单元机组协调控制系统的先进控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协调控制系统是单元制发电机组的控制中枢,是现代电站自动化系统中最为核心的组成单元。本文应用线性多变量控制及非线性控制的相关原理和方法研究了单元机组协调控制系统的设计、整定、工程实现等问题,致力于推动先进控制策略的工程应用,提高协调控制系统对过程非线性的适应能力。
     论文的研究内容及取得的主要成果体现在以下五个方面:
     ①通过广泛的选择和比较,在机理分析的基础上,确定了贯穿全文的研究基础—单元机组的简化非线性模型。该模型结构简单、特征突出、具有代表性,适于协调控制系统的设计与综合。
     ②对线性多变量方法在协调控制系统中的应用做了系统、深入的研究。分别基于多变量解耦和多变量内模方法设计出具有PID形式的协调控制器,两种方法相辅相成、互为验证;论文进一步结合理论分析与现场试验,给出了具有较高实用价值的控制器整定方法与步骤。
     ③通过总体结构设计,综合前馈、反馈、多模型等控制手段,在解决大量工程技术问题的基础上,成功地将线性多变量协调控制器的设计和整定方法应用于330MW单元机组。
     ④应用反馈线性化原理及其扩展算法,对协调控制系统进行了直接非线性控制的研究。通过引入可测状态变量,推导出反馈控制律的简化形式,有效地降低了伪线性机炉系统的积分阶次;同时结合二自由度I-PD控制结构,较好地解决了伪线性系统对扰动敏感、鲁棒性差的问题。
     ⑤从提高实用性的角度,探讨了将非线性策略应用于协调控制系统优化的可行性,研究了以非线性稳定逆为前馈环节的协调控制系统的输出跟踪控制结构。仿真试验表明:线性系统理论与非线性系统理论的有机结合,能够有效地提高协调控制系统的负荷跟随能力。
A coordinated control system is the control center of a power generation unit, and is the core of a modern power plant. This dissertation studies the design, tuning, and implementation of the coordinated control system of a power unit via linear multivariable and nonlinear control theories and methods, with the motivation to apply advanced control strategies in engineering practice and to improve the adaptability of the coordinated control system to the process nonlinearities.The main contributions of this dissertation are summarized as follows:(1) A simplified nonlinear model of a power unit is chosen as the basis of this dissertation by extensive selection and comparison based on physical principles. The typical model has a simple structure and can represent a wide range of power units, so it is suited for the design and synthesis of coordinated control systems.(2) A systematic research on the applications of linear multivariable methods in the coordinated control systems is done. A coordinated controller with a PID form is designed via decoupling method and internal model control method separately. Combining with the field tests, a practical tuning procedure for the coordinated controller is proposed.(3) The proposed design and tuning method for linear multivariable coordinated controllers are successfully applied to a 330MW power unit, by the overall structure design and combination with many control methods such as feed-forward, feedback and multi-model.(4) A direct nonlinear control of the coordinated system is studied via feedback linearization theory and its extension. By introducing measurable state variables, a simplified form of feedback control law is deduced, which can reduce the integral order of the pseudo-linear boiler-turbine system. Combining with a two-degree-of-freedom I-PD control structure, the proposed method can improve the robustness of the pseudo-linear system.
引文
[1] 刘吉臻.协调控制与给水全程控制[M].北京,中国电力出版社,1995.
    [2] 金以慧.过程控制[M].北京:清华大学出版社,1993.
    [3] 张玉铎,王满稼.热工自动控制系统[M].北京:水利电力出版社,1985.
    [4] 中国动力工程学会.火力发电设备技术手册:第三卷自动控制[M].北京:机械工业出版社,2001.
    [5] Dukelow S. G. The Control of Boilers[M]. Instrument Society of America. Research Triangle Park, NC, 2~(nd) edition, 1991.
