12 Hadnagy A, Gaboury L, Beaulieu R, et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res, 2006:312(19):3701-10.
    
    13 Smalley MJ, Clarke RB. The mammary gland "side population": a putative stem/progenitor cell marker?. J Mammary Gland Biol Neoplasia, 2005;10(1):37-47.
    
    14 Meissner K, Heydrich B, Jedlitschky G, et al. The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem, 2006;54(2):215-21.
    
    15 Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells, 2002;20(1):11-20.
    
    16 Krishnamurthy P, Schuetz JD. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival. Biometals, 2005:18(4):349-58.
    
    17 Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem, 2004:279(23):24218-25.
    
    18 Damiani D, Tiribelli M, Calistri E, et al. The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica, 2006;91(6):825-8.
    
    19 Swerts K, De Moerloose B, Dhooge C, et al. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer. 2006:42(3):295-309.
    
    20 Jiang XJ, Wang JS, Fang Q. [Gene expression of breast cancer resistance protein in adult acute lymphocytic leukemia and its clinical significance.]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2008:16(1):31-4.
    
    21 Benderra Z, Faussat AM, Sayada L, et al. MRP3, BCRP, and P-glycoprotein activities are prognostic factors in adult acute myeloid leukemia. Clin Cancer Res, 2005;11(21):7764-72.
    1 Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 1998;95(26):15665-70.
    
    2 Miyake K, Mickley L, Litraan T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res, 1999;59(1):8-13.
    
    3 Maliepaard M, van Gastelen MA, Tohgo A, et al. Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin Cancer Res, 2001;7(4):935-41.
    
    4 Yang CH, Schneider E, Kuo ML, et al. BCRP/MXR/ABCP expression in topotecan-resistant human breast carcinoma cells. Biochem Pharmacol, 2000;60(6):831—7.
    
    5 Kowalski P, Wichert A, Holm PS, et al. Selection and characterization of a high-activity ribozyme directed against the antineoplastic drug resistance-associated ABC transporter BCRP/MXR/ABCG2. Cancer Gene Ther, 2001;8(3):185-92.
    
    6 Bailey-Dell KJ, Hassel B, Doyle LA, et al. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta, 2001;1520(3):234-41.
    
    7 Diah SK, Smitherman PK, Aldridge J, et al. Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins. Cancer Res, 2001;61 (14):5461-7.
    
    8 Allen JD, Brinkhuis RF, Wijnholds J, et al. The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res, 1999:59(17):4237—41.
    9 Robey RW, Medina-Perez WY, Nishiyama K, et al. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res, 2001;7(1):145-52.
    
    10 Volk EL, Rohde K, Rhee M, et al. Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Res, 2000:60(13):3514-21.
    
    11 Maliepaard M, van Gastelen MA, de Jong LA, et al. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res, 1999:59(18):4559-63.
    
    12 Takahata T, Ookawa K, Suto K, et al. Chemosensitivity determinants of irinotecan hydrochloride in hepatocellular carcinoma cell lines. Basic Clin Pharmacol Toxicol, 2008;102(4):399-407.
    
    13 Kawabata S, Oka M, Shiozawa K, et al. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun, 2001:280(5):1216-23.
    
    14 Perego P, De Cesare M, De Isabella P, et al. A novel 7-modified camptothecin analog overcomes breast cancer resistance protein-associated resistance in a mitoxantrone-selected colon carcinoma cell line. Cancer Res, 2001:61(16):6034-7.
    
    15 Seithel A, Karlsson J, Hilgendorf C, et al. Variability in mRNA expression of ABC-and SLC-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur J Pharm Sci, 2006;28(4):291~9.
    
    16 Bessho Y, Oguri T, Achiwa H, et al. Role of ABCG2 as a biomarker for predicting resistance to CPT-11/SN-38 in lung cancer. Cancer Sci, 2006:97(3):192-8.
    
    17 Sugimoto Y, Tsukahara S, Ishikawa E, et al. Breast cancer resistance protein: molecular target for anticancer drug resistance and pharmacokinetics/pharmacodynamics. Cancer Sci, 2005:96(8):457~65.
    
    18 Tsunoda S, Okumura T, Ito T, et al. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology, 2006:71(3-4):251-8.
    
    19 Ishii M, Iwahana M, Mitsui I, et al. Growth inhibitory effect of a new camptothecin analog, DX-8951f, on various drug-resistant sublines including BCRP-mediated camptothecin derivative-resistant variants derived from the human lung cancer cell line PC-6. Anticancer Drugs, 2000;11(5):353-62.
    
