吸附法净化泥磷制取次磷酸钠尾气中PH_3的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化工行业在云南省的工业组成中占有举足轻重的地位,其中黄磷作为重要的基础原料是整个磷化工行业最主要的创汇产品。但无论采用何种方法,在黄磷的生产过程中均会产生诸如废水、废气以及废渣的污染物。以泥磷为代表的黄磷生产废渣,由于其产生量大、污染相对严重,成为环境治理的首要目标。目前处理泥磷的方法有很多种,包括电炉制磷系统自身回收、直接法和间接法提取黄磷等。结合上述处理方法的不足,从可持续发展的角度出发,将泥磷高效地转化为次磷酸钠是一种有效的综合利用途径。次磷酸钠具有很高的经济附加值,广泛应用于化学镀、电镀等多个行业。但是根据发生的反应进行物料衡算发现,约有20%的磷单质以磷化氢(PH3)的形式进入尾气后排出,引起大气污染。考虑到目前国内外磷化氢生产的空白局面、泥磷中磷元素综合回收利用率的提高以及环境保护等诸多方面的因素,需要寻求一种方法使得次磷酸钠反应尾气中的磷化氢气体得以回收利用。
     本文重点研究了改性吸附剂5A分子筛吸附净化次磷酸钠反应尾气中磷化氢的吸附性能和吸附机理,将吸附效率和吸附剂的稳定性作为评判吸附剂吸附效果的依据。首先筛选了适宜的吸附剂种类和改性剂的活性组分;在活性组分确定的前提下对吸附剂吸附PH3气体做单因素实验,分别考察了浸渍液浓度、干燥温度、焙烧温度、气体流速以及反应温度等条件对吸附剂吸附磷化氢的影响规律,研究吸附剂的吸附性能;随后对改性吸附剂做正交优化实验,确定各影响因素交互作用下最适宜的实验条件;接着对吸附剂的再生进行考查,确定最适宜的再生方法和再生效果;利用吸附剂的吸附穿透曲线计算吸附速率,初步判断吸附类型;最后用扫描电镜(SEM)、光电子能谱(XPS)技术对吸附剂进行表征,为机理研究提供依据;最后通过基础实验数据、表征结果共同研究吸附剂的吸附机理,验证吸附剂的吸附性能。
     研究最终选用5A分子筛作为吸附净化磷化氢气体的适宜吸附剂;洗气液选用85%的浓磷酸;吸附剂的浸渍溶液为NaCl,活性组分为Na+;吸附阶段单因素实验中最适宜的实验条件为:浸渍液浓度0.3mol.L-1、干燥温度110℃、焙烧温度300℃、载气流速20mL.min-1、吸附反应温度为常温(20℃左右):吸附阶段设计的正交优化实验结果与单因素实验结果一致,各因素的影响程度为:吸附温度>载气流速>浸渍液浓度>焙烧温度>干燥温度:解吸方式选用氮气吹扫和加热的方法进行;解吸阶段单因素实验中最适宜的实验条件为:载气流速40mL.min-1、解吸反应温度为60℃;吸附剂再生采用高温水洗和热空气干燥的方法进行,最终能够实现吸附剂的重复利用,减少对环境的二次污染和资源的浪费。
     由磷化氢的吸附穿透曲线,计算得到各个温度条件下吸附剂改性5A分子筛吸附磷化氢的速率常数,从而判断吸附反应的剧烈程度,初步推断该吸附过程为物理吸附。吸附剂样品的SEM表征结果证实了吸附剂表面、内部在吸附前后发生的变化,利用前期的实验和计算数据、表征结果初步推断吸附剂吸附磷化氢的净化机理为微孔填充;通过对吸附剂进行XPS表征,明确了吸附剂活性组分为Na+,用电子得失理论解释了吸附及解吸过程,并结合吸附机理、吸附前后气体成分和吸附剂物理化学性质的变化,初步推断PH3在吸附剂上可能是以气态分子的形式存在。整个吸附、解吸过程可逆,为微孔填充属于物理吸附。
     经实验研究,获得了具有较高吸附性能的吸附剂,在常温、常压状态下即可对含磷化氢混合气进行吸附净化。用NaCl改性过后的5A分子筛具有稳定性强、活性高、易再生、价格低廉等优良性能,是一种值得进一步开发的吸附剂。
The phosphorous chemical industry held the very important status in Yunnan province's industrial composition, and yellow phosphorous was the main export products as well as the key raw material of the chemical industry. But whatever the method used, the pollutants would be generated, such as waste water, waste gas and solid waste. Phosphorus sludge was one of the harmful solid waste because of its pyrophorisity, so it was necessary to deal with it. Using phosphorus sludge to get sodium hypophosphite proved to be an effective way. Sodium hypophosphite had the considerable economical value, was widely used in chemical plating, galvanization and so on. But in this technology, almost 20% element P4 changed to be PH3, and caused new air pollution. Considered the present situation of phosphine production, the total recycling rate of phosphorus sludge and environmental protection etc., it was essential to recycle the phosphine gas from the production technology of sodium hypophosphite.