    [6] Raul Garduno-Ramirez. Overall intelligent hybrid control system for a fossil-fuel power unit[D]. Doctoral thesis of The Pennsylvania State University, 2000.
    [7] 沈炯,陈来九.基于智能解耦的协调控制系统参数整定[J].中国电机工程学报,1993,13(4):14-19.
    [8] 沈炯,陈来九.单元机组负荷控制系统的在线自整定[J].中国电机工程学报,1994,14(2):13-19.
    [9] 刘红波,李少远,柴天佑.协调控制系统多变量PID控制器的自整定方法[J].自动化仪表,2003,26(6):10-15.
    [10] Fang F, Tan W, Liu J Z. Tuning of coordinated controllers for boiler-turbine units[J]. 自动化学报, 2005, 31(2): 291-296.
    [11] 徐志强.火电厂热工控制的大范围线性化方法[D].哈尔滨工业大学工学博士论文,2002.
    [12] 郑昶,曹在基.DEB协调控制系统[J].动力工程,1989,9(4):1-8.
    [13] 翁一武,于达仁,徐基豫.锅炉跟随控制的构成—兼论直接能量平衡控制的动态特性[J].动力工程,2001,21(1):1050-1053,1009.
    [14] 李希武.直接能量平衡法(DEB)协调控制系统分析[J].中国电力,2000,33(6):65-69
    [15] Liu H B, Li S Y, Chai T Y. Intelligent decoupling control of power plant main steam pressure and power output[J]. Electrical Power and Energy System, 2003, 25: 809-819.
    [16] Tan W, Liu J Z, Fang F, Chen Y Q. Tuning of PID controllers for boiler-turbine units[J]. ISA Transactions, 2004, 43(4): 571-583.
    [17] Chen K W, Asok R. Robust Wide-Range Control of Steam-Electric Power Plants[J]. IEEE Transactions on Control Systems Technology, 1997, 5(1): 74-88.
    [18] Tan W, Marquez H J, Chen T W. Multivariable Robust Controller Design for a Boiler System[J]. IEEE Transactions on Control Systems Technology, 2002, 10(5): 735-742.
    [19] Frederic L M, Gilles D. Design of a Controller for a Steam Generator of a Power Plant Using Robust Control and Genetic Algorithm[C]. Proceedings of IEEE International Conference on Control Applications, Glasgow, Scotland, U. K, 2002, 1050~1055.
    [20] Hogg B W, E1-Rabaie N M. Generalized predictive control of steam pressure in a drum boiler[J]. IEEE Transactions on Energy Conversion, 1990, 5(3): 485-492.
    [21] Hogg B W, E1-Rabaie N M. Multivariable generalized predictive control of a boiler system[J]. IEEE Transactions on Energy Conversion, 1991, 6(2): 282-288.
    [22] Lu S, Hogg B W. Predictive co-ordinated control for power-plant steam pressure and power output[J]. Control eng. Practice, 1997, 5(1): 79-84.
    [23] Prasad G, Irwin G W, Swidenbank E, Hogg B W. Plant-wide predictive control for a thermal power plant based on physical plant model[J], lEE Proceedings-Control Theory and Applications, 2000, 147(5): 523-537.
    [24] 于达仁,翁一武,王仲奇.火电单元机组的柔性控制[J].中国电机工程学报,2002,22(7):129-133.
    [25] Mortensen J H, Moelbak T, Andersen P, Pedersen T S. Optimization of boiler control to improve the load-following capability of power-plant units[J]. Control Engineering Practice, 1998, 6: 1531-1539.
    [26] Isidori A. Nonlinear Control Systems (Second Edition)[M]. New York, Springer-verlag, 1989.
    [27] Bolek W, Sasiadek J, Wisniewski T. Linearization of non-linear MIMO model of large power plant station[C]. Proceedings of American Control Conference, 2000, 4435-4436.
    [28] 葛友,李春文.反馈线性化方法在锅炉-汽轮机系统控制中的应用[J].清华大学学报(自然科学版),2001,41(7):125-128.