    20 Itagaki S, Sumi Y, Shimamoto S, et al. Secretory transport of irinotecan metabolite SN-38 across isolated intestinal tissue. Cancer Chemother Pharmacol, 2005:55(5):502-6.
    
    21 Zou Y, Van Houten B, Farrell N. Sequence specificity of DNA-DNA interstrand cross-link formation by cisplatin and dinuclear platinum complexes. Biochemistry, 1994:33(18):5404-10.
    
    22 Fokkema E, Groen HJ, Helder MN, et al. JM216-, JM118-, and cisplatin-induced cytotoxicity in relation to platinum-DNA adduct formation, glutathione levels and p53 status in human tumour cell lines with different sensitivities to cisplatin. Biochem Pharmacol, 2002:63(11):1989-96.
    
    23 Akiyama S, Chen ZS, Sumizawa T, et al. Resistance to cisplatin. Anticancer Drug Des, 1999:14(2):143-51.
    
    24 Liu J, Li C, Qu W, et al. Nitric oxide prodrugs and metallochemotherapeutics: JS-K and CB-3-100 enhance arsenic and cisplatin cytolethality by increasing cellular accumulation. Mol Cancer Ther, 2004:3(6):709-14.
    
    25 Samimi G, Varki NM, Wilczynski S, et al. Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin Cancer Res, 2003;9(16 Pt 1):5853-9.
    
    26 Mercer JF, Llanos RM. Molecular and cellular aspects of copper transport in developing mammals. J Nutr, 2003:133(5 Suppl 1):1481S-4S.
    
    27 Cheng TC, Manorek G, Samimi G, et al. Identification of genes whose expression is associated with cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol, 2006;58(3):384-95.
    
    28 Chen ZS, Mutoh M, Sumizawa T, et al. An active efflux system for heavy metals in cisplatin-resistant human KB carcinoma cells. Exp Cell Res, 1998;240(2):312-20.
    
    29 Pectasides D, Pectasides M, Farmakis D, et al. Oxaliplatin and irinotecan plus granulocyte-colony stimulating factor as third-line treatment in relapsed or cisplatin-refractory germ-cell tumor patients: a phase II study. Eur Urol, 2004;46(2):216-21.
    
    30 Gigante M, Toffoli G, Bertola A, et al. Radiosensitivity in multidrug-resistant and cisplatin-resistant human carcinoma cell lines. Am J Clin Oncol, 2003;26(4) :e73~9.
    
    31 Izquierdo MA, van der Zee AG, Vermorken JB, et al. Drug resistance-associated marker Lrp for prediction of response to chemotherapy and prognoses in advanced ovarian carcinoma. J Natl Cancer Inst, 1995;87(16):1230-7.
    
    32 Kolfschoten GM, Hulscher TM, Pinedo HM, et al. Drug resistance features and S-phase fraction as possible determinants for drug response in a panel of human ovarian cancer xenografts. Br J Cancer, 2000;83 (7):921-7.
    
    33 Versantvoort CH, Broxterman HJ, Bagrij T, et al. Regulation by glutathione of drug transport in multidrug-resistant human lung tumour cell lines overexpressing multidrug resistance-associated protein. Br J Cancer, 1995;72(1):82-9.
    
    34 Zhang T, Guan M, Jin HY, et al. Reversal of multidrug resistance by small interfering double-stranded RNAs in ovarian cancer cells. Gynecol Oncol, 2005;97(2):501-7.
    
    35 Doroshow JH, Metz MZ, Matsumoto L, et al. Transduction of NIH 3T3 cells with a retrovirus carrying both human MDR1 and glutathione S-transferase pi produces broad-range multidrug resistance. Cancer Res, 1995;55(18):4073~8.
    
    36 Schadendorf D, Makki A, Stahr C, et al. Membrane transport proteins associated with drug resistance expressed in human melanoma. Am J Pathol, 1995;147(6):1545-52.
    
    37 Sugawara I, Akiyama S, Scheper RJ, et al. Lung resistance protein (LRP) expression in human normal tissues in comparison with that of MDR1 and MRP. Cancer Lett, 1997:112(1):23-31.
    38 Izquierdo MA, Scheffer GL, Flens MJ, et al. Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors. Am J Pathol, 1996;148(3):877-87.
    
