小鼠KyoT家族的新异构发现及其对血管内皮细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管生成是多数情况下血管新生的重要方式——从创伤愈合到特定性生理周期(女性月经周期),从多种人类疾病的发生到肿瘤的生长和转移,血管生成参与众多重要生理性和病理性过程。
     血管生成是由多步骤组成的复杂过程:首先细胞外基质(Extracellularmatrix, ECM)发生降解,接着血管内皮细胞(Endothelial cells, ECs)从已有血管中出芽,随后ECs经历增殖、迁移、分化而形成血管,最后平滑肌细胞被募集至新生的血管上。ECs不仅是构成血管的重要组成部分,更是血管生成过程重要的“执行者”。
     近年来随着体外血管生成体系的应用、体内基因剔除/敲入小鼠模型的建立,对血管生成机制的研究也不断深入,发现多条信号途径在细胞、分子水平调控血管生成和ECs功能。Notch信号途径因参与调控ECs的多种功能,决定ECs的命运,而成为备受关注的调控信号。
     Notch信号途径是进化中高度保守的、通过细胞与细胞之间直接接触而激活的信号途径,参与调控包括细胞增殖、分化、凋亡、命运决定等多种重要过程。当相邻细胞间Notch配体与其受体接触时,Notch受体的胞内段(Notch intracellular domain, NIC)就会释放进入细胞核,与核内DNA结合蛋白——重组信号结合蛋白-J(Recombination signal binding protein-Jκ,RBP-J)结合,从而激活下游基因的转录。在缺少NIC的情况下,RBP-J则通过募集多种转录共抑制分子而发挥抑制转录的作用。本室前期研究发现:RBP-J可通过与LIM蛋白KyoT2结合而募集多种转录共抑制分子。但是,KyoT是由选择性拼接形成的分子亚家族,与RBP-J结合的只有KyoT2吗?是否还有其它KyoT分子能和RBP-J结合?这种结合对Notch信号途径有什么样的调控作用?对ECs的功能又有怎样的影响?
     基于上述设想,本课题发现了KyoT另一个剪接变异体KyoT3,深入研究了与RBP-J结合的LIM蛋白家族KyoT3的组织分布与细胞定位,寻找其与RBP-J结合的直接证据,阐明KyoT3对Notch信号途径的调控作用,探究KyoT家族成员对ECs的功能的影响。主要研究结果如下:
     1.发现了KyoT家族的新异构体。
     首先,通过以小鼠胚胎cDNA文库为模板,经聚合酶链反应(Polymerasechain reaction, PCR)获得KyoT家族另一剪接变异体,KyoT3。KyoT3,其全长为969bp,编码包含323个氨基酸的大小为36.26KD的蛋白质。KyoT3的N-端是与KyoT1相同的3个半LIM结构域,在LIM结构域之后为KyoT1所不具备的3个核定位信号(Nuclear localization signals, NLS)和1个出核序列(Nuclear export sequence, NES)。与KyoT2相同的是:KyoT3也拥有由C-端27个氨基酸构成的RBP-J结合基序,这提示KyoT3可能也具有与KyoT2相似的功能。利用位于KyoT3序列上的酶切位点XhoⅠ,将KyoT3分为前后2段,通过对2段分别扩增后再拼接的方式,在不改变KyoT3序列、不引入新碱基的情况下,成功构建pMD18-T-KyoT3,为进一步研究KyoT3的功能打下基础。
     其次,探明了KyoT3在组织中的分布和细胞内的定位,并确认其在细胞核内的定位依赖于其NLS。提取小鼠不同组织器官的RNA,经过反转录为cDNA之后,采用KyoT3特异性引物,通过PCR的方法研究KyoT3在组织内的分布,发现KyoT3的mRNA在小鼠脾脏、胸腺、睾丸、卵巢、小肠、结肠、心脏、大脑、胎盘、肺脏、肝脏、骨骼肌、肾脏和胰腺都有表达,说明其组织分布十分广泛。为明确KyoT3在细胞内的定位,构建了含KyoT3全长的pEGFP-C2-KyoT3和pEGFP-N1-KyoT3;仅含NLS的pEGFP-C2-NLS和pEGFP-N1-NLS;不含有NLS的pEGFP-C2-KyoT3N和pEGFP-N1-KyoT3N质粒。Western blot的方法发现其中C2-KyoT3N的表达量很低后,通过其它5种质粒分别转染HeLa细胞,而确定了KyoT3主要分布于细胞核内,并且KyoT3在细胞核内的定位是依赖于其3个串联的NLS实现的。