    [29] 房方,刘吉臻,谭文.单元机组协调系统的非线性内模控制[J].中国电机工程学报 2004,24(4):195-199.
    [30] 王东风.锅炉-汽轮机系统的逆系统控制方法[J].自动化与仪器仪表,2001,27(1):12-13,19.
    [31] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design[M]. New York: John Wiley & Sons, 1995.
    [32] Bolek W, Sasiadek J, Wisniewski T. Adaptive backStepping control of a power plant station model[C]. IFAC 15th Triennial World Congress, 2002. 1650-1655.
    [33] 陈彦桥,刘吉臻,谭文.模糊多模型控制及其对500MW单元机组协调控制系统的仿真研究[J].中国电机工程学报,2003,23(10):199-203.
    [34] 黄祖毅,李东海,姜学志.机炉协调的增益调度伺服系统[J].中国电机工程学报,2003,23(10):191-198.
    [35] Ben-Abdennour A and Lee K. Y An Autonomous Control System for Boiler-Turbine Units[J]. IEEE Transaction on Energy Conversion, 1996, 11(2): 401-406.
    [36] Beheshti M. T. H and Rezaee M. M. A New Hybrid Boiler Master Controller[C]. Proceedings of American Control Conference, Anchorage, AK, 2002, 2070-2075.
    [37] Abdennour A. An intelligent Supervisory system for drum type boilers during severe disturbances[J]. Electrical Power and Energy Systems, 2002, 22:381-387.
    [38] Hamold Chi-Li-Ma, Lee K Y. Free-model based neural networks for a boiler-turbine plant[C]. Power Engineering Society Winter Meeting, PA, USA, 2000, 1140-1144.
    [39] Alturki F A, Abdennour A B. Neuro-fuzzy Control of a steam boiler-turbine unit[C]. Proceedings of International Conference on Control Applications, Hawaii, USA, 1999, 1050-1055.
    [40] 李益国,沈炯,吕震中.火电单元机组负荷模糊内模控制及其仿真研究[J].中国电机工程学报,2002,22(4):90-93.
    [41] Kim Dong-Wan, Hwang Hyun-Joon, Hwang Chang-Sun. A design on model following optimal multivariable H_∞ control system using GA[C]. Proceedings of the 37th SICE Annual Conference, Chiba, Japan, 1998, 975-978.
    [42] Dimeo R D, Lee K Y. The use of a genetic algorithm in power plant control system design[C]. Proceedings of 34rd IEEE Conference on Decision and Control, New Orieans, LA, 1995, 737-742.
    [43] 杨建军,陈永刚.提高协调控制系统对煤种变化的是应性研究[J].山西电力,2003, 4:35-36,50.
    [44] 张栾英,孙万云,康波.蒙达330MW机组协调控制系统改造[J].内蒙古电力技术,1999,17(2):32-34.
    [45] 盛根林.DEB/400控制理论的应用[J].华中电力,1999,12(4):44-46.
    [46] 王欲欣,陈思迈.200MW汽轮机组协调控制系统分析[J].汽轮机技术,2001,43(1):59-60.
    [47] 邓庆松.自动发电控制与机组协调控制[J].湖北电力,2001,25(5):12-14,20.
    [48] 王贵彦,赵克.协调控制系统在直吹式锅炉系统的应用[J].黑龙江电力,2001,23(5):356-358.
    [49] McDonald J P, Kwatney H G, Spare J H. A nonlinear model for reheat boiler-turbine-generator systems, Parts Ⅰ and Ⅱ[C]. in Proc. JACC, St. Louis, USA, 1971, 219-236.
    [50] (?)strom K J, Eklund K A. Simplified non-Linear model of a drum boiler-turbine unit[J]. International Journal of Control, 1972, 16(1): 145-169.