    39 Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res, 1993;53(7):1475-9.
    
    40 Broxterman HJ, Sonneveld P, Pieters R, et al. Do P-glycoprotein and major vault protein (MVP/LRP) expression correlate with in vitro daunorubicin resistance in acute myeloid leukemia?. Leukemia, 1999;13(2):258-65.
    
    41 Takenaka K, Morgan JA, Scheffer GL, et al. Substrate overlap between Mrp4 and Abcg2/Bcrp affects purine analogue drug cytotoxicity and tissue distribution. Cancer Res, 2007;67(14):6965-72.
    
    42 Ikeda K, Oka M, Yamada Y, et al. Adult T-cell leukemia cells over-express the multidrug-resistance-protein (MRP) and lung-resistance-protein (LRP) genes. Int J Cancer, 1999;82(4):599-604.
    
    43 Ehrhardt C, Kneuer C, Laue M, et al. 16HBE14o-human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein, and caveolin-1. Pharm Res, 2003;20(4):545-51.
    
    44 Li L, Mo XY, Zhang W, et al. [Relationship between combined multigene detection and response to chemotherapy and prognosis in epithelial ovarian carcinomas]. Zhonghua Fu Chan Ke Za Zhi, 2007;42(9):600-4.
    1 Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 1998; 95 (26): 15665-70.
    
    2 LitmanT, Brangi M, Hudson E, et al. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci, 2000:113 ( Pt 11):2011-21.
    
    3 Rabindran SK, He H, Singh M, et al. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res, 1998:58(24):5850-8.
    
    4 OzvegyC, Varadi A, Sarkadi B. Characterization of drug transport, ATP hydrolysis,and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. J Biol Chem, 2002:277(50):47980-90.
    
    5 Robey RW, Medina-Perez WY, Nishiyama K, et al. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res, 2001;7(1):145-52.
    
    6 Honjo Y, HrycynaCA, Yan QW, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res, 2001:61(18):6635-9.
    
    7 Honjo Y, Morisaki K, Huff LM, et al. Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther, 2002;1(6):696-702.
    
    8 Backstrom G, Taipalensuu J, Melhus H, et al. Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Eur J Pharm Sci, 2003;18(5):359-64.
    
    9 Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer, 2004;109 (2):238-46.
    
    10 Imai Y, Tsukahara S, Asada S, et al. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res, 2004:64(12):4346-52.
    
    11 Komoto C, Nakamura T, Sakaeda T, et al. MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer. Drug Metab Pharmacokinet, 2006;21(2):126-32.
    
    12 Robey-Cafferty SS, Rutledge ML, Bruner JM. Expression of a multidrug resistance gene in esophageal adenocarcinoma. Correlation with response to chemotherapy and comparison with gastric adenocarcinoma. Am J Clin Pathol, 1990;93(1):1—7.
    
    13 Zhang LJ, Chen KN, Xu GW, et al. Congenital expression of mdr-1 gene in tissues of carcinoma and its relation with pathomorphology and prognosis. World J Gastroenterol, 1999;5(1):53-56.
    
    14 Oosthuizen MM, Nel MJ, Greyling D. Heat shock treated oesophageal cancer cells become thermosensitized against anticancer drugs. Anticancer Res, 2000:20(4):2697-703.
    
    15 Nooter K, Kok T, Bosnian FT, et al. Expression of the multidrug resistance protein (MRP) in squamous cell carcinoma of the oesophagus and response to pre~operative chemotherapy. Eur J Cancer, 1998;34 (1):81-6.
    
    16 Shimada Y, Imamura M, Watanabe G, et al. Prognostic factors of oesophageal squamous cell carcinoma from the perspective of molecular biology. Br J Cancer, 1999:80(8):1281-8.
    
    17 Hofler H, Langer R, Ott K, et al. Prediction of response to neoadjuvant chemotherapy in carcinomas of the upper gastrointestinal tract. Recent Results Cancer Res, 2007:176:33-6.
    
    18 Zhang Y, Gupta A, Wang H, et al. BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm Res, 2005;22(12):2023-34.
    19 Allen JD, van Loevezijn A, Lakhai JM, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther, 2002;1(6):417-25.
    
    20 van der Pol MA, Broxterman HJ, Pater JM, et al. Function of the ABC transporters, P-glycoprotein, multidrug resistance protein and breast cancer resistance protein, in minimal residual disease in acute myeloid leukemia. Haematologica, 2003;88 (2):134-47.
    