     This thesis aimed to research the adsorption of phosphine. The stability of the adsorbent and adsorption effect were as the basis. This paper selected the suitable adsorbent type and impregnant of active components. When the active components was fixed, the concentration of impregnant, the temperature of roasting and drying, the flow rate of N2 and the reaction temperature were researched as the affect factors in order to get the suitable experimental conditions. Then used the orthogonal experiment to verify the optimum experimental conditions, and researched the regeneration of adsorbents, determined the most suitable regeneration method and regeneration effect. After that, calculated the adsorption rate and judged the type of adsorption. Finally, used SEM, XPS and the experimental data to research the basic mechanism of the adsorption.
     5A molecular sieve was selected to be the suitable adsorbent. The impregnants was prepared by NaCl and active component was Na+. The optimum parameters of single factor experiment of adsorption were impregnant concentration 0.3mol.L-1、drying temperature 110℃、roasting temperature 300℃、the flow rate of N2 20mL.min-1 and the reaction temperature 20℃. The result of orthogonal experiment was as same as the single factor experiment, and the superiority order was reaction temperature> flow rate> impregnant concentration> roasting temperature> drying temperature. Nitrogen purging and heating were selected to be the desorption mode. The optimum experimental conditions of single factor of desorption were the flow rate of N240mL.min-1 and reaction temperature 60℃The regeneration of adsorbents were dealing by hot water and then drying by hot air, and finally realized the repeated use of 5A molecular sieve and reduced the environmental pollution.
     Through the adsorption penetration curve of phosphine, obtained the adsorption rate of phosphine under the different temperatures, then judged the acuteness degree of adsorption, and deduced that the adsorption processes was physical. After used scanning electron microscopy (SEM), surface characterization and inner changes of adsorbents were got. And through XPS, the types and contents of active component was Na+. With the adsorption mechanism, gas composition and the chemical and physical properties of the changes on adsorbents, deduced that the adsorbate was phosphine on the adsorbents. The adsorption and desorption process were reversible for pore filling, belonged to the physical adsorption.
     This research got the idealfor adsorbent which had high adsorption performance at room temperature and normal atmosphere. After the modification by NaCl,5A molecular sieve had strong stability, high activity, and it was also low price and easy to regenerate, so it was a very worthy of further development of the adsorbent.
引文
[1]熊家林,刘钊杰,贡长生.磷化工概论[M].北京:化学工业出版社,1994.
    [2]谢光炎,孙水裕,王孝武.黄磷工业污泥的处理技术探讨[J].环境污染治理技术与设备,2004,5(1):77-80.
    [3]单庆祝,刘凤霞,杨汝景等.接触磷化氢对健康的影响[J].中国工业医学杂志,1998,11(4):236-237.
    [4]曹阳,宋翼,孙冠英等.磷化氢毒理学研究综述[J].郑州工程学院学报,2002,26(2):84-89.
    [5]李军燕,宁平,瞿广飞Cu(Ⅱ)-Co(Ⅱ)液相催化氧化净化PH3研究[J].武汉理工大学学报,2007,29(10):63-65.