     最后,通过免疫共沉淀验证了KyoT3与RBP-J之间的相互作用,并进一步明确了KyoT3具有抑制RBP-J依赖的转录的作用。构建了带Myc标签的pCMV-Myc-KyoT3真核表达质粒,通过与带Flag标签的pCMV-RBP-J-Flag共转染HeLa细胞的方式,采用免疫共沉淀实验,利用不同的抗体检测,确认了KyoT3和RBP-J之间存在物理相互作用。随即使用双荧光报告基因系统,在HeLa细胞和HEK293细胞内证实KyoT3具有抑制RBP-J依赖的转录的作用,并且这种作用具有剂量依赖效应。此外,通过将KyoT3与NIC质粒共转染HeLa细胞,24h后用实时定量PCR的方法检测下游基因Hes-1的mRNA水平的方法,结果也表明:共转染KyoT3和NIC时,KyoT3能显著抑制NIC激活的Hes-1的转录。
     2.阐明KyoT家族成员对血管内皮细胞的影响。
     首先,成功分离和培养人脐静脉内皮细胞(Human umbilical veinendothelial cells, HUVECs),在其中检测到KyoT家族成员KyoT2的表达。为研究在血管生成中KyoT家族成员的作用,在本室建立了HUVECs的分离、培养的方法,并通过其形态表现为典型的铺路石样、表面CD31分子表达平均约为99%、具有形成管腔的能力,对分离、培养的细胞进行了确认。通过PCR的方法检测HUVECs中KyoT家族成员的表达。结果发现:在HUVECs中仅KyoT2表达,于是将研究聚焦于KyoT2。
     其次,发现转染KyoT2能使HUVECs细胞系(HUVEC Cell line,HUVEC-CL)中管腔形成增多,tip细胞的数目增加,细胞增殖减少。在后续的实验中,使用脂质体LTXPLUS瞬时转染EGFP-KyoT2于HUVECs和HUVEC-CL,通过计数绿色细胞总数的方法,发现:无论在HUVECs或是HUVEC-CL中,与转染EGFP的对照组相比,转染KyoT2后细胞增殖减弱,然而转染KyoT2却能使HUVEC-CL中管腔形成增多,tip细胞的数目增加。
     通过本课题的研究证实:KyoT另一剪接变异体KyoT3的存在,并明确了其在组织中的分布和细胞内的定位,并且KyoT3在细胞核内的定位是依赖于其3个串联的NLS的。KyoT3能够与RBP-J发生物理上的相互作用,也因此参与了RBP-J介导的Notch信号途径的调控。KyoT3能够抑制RBP-J介导的转录激活,并且这种抑制作用具有剂量依赖效应。为研究KyoT家族成员在血管生成中的作用,在本室建立了HUVECs的分离与培养方法,通过该方法能够获得纯度高、功能好的HUVECs,作为研究ECs的模型。使用PCR的方法,检测到仅KyoT2在HUVECs内的表达,因此也将研究重心转移到KyoT2对ECs的功能影响。进一步研究发现瞬时转染KyoT2能够抑制ECs增殖,促使管腔形成增多,tip细胞的数目增加。为更深入地研究KyoT2在血管生成过程中的作用奠定基础。
Angiogenesis, a critical pattern of new blood vessel formation has beenacknowledged as a main process from wound healing to certain physiologicalprocesses. Meanwhile, angiogenesis also participates in the pathological processof several human diseases and plays a pivotal role in tumor growth andmetastasis.
     Angiogenesis is a complex process of many stages: Endothelial cells (ECs)sprout from pre-existing vessel after extracellular matrix (ECM) degrade.Subsequently, ECs undergo proliferation, migration, differentiation and recruitpericytes/smooth muscle cells. ECs are important components of blood vessel aswell as key element of angiogenesis.