    21 Jonker JW, Smit JW, Brinkhuis RF, et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst, 2000:92(20):1651-6.
    
    22 Kis E, Nagy T, Jani M, et al. Leflunomide and A771726, its metabolite are high affinity substrates of BCRP - implications for drug resistance. Ann Rheum Dis, 2008.
    
    23 Jain HD, Zhang C, Zhou S, et al. Synthesis and structure-activity relationship studies on tryprostatin A, an inhibitor of breast cancer resistance protein. Bioorg Med Chem, 2008;16(8):4626-51.
    
    24 Su Y, Hu P, Lee SH, et al. Using novobiocin as a specific inhibitor of breast cancer resistant protein to assess the role of transporter in the absorption and disposition of topotecan. J Pharm Pharm Sci, 2007;10(4):519-36.
    
    25 Liu XL, Tee HW, Go ML. Functionalized chalcones as selective inhibitors of P-glycoprotein and breast cancer resistance protein. Bioorg Med Chem, 2008;16(1):171-80.
    
    26 TsunodaS, Okumura T, ItoT, et al. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology, 2006:71(3-4):251-8.
    
    27 Jain HD, Zhang C, Zhou S, et al. Synthesis and structure-activity relationship studies on tryprostatin A, a potent inhibitor of breast cancer resistance protein. Bioorg Med Chem, 2008.
    1 Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 2006;44(1):240-51.
    
    2 Mitsutake N, Iwao A, Nagai K, et al. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology, 2007;148 (4):1797-803.
    
    3 Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002;99(2):507-12.
    
    4 Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res, 2005;65(14):6207-19.
    
    5 Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 2001;7(9):1028-34.
    
    6 Zhou S, Morris JJ, Barnes Y, et al. Bcrpl gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A, 2002:99(19):12339-44.
    
    7 Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 2003:22(47):7340-58.
    
    8 Milenkovic S, Marinkovic T, Jovanovic MB, et al. Cyclin D1 Immunoreactivity in Meningiomas. Cell Mol Neurobiol, 2008.
    
    9 Coletta RD, Christensen KL, Micalizzi DS, et al. Six1 overexpression in mammary cells induces genomic instability and is sufficient for malignant transformation. Cancer Res, 2008;68(7):2204-13.
    
    10 Gunia S, Albrecht K, Koch S, et al. Ki67 staining index and neuroendocrine differentiation aggravate adverse prognostic parameters in prostate cancer and are characterized by negligible inter-observer variability. World J Urol, 2008.
    
    11 Smalley MJ, Clarke RB. The mammary gland "side population": a putative stem/progenitor cell marker?. J Mammary Gland Biol Neoplasia, 2005;10(1):37-47.
    
    12 Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A, 2002;99(24):15649-54.
    
    13 Eguchi Y, Srinivasan A, Tomaselli KJ, et al. ATP-dependent steps in apoptotic signal transduction. Cancer Res JT - Cancer research, 1999;59(9):2174~81.
    
    14 Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol JT - Annual review of physiology, 1998:60:619-42.
    
    15 Freedman VH, Shin SI. Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell JT - Cell, 1974;3(4):355-9.
    1 Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 1998;95(26):15665-70.
    
    2 Ross DD, Karp JE, Chen TT, et al. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood, 2000;96(1):365-8.
    
    3 Allikmets R, Schriml LM, Hutchinson A, et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res, 1998;58(23):5337-9.
    
    4 Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res, 2001;11(7):1156-66.
    
    5 Ozvegy C, Litman T, Szakacs G, et al. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun, 2001:285(1):111-7.
    
    6 Rocchi E, Khodjakov A, Volk EL, et al. The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun, 2000:271(1):42-6.
    
    7 Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res, 2001;61(8):3458-64.
    
    8 Scheffer GL, Maliepaard M, Pijnenborg AC, et al. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res, 2000:60(10):2589-93.
    
    9 Yokoo K, Hamada A, Watanabe H, et al. Involvement of up-regulation of hepatic breast cancer resistance protein in decreased plasma concentration of 7-ethyl-10-hydroxycamptothecin (SN-38) by coadministration of S-1 in rats. Drug Metab Dispos, 2007:35(9):1511-7.
    