    [6]于剑昆.磷化氢的制备与精制[J].无机盐工业,2007,39(3):1 1-14.
    [7]冉隆文.精细磷化工技术[M].北京:化学工业出版社,2005.
    [8]杨陆华,马兴良,廖昆生.云南磷及磷酸盐工业发展现状及前景[J].云南化工,2001,28(5):9-12.
    [9]夏成洋,黄德镛,林友等.泥磷回收制磷危险性分析与防治[J].无机盐工业,2007,39(11):44-46.
    [10]赵长升,陈日辉,赵国云.电炉法生产黄磷的危险源辨识与防护[J].云南化工,2006,33(6):68-71.
    [11]云南磷肥工业公司内部资料,电炉法制磷工艺[M].1995.
    [12]顾志勤.制磷生产中的泥磷及其处理[J].磷酸盐工业,1989(4).
    [13]白天和.热法加工磷的化学及工艺学[M].昆明:云南科技出版社,2001.
    [14]黄初平.泥磷生产饲料磷酸氢钙工艺[J].江西化工,1993(1):27-28.
    [15]卢柏廷.黄磷“三废”及其污染防治[J].2007中国国际磷化工发展高峰论坛优秀论文集,99-]09.
    [16]Beck SM, Cook EH. Phosphorous recovery from phosphorus-containing pond sludge[P]. USP, 4717558,1988-01-05.
    [17]刘书勤,赵军,赵世忠.磷泥的综合利用[J].化工环保,1992,12(2):83-89.
    [18]李旺华.泥磷动态蒸馏工艺设计[J].江西化工,1999(4):24-25.
    [19]钱爱珠,赵玮.一种泥磷的回收处理方法[P].中国,1324759,2001-12-05.
    [20]任希廉.磷盐生产中资源的综合利用[J].甘肃化工,1997(1):42-43.
    [21]陈继善.我国电炉制磷副产物综合利用概要[J].硫磷设计与粉体工程,2004(4):7-12.
    [22]李兴德,从磷泥中回收黄磷的方法[P].中国,92111925,1993-04-28.
    [23]黄小凤,马仲明,宁平等.泥磷的处理方法研究[J].中国工程科学,2005,7(11):91-93.
    [24]吴平.废物是放错位置的资源—来自中国精细磷化工领军企业兴发集团的报道[J].化工管理,2008(5):13-16.
    [25]朱浩东,江映翔,何冬梅等.中温蒸馏法处理泥磷提取黄磷的研究[J].应用化工,2007,36(2):197-198.
    [26]顾宗勤.关于我国精细磷化工发展的几点建议[J].化工技术经济,2003,21(6):1-5.
    [27]韩晓丽,智建辉,王福生.高品位次磷酸钠的制备[J].无机盐工业,2005,37(3): 35-37.
    [28]毕成良,韩长秀,王晓英.次磷酸钠工业生产副产物综合利用研究[J].天津化工,2005,37(3):35-37.
    [29]Y S Cheng, K L Yeung. Effects of electroless plating chemistry on the synthesis of palladium membranes[J]. Journal of Membrane Science,2001(182):195-203.
    [30]何永亮.次磷酸钠生产过程中磷化氢尾气的处理技术研究[D]:[硕士学位论文].天津:南开大学,2000.
    [31]马一平,王惠平.次磷酸钠的生产应用[J].江苏化工,1996,26(3):41-42.
    [32]程建忠.次磷酸及相关磷化工产品的清洁生产研究[D]:[硕士学位论文].天津:南开大学,2001.
    [33]Annarelli, Dennis C, Hall.etc.. Process for sodium hypophosphite[P]. US,479 132,1983.
    [34]宋耀.次磷酸钠工业生产综述[J].天津化工,1999(5):11-15.
    [35]M J Crochet, G Pilate. Plane flow of a fluid of a second grade through a contraction[J]. J Non-Newtonian Fluid Mech,1976(1):247.
    [36]王福生,郭爱红,谢藏娥等.一步法制备次磷酸钠的研究[J].天津化工,2003,17(3):4-6.