     With the extensive use of angiogenesis assays in vitro and the intensiveanalysis of mouse knock-in/knock-out model in vivo, the mechanism ofangiogenesis has been investigated more intensively. Scientists have found manysignaling pathways which regulate angiogenesis process and the function of ECs at cellular and molecular level. One of them is an evolutionarily conservedpathway, which is named Notch signaling pathway.
     Notch signaling pathway is used by metazoans to control a broad range ofdevelopmental processes, including cell fate determination, differentiation,proliferation and apoptosis through local cell-cell interactions. When ligand insignal sending cell contacts its receptor in signal receiving cell, the intracellulardomain of Notch (NIC) is released into the nucleus and binds to an DNA bindingprotein RBP-J, which hence starts the transcription of downstream genes. On thecontrary, when NIC is absent, RBP-J recruits many co-repressors to repress thetranscription of these genes. In our previous studies we have found that RBP-Jrecruits many co-repressors through binding KyoT2.
     Due to the fact that KyoT2belongs to the KyoT family which has splicingvariants, two hypotheses have been proposed:1) Whether there is anothermember of KyoT family, which could bind RBP-J?2) What kind of role does themember of KyoT family play in the process of angiogenesis and the function ofECs through these kinds of binding? Based on these questions, we found in thisproject another splicing variant of KyoT family beyond KyoT1and KyoT2,named KyoT3. The main results are as following:
     1. Anew isoform of KyoT family, named KyoT3has been found.
     Firstly, the full length of KyoT3has been obtained and the plasmid hasbeen constructed which containing the full length sequence of KyoT3. Thefull length cDNA of KyoT3were amplified from a murine embryonic cDNAlibrary by PCR. The murine KyoT3is969bp in length, encoding a polypeptideof323amino acids with a predicted molecular mass of36.26kDa. KyoT3has thesame3and a half LIM domain as KyoT1in its N-terminal, but it possesses the3tandem NLS and1NES which are located behind the LIM domain and are absent in KyoT1. As KyoT2, KyoT3has the same RBP-J binding motif of about27amino acids in its C-terminal, suggesting similar functions of these two isoforms.Joining the2fragments of KyoT3which are separated by the XhoⅠsite, thefull-length cDNAof KyoT3is obtained without changing a single base pair.
     Secondly, the tissue distribution pattern and the cellular localization ofKyoT3has been detected. That the localization in the nucleus of KyoT3depends on its NLS has been further verified. The expression pattern ofKyoT3was examined by RT-PCR using specific PCR primers. The results showthat KyoT3distributes extensively in murine tissue, including spleen, thymus,testis, ovary, small intestine, colon, heart, brain, placenta, lung, liver, skeletalmuscle, kidney and pancreas. To further study its intracellular localization,plasmids of different structure containing different sequence of KyoT3wereconstructed as pEGFP-C2-KyoT3, pEGFP-N1-KyoT3, pEGFP-C2-NLS,pEGFP-N1-NLS, pEGFP-C2-KyoT3N and pEGFP-N1-KyoT3N. The expressionlevel of pEGFP-C2-KyoT3N was detected as very low through Western blotanalysis. Then by transfecting other5plasmids, that the nuclear localization ofKyoT3and the localization in the nucleus of KyoT3via its NLS have been found.
     Thirdly, the physical interaction between KyoT3and RBP-J throughCo-ip has been proved. And the role of KyoT3in repressing RBP-Jdependent transcription has been further verified. pCMV-Myc-KyoT3wasconstructed by inserting full-length KyoT3into the pCMV-Myc vector. HeLacells were transfected by this plasmid and pCMV-RBP-J-Flag together.Co-precipitated proteins were analyzed by SDS-PAGE followed by Westernblotting which used the anti-Flag or the anti-Myc antibody, respectively. Theresult show that KyoT3could interact with RBP-J. Further studies usingdual-luciferase reporter assay were conducted in both HeLa and HEK293cells verifying that KyoT3inhibits the transactivation of RBP-J-dependent promoter.Real-time PCR method has been adopted to test the downstream gene of Notchsignaling pathway in HeLa cell which transfected with different combination ofNIC and KyoT3. The result shows that co-transfection with KyoT3could inhibitthe NIC-induced Hes-1up-regulation.