    [51] de Mello F P. Boiler models for system performance studies[J]. IEEE Transaction on Power Systems, 1991, 6(1): 66-74.
    [52] de Mello F P. Dynamic models for fossil fueled steam units in power system studies[J]. IEEE Transaction on Power Systems, 1991, 6(2): 753-761.
    [53] Cheres E. Small and medium size drum boiler models suitable for long term dynamic response[J]. IEEE Transaction on Energy Conversion, 1990, 5(4): 686-692.
    [54] Cheres E, Palmor Z J, Tuch J. Drum type boiler following control configuration[J]. IEEE Transactions on Energy Conversion, 1994, 9(1): 199-205.
    [55] Chawdry P K, Hogg B W. Identification of boiler models[J]. IEE Proceedings-Control Theory and Applications, 1989, 136(5): 261-271.
    [56] Bell R D, (?)strom K J. Drum-boiler dynamics[J]. Automatica, 2000, 36(3): 363-378.
    [57] Bell R D,(?)str6m K J. Simplified models of boiler-turbine units[R]. Report TFRT-3191, Dept. of Automatic Control, Lurid Institute of Technology, Sweden, 1987.
    [58] Bell R D,(?)strom K J. Dynamic models for boiler-turbine-alternator units: data logs and parameter estimation for a 160 MW unit[R]. Report TFRT-3192, Dept. of Automatic Control, Lund Institute of Technology, Sweden, 1987.
    [59] Prasad G, Swidenbank E, Hogg B W. A novel performance monitoring strategy for economical thermal power plant operation[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 802-809.
    [60] 钱钟韩.汽鼓锅炉-汽轮机联合系统在汽压调节方面的动态特性[J].高等学校自然科学学报,1964(1).
    [61] 钱钟韩,孟祖浩.热工对象低阶近似模拟[J].南京工学院学报,1965,2.
    [62] 高镗年.热工控制对象动力学[M].北京:水利电力出版社,1986.
    [63] 章臣樾.锅炉动态特性及其数学模型[M].北京:水利电力出版社,1987.
    [64] 范永胜,程芳真,眭喆,吕崇德.600MW超临界直流锅炉的动态特性研究[J].清华大学学报(自然科学版),2000,40(10):104-107.
    [65] 郑建学,陈听宽,陈学俊.超临界压力锅炉蒸发受热面动态数学模型及压力响应特性[J].工程热物理学报,1997,18(4):489-492.
    [66] 王勤辉,骆仲泱,方梦祥 等.循环流化床锅炉总体数学模型及其与工业试验比较的研究[J].工程热物理学报,1998,19(2):251-255.
    [67] 吕崇德,范永胜,蔡瑞忠.我国电站仿真技术进展与建模理论研究[J].中国工程科学,1999,1(1):99-103.
    [68] 曾德良.基于速率优化的智能协调控制系统的研究和应用[D].华北电力大学工学博士论文,1999.
    [69] 曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型[J].中国电机工程学报,2000,20(12):75-79.
    [70] 曾德良,赵征,陈彦桥,刘吉臻.500MW机组锅炉模型及实验分析[J].中国电机工程学报,2003,23(5):149-152.
    [71] 田亮,曾德良,刘吉臻,赵征.简化的330MW机组非线性动态模型[J].中国电机工程学报,2004,24(8):180-184.
    [72] 田亮,曾德良,刘鑫屏,刘吉臻.500MW机组简化的非线性动态模型[J].动力工程,2004,24(4):522-525.
    [73] 王诗宓.多变量控制系统的分析和设计[M].北京:中国电力出版社,1996.
    [74] Katsuhiko Ogata.现代控制工程(第三版)[M].北京:电子工业出版社,2000.
    [75] Zhou K, Doyle J C. Essentials of robust control[M]. Prentice-Hall, Inc., 1998
    [76] 汪自勤,胡克定,钱钟韩.基于奇异值性能指标的鲁棒控制器设计[J].控制理论与

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700