    [37]王书林,沈万涛.次磷酸钠生产工艺及反应器的优化[J].贵州化工,2007,32(3):9-10.
    [38]王成俊,郭爱红,王福生等.次磷酸钠工业生产过程中PH3尾气处理技术[J].天津化工,2003,17(5):37-38.
    [39]化工百科全书(第10卷)[M].北京:化学工业出版社,1996.
    [40]Mikhail N. Gluknovtsev, Robert D. Bach. Ab initio study on the thermochemistry of diphosphite and diphosphite radical cation[J]. Chemical Physics Letters,1997(265):514-520.
    [41]Andre S. Pimentel, Rommel B. Viana. A quantum chemical study for the multichannel reaction PH2+PH2[J]. Chemical Physics,2007(334):85-89.
    [42]王莹,顾祖维,张胜年.现代职业医学[M].北京:人民卫生出版社,1995.
    [43]任引津,张寿林,倪为民.实用急性中毒全书[M].北京:人民卫生出版社,2003.
    [44]丁百全,徐周,房鼎业.熏蒸杀虫余气PH3的吸收净化研究[J].环境污染治理技术与设备,2003,4(1):30-32.
    [45]庞文渌.磷化氢熏蒸的安全防护[J].粮食储藏,2002(2):34-36.
    [46]Cotton Wilkinson. Advanced Inorganic Chemistry[M]. Wiley Inter science,1980.
    [47]孙福楠,岳成君,李健等.高纯磷烷的规模化生产[J].低温与特气,2006,24(1):27-29.
    [48]钱伯章.电子化学品的市场和前景[J].上海化工,2004(5):44-47.
    [49]Brent Elliont, Frank Balma, Frederick Johnson. Exhaust gas incineration and the combustion of arsine and phosphine[J]. Solid State Technology,1990,33(1):.89-92.
    [50]陈盛秒.次磷酸钠生产中尾气净化除尘器的设计[J].无机盐工业,2008,40(1):57-60.
    [51]王惠平,唐忠松.次磷酸钠生产中“三废”的综合治理[J].化学世界,1999(3):159-162.
    [52]梁培玉,王福生,宋兵魁等.磷化氢尾气催化分解为高纯磷的研究[J].天津化工,2004,18(4):31-33.
    [53]梁培玉,韩长秀,林徐明等.CoP非晶合金催化分解磷化氢制高纯磷的研究[J].南开大学学报(自然科学),2006,39(4):20-23.
    [54]林徐明,韩长秀,任吉利等.钴磷合金催化剂的制备及其催化分解磷化氢的研究[J].环境污染与防治,2007,29(2):104-107.
    [55]马朝玲.次磷酸钠生产中的尾气处理工艺[J].硫磷设计与粉体工程,2007(5):37-40.
    [56]Wilde Jurgen. Absorbent mass for phosphine [P]. Internationale Ver affent lichung snummer. WO 00/21644 A3,2000-04-20.
    [57]郭坤敏.氢气流中净化磷化氢、砷化氢的浸渍活性炭[P].中国,1076173.1993-09-15.
    [58]The BOC Group plc. Gas stream purification apparatus[P]. EP,0611140.1994-08-1.
    [59]Goncharova L V, Clowes S K, Fogg RR, et al. Phosphine adsorption and the production of phosphide phases on Cu(001)[J]. Surface Science,2002,515:553-566.
    [60]程建忠,张英喆,张宝贵.次磷酸钠生产过程中磷化氢尾气处理技术的研究[J].南开大学学报(自然科学),2001,34(2):31-34.
    [61]徐周.化学吸收法处理熏蒸杀虫余气磷化氢的研究[D]:[硕士学位论文].上海:华东理工大学,2002.
    [62]Kyowa Kako KK. Method for removing arsine and/or phosphine[P]. JP,1266836,1989-10-24.
    [63]钱学海.球墨铸铁切削加工中磷化氢气体生成的化学控制[J].国外机车车辆工艺,1990(5):16-21.
    [64]Tim Herman, Scott Soden. Efficiently handling effluent gases through chemical scrubbing[J]. AIP Conf.Pro.1988(166):99-108.