     2. The role of KyoT family in regulating ECs function has been illustrated.
     Firstly, HUVECs were isolated and cultured from the human umbilicalvein. The identity of the cells was conferred by its morphic character, expressionof CD31, and the ability of tube formation. Through RT-PCR, only KyoT2amongKyoT family is expressed in isolated HUVECs.
     Secondly, comparing to the control transfection, the total number oftransfected cells decrease significantly while the tube formation and the tipcell number increase in cells transfection of KyoT2. LTXPLUSwas firstly usedto transfect EGFP-KyoT2or EGFP only into the HUVEC and HUVEC-CL, thetransfected cell number was counted by FACS, the proliferation of the cellstransfected with EGFP-KyoT2decline comparing to the cells transfected withEGFP. Simultaneously, the tube formation and the tip cell number increase inHUVEC-CL transfected with EGFP-KyoT2.
     Conclusion
     Current studies shows that Notch signaling pathway is critical in angiogenesis.Many components of Notch signaling pathway play a role in regulatingangiogenesis. The Notch signaling itself is a "complex" signaling pathwaybecause many components participate in regulating this pathyway, including anew member---an isform of KyoT family existing in the murine named KyoT3.This protein distributes extensively in many tissues and mainly locates in thenucleus. KyoT3could bind RBP-J and hence plays a role in inhibiting the RBP-J-dependent transcription. Interestingly, there is only KyoT2expressed inHUVECs, and it could inhibit proliferation as well as promotes tube formationand tip cell number of ECs.
引文
[1] Carmeliet P.&Jain R.K., Angiogenesis in cancer and other diseases. Nature.2000,407:249-257.
    [2] Patan, S., Vasculogenesis and angiogenesis. Cancer Treat. Res.2004,117:3-32.
    [3] Gerhardt H, Golding M, et al., VEGF guides angiogenic sprouting utilizing endothelialtip cell filopodia. J Cell Biol.2003,161:1163-1177.
    [4] J Dufraine, Y Funahashi et al., Notch signaling regulates tumor angiogenesis by diversemechanisms. Oncogene.2008,27:5132-5137.
    [5] A. F. Karamysheva, Mechanisms of Angiogenesis. Biochemistry(Moscow),2008,7:751-762.
    [6] Gerber HP, Dixit V, et al., Vascular endothelial growth factor induces expression of theantiapoptotic proteins Bcl-2and A1in vascular endothelial cells, Biol Chem.1998,273(21):13313-6.
    [7] Gerber HP, McMurtrey A, et al., Vascular endothelial growth factor regulates endothelialcell survival through the phosphatidylinositol3'-kinase/Akt signal transduction pathway.Requirement for Flk-1/KDR activation. J Biol Chem.1998,273(46):30336-43.
    [8] Benjamin LE, Golijanin D, et al., Selective ablation of immature blood vessels inestablished human tumors follows vascular endothelial growth factor withdrawal, J ClinInvest.1999,103(2):159-65.
    [9] Ferrara N, Davis-Smyth T., The biology of vascular endothelial growth factor., EndocrRev.1997,18(1):4-25.
    [10] Leung DW, Cachianes G, et al., Vascular endothelial growth factor is a secretedangiogenic mitogen, Science.1989,246(4935):1306-9.
    [11] Houck KA, Ferrara N., et al., The vascular endothelial growth factor family:identification of a fourth molecular species and characterization of alternative splicing ofRNA, Mol Endocrinol.1991,5(12):1806-14.
    [12] Tischer E, Mitchell R, et al., The human gene for vascular endothelial growth factor.Multiple protein forms are encoded through alternative exon splicing, J Biol Chem.1991,266(18):11947-54.
    [13] Ferrara N, Henzel WJ., Pituitary follicular cells secrete a novel heparin-binding growthfactor specific for vascular endothelial cells, Biochem Biophys Res Commun.1989,161(2):851-8.