    10 Li G, Chen X, Wang Q, et al. The roles of four multi-drug resistance proteins in hepatocellular carcinoma multidrug resistance. J Huazhong Univ Sci Technolog Med Sci, 2007;27(2): 173-5.
    
    11 Murphy L, Clynes M, Keenan J. Proteomic analysis to dissect mitoxantrone resistance-associated proteins in a squamous lung carcinoma. Anticancer Res, 2007;27(3A):1277-84.
    
    12 Honjo Y, Morisaki K, Huff LM, et al. Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther, 2002;1(6):696-702.
    
    13 Backstrom G, Taipalensuu J, Melhus H, et al. Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Eur J Pharm Sci, 2003:18(5):359-64.
    
    14 Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer, 2004;109(2):238-46.
    
    15 Imai Y, Tsukahara S, Asada S, et al. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res, 2004:64(12):4346-52.
    
    16 de Jong FA, Marsh S, Mathijssen RH, et al. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res, 2004;10(17):5889-94.
    
    17 Kanzaki A, Toi M, Nakayama K, et al. Expression of multidrug resistance-related transporters in human breast carcinoma. Jpn J Cancer Res, 2001;92(4):452-8.
    
    18 Burger H, Foekens JA, Look MP, et al. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res, 2003;9(2):827-36.
    
    19 Benderra Z, Faussat AM, Sayada L, et al. Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res, 2004;10(23):7896-902.
    
    20 Jiang XJ, Wang JS, Fang Q. [Gene expression of breast cancer resistance protein in adult acute lymphocytic leukemia and its clinical significance.]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2008:16(1):31-4.
    
    21 Kourti M, Vavatsi N, Gombakis N, et al. Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int J Hematol, 2007:86(2):166-73.
    
    22 Yoh K, Ishii G, Yokose T, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res, 2004;10(5):1691-7.
    
    23 Tsunoda S, Okumura T, Ito T, et al. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology, 2006:71(3-4):251-8.
    
    24 Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2003:100(7):3983-8.
    
    25 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med JT - Nature medicine, 1997:3(7):730-7.
    
    26 Lapidot T, SirardC, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature JT - Nature, 1994:367(6464):645-8.
    
    27 Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature JT -Nature, 2004:432(7015):396-401.
    
    28 Singh SK, Clarke ID, Hide T, et al. Cancer stem cells in nervous system tumors. Oncogene JT - Oncogene, 2004:23(43):7267-73.
    
    29 Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2003;100(25):15178-83.
    
    30 Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res JT - Cancer research, 2003;63(18):5821-8.
    
    31 Taylor MD, Poppleton H, Fuller C, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell JT - Cancer cell, 2005;8(4):323-35.
    
    32 Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene JT - Oncogene, 2006;25(12):1696-708.
    
    33 Richardson GD, Robson CN, Lang SH, et al. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci JT - Journal of cell science, 2004; 117(Pt 16):3539-45.
    
    34 Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res JT - Cancer research, 2005;65(23) : 10946-51.
    
    35 Suetsugu A, Nagaki M, Aoki H, et al. Characterization of CD133(+) hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun JT -Biochemical and biophysical research communications, 2006;351(4):820-4.
    
    36 O'brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2006.
    
    37 Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature, 2006.
    
    38 Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A, 2007.
    
    39 Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002;99(2):507-12.
    
    40 Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells, 2002;20(1):11-20.
    41 Zhou S, Morris JJ, Barnes Y, et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A, 2002;99(19):12339-44.
    
    42 Hadnagy A, Gaboury L, Beaulieu R, et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res, 2006:312(19):3701-10.
    
    43 Smalley MJ, Clarke RB. The mammary gland "side population": a putative stem/progenitor cell marker?. J Mammary Gland Biol Neoplasia, 2005;10(1):37-47.
    
    44 Meissner K, Heydrich B, Jedlitschky G, et al. The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem, 2006:54(2):215-21.
    
    45 Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 2001;7 (9):1028-34.
    
    46 Kondo T, Setoguchi T, TagaT. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2004;101(3):781-6.
    
    47 Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 2006:44(1):240-51.
    
    48 Mitsutake N, Iwao A, Nagai K, et al. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology, 2007;148 (4):1797-803.
    
    49 Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res, 2005:65(14):6207-19.
    
    50 Morita Y, Ema H, Yamazaki S, et al. Non-side-population hematopoietic stem cells in mouse bone marrow. Blood, 2006;108(8):2850-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700