    [65]GB/T16037—1995,车间空气中磷化氢的钼酸铵分光光度测定方法[S].北京:中国标准出版社,1995.
    [66]张永生,张伟.正确使用磷化氢气体检测仪[J].粮食加工,2004(1):63-64.
    [67]易玉敏.磷化氢液相催化氧化催化剂的筛选及动力学研究[D]:[硕士学位论文].昆明:昆明理工大学,2008.
    [68]徐浩东,蒋明.火焰光度气相色谱法测定磷化氢的研究[J].江西农业学报,2007,19(4):101-103.
    [69]胡若鹏.泥磷制取次磷酸钠尾气的综合利用与处理研究[D]:[硕士学位论文].昆明:昆明理工大学,2007.
    [70]刘奕梅,王锐,董伟民.溴水氧化一磷钼蓝分光光度法测定水和废水中元素磷[J].城市环境与城市生态,2003,16(5):42-44.
    [71]瞿莜蔷,唐国平.磷钒钼黄比色法测定循环水中磷酸盐的探讨[J].大氮肥,2001,24(5):351-354.
    [72]赵荒.磷钒钼黄比色法测定钙镁磷钯中的磷[J].甘肃化工,1994(4):21-22.
    [73]崔九思,王钦源,王汉平.大气污染检测方法[M].北京:化学工业出版社,第2版,1997,98-117.
    [74]杨少华,崔英德,陈循军等.ZSM—5沸石分子筛的合成和表面改性研究进展[J].精细石油化工进展,2003,4(4):48-50.
    [75]蒋文举,宁平.大气污染控制工程[M].四川:四川大学出版社,第2版,2005,165-166.
    [76]杨建利,晏志军,李栋墚等.焙烧法水热合成5A沸石分子筛[J].工业催化,2007,15(10):64-66.
    [77]张永,宁平,徐浩东等.改性活性炭吸附净化黄磷尾气中的PH3[J].环境工程学报,2007,1(5):74-78.
    [78]李彬,宁平,王学谦等.负载酸活性炭净化黄磷尾气中的磷化氢[J].四川化工,2004,7(5):41-43.
    [79]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [80]上海市科学技术交流站组编.正交试验设计法—多因素的试验方法[M].上海:人民卫生出版社,1975.
    [81]胡景泉.影响分子筛吸附效率的因素[J].一重技术,2007(1):70-71.
    [82]王亦彤.硅烷中主要杂质气体的分子筛提纯研究[D]:[硕士学位论文].浙江:浙江理工大学,2007.
    [83]周春何,卢晗锋,曾立等.沸石分子筛和活性炭吸附/脱附甲苯性能对比[J].环境污染与防治,2009,31(4):38-41.
    [84]赵炳成,曹守仁.活性碳纤维动态吸附氨气效率的研究[J].中华劳动卫生职业病杂志,1997,15(6):376-377.
    [85]苗壮,刘竞艳,常璐等.扫描电镜粉末样品的制备方法[J].钛工业进展,2008,25(4):31-34.
    [86]仓向辉,赵春芳,郭永恒.扫描电镜及能谱在铝土矿相关领域应用研究[J].轻金属,2008(10):8-10.
    [87]杜希文,原续波.材料分析方法[M].天津:天津大学出版社,2006.
    [88]王斌,陈集,饶小桐.现代分析测试方法[M].北京:石油化工出版社,2008.
    [89]白玉兰,徐红彬,张懿等FTIR和XPS对含低价Cr混合物物相分析的应用研究[J].光谱学与光谱分析,2007,27(4):675-678.
    [90]Moulder J F, Stickle W F, Sobol P E. Handbook of X-ray Photoelectron. Spectroscopy[M]. US: Physical Electronics Inc,1995.
    [91]V.K. Kaushik, R.P. Vijayalakshmi, N.V. Choudary, et al. XPS studies on cation exchanged zeolite A[J]. Microporous and Mesoporous Materials,2002(51):139-144.
    [92]刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988.
    [93]吴忠标,蒋新,赵伟荣.环境催化原理及应用[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700