    [14] Hicklin DJ, Ellis LM., Role of the vascular endothelial growth factor pathway in tumorgrowth and angiogenesis, J Clin Oncol.2005,23(5):1011-27.
    [15] Kawasaki T, Kitsukawa T, et al., A requirement for neuropilin-1in embryonic vesselformation, Development.1999,126(21):4895-902.
    [16] Shibuya M, Yamaguchi S, et al., Nucleotide sequence and expression of a novel humanreceptor-type tyrosine kinase gene (flt) closely related to the fms family, Oncogene.1990,5(4):519-24.
    [17] Park JE, Chen HH, et al., Placenta growth factor. Potentiation of vascular endothelialgrowth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1but not toFlk-1/KDR, J Biol Chem.1994,269(41):25646-54.
    [18] Kendall RL&Thomas KA., Inhibition of vascular endothelial cell growth factor activityby an endogenously encoded soluble receptor, Proc Natl Acad Sci U S A.1993,90(22):10705-9.
    [19] Hicklin DJ&Ellis LM., Role of the vascular endothelial growth factor pathway intumor growth and angiogenesis, J Clin Oncol.2005,23(5):1011-27.
    [20] Rini BI&Small EJ., Biology and clinical development of vascular endothelial growthfactor-targeted therapy in renal cell carcinoma, J Clin Oncol.2005,23(5):1028-43.
    [21] Goetze S, Bungenstock A, et al. Leptin induces endothelial cell migration through Akt,which is inhibited by PPARgamma-ligands. Hypertension.2002,40:748-754.
    [22] Risau W. Mechanisms of angiogenesis. Nature.1997,386:671-674.
    [23] Shono T, Kanetake H, et al. The role of mitogenactivated protein kinase activationwithin focal adhesions in chemotaxis toward FGF-2by murine brain capillary endothelialcells. Exp Cell Res.2001,264:275-283.
    [24] Humphries MJ., Integrin structure, Biochem Soc Trans.2000,28(4):311-39.
    [25] Walton HL, Corjay MH, et al. Hypoxia induces differential expression of the integrinreceptors alphavbeta3and alphavbeta5in cultured human endothelial cells, J Cell Biochem.2000,78(4):674-80.
    [26] Ruegg C, Domondo O, et al., Endothelial cell integrins and cox-2mediators andtherapeautic targets of tumor angiogenesis, Biochim Biophys Acta,2004,16(5):51-67.
    [27] Friedlander M, Brooks PC, et al., Definition of two angiogenic pathways by distinct αvintegrins, Science,1995,27(10):1500-2.
    [28] Robinson SD, Reynolds LE, et al. Alphav beta3integrin limits the contribution ofneuropilin-1to vascular endothelial growth factor-induced angiogenesis, J Biol Chem.2009,284:33966-33981.
    [29] Hutter H, Vogel BE, et al., Conservation and novelty in the evolution of cell adhesionand extracellular matrix genes, Science.2000,287(5455):989-94.
    [30] Morris, P., The developmental role of the extracellular matrix suggests a monophyleticorigin of the kingdomAnimalia. Evolution.1993,152-165.
    [31] Avraamides CJ, Garmy-Susini B, et al., Integrins in angiogenesis andlymphangiogenesis, Nat Rev Cancer.2008,(8):604-17.
    [32] J. Sottile, Regulation of angiogenesis by extracellular matrix, Biochimica et BiophysicaActa,2004,1654(1):13-22.
    [33] N r, J., et al., Thrombospondin-1induces endothelial cell apoptosis and inhibitsangiogenesis by activating the caspase death pathway. Journal of vascular research.2000,37(3):209-218.
    [34] Assoian, R.&M. Schwartz, Coordinate signaling by integrins and receptor tyrosinekinases in the regulation of G1phase cell-cycle progression. Current Opinion in Genetics&Development.2001,11(1):48-53.
    [35] Lafleur MA,Handsley MM,et a1., Endothelial tnbulogenesis within fibrin gelsspecifically requires the activity of membrane·type-matrix metalloproteinases(MT-MMPs).JCell Sci.2002,115:3427-3438.
    [36] Sarah De Val&Brian L. Black,Transcriptional Control of Endothelial CellDevelopment,Developmental Cell.16,2009180-195.
    [37] Huang LE&Bunn HF. Hypoxia-inducible factor and its biomedical relevance.J BiolChem.2003,278:19575-19578.
    [38] Hirota K.Hypoxia-inducible factor1,a master transcription factor of cellular hypoxicgene expression.J Anesth.2002,16:150-l59.
    [39] Wang GL,Jiang BH,et a1.Hypoxia-inducible factor l is a basic-helix-loop-helix-PASheterodimer regulated by cellular O2tension.Proc NatlAcad Sci USA. l995,92:55l0-55l4.
    [40] Ste′phane Germain, Catherine Monnot, et a1., Hypoxia-driven angiogenesis: role of tipcells and extracellular matrix scaffolding, Current Opinion in Hematology.2010,17:245–251.
    [41] Ward NL&Dumont DJ., The angiopoietins and Tie2/Tek: adding to the complexity ofcardiovascular development, Semin Cell Dev Biol.2002,13(1):19-27.
    [42] Thurston G., Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis andlymphangiogenesis, Cell Tissue Res.2003,314(1):61-8.
    [43] Maisonpierre PC, Suri C, et al., Angiopoietin-2, a natural antagonist for Tie2thatdisrupts in vivo angiogenesis, Science.1997,4;277(5322):55-60.
    [44] Davis S, Aldrich TH, et al., Isolation of angiopoietin-1, a ligand for the TIE2receptor,by secretion-trap expression cloning, Cell.1996,87(7):1161-9.
    [45] Witzenbichler B, Maisonpierre PC, et al., Chemotactic properties of angiopoietin-1and-2, ligands for the endothelial-specific receptor tyrosine kinase Tie2, J Biol Chem.1998,273(29):18514-21.
    [46] Suri C, McClain J, et al., Increased vascularization in mice overexpressingangiopoietin-1, Science.1998,282(5388):468-71.
    [47] Ramsauer M, D'Amore PA., Getting Tie(2)d up in angiogenesis, J Clin Invest.2002,110(11):1615-7.
    [48] Holash J, Wiegand SJ, et al., New model of tumor angiogenesis: dynamic balancebetween vessel regression and growth mediated by angiopoietins and VEGF, Oncogene.1999,18(38):5356-62.
    [49] Elisabetta Dejana, The Role of Wnt Signaling in Physiological and PathologicalAngiogenesis, Circ. Res.2010,107:943-952.
    [50] Cattelino A, Liebner S, et al., The conditional inactivation of the beta-catenin gene inendothelial cells causes a defective vascular pattern and increased vascular fragility. J CellBiol.2003,162:1111-1122.
    [51] Liebner S, Cattelino A, et al. Beta-catenin is required for endothelial-mesenchymaltransformation during heart cushion development in the mouse. J Cell Biol.2004,166:359-367.
    [52] Grigoryan T, Wend P, et al. Deciphering the function of canonical Wnt signals indevelopment and disease: conditional lossand gain-of-function mutations of beta-catenin inmice. Genes Dev.2008,22:2308-2341.
    [53] Thomas Hunt Morgan."The theory of the gene". American Naturalist.1917,51(609):513-544.
    [54] Wharton KA, Johansen KM, et al."Nucleotide sequence from the neurogenic locusnotch implies a gene product that shares homology with proteins containing EGF-likerepeats". Cell,1985,43:567-81.
    [55] Kidd S, Kelley MR, et al."Sequence of the notch locus of Drosophila melanogaster:relationship of the encoded protein to mammalian clotting and growth factors". Mol. Cell.Biol.1986,6(9):3094-108.
    [56] Artavanis-Tsakonas, Spyros, Rand, et al.,"Notch Signaling: Cell Fate Control andSignal Integration in Development (Review)". Science.1999,284(5415):770-776.
    [57] Komatsu, H., Chao, M.Y., et al. OSM-11facilitates LIN-12Notch signaling during C.elegans vulval development. PLoS Biol.,2008,6, e196.
    [58] Kovall, R.A. More complicated than it looks: assembly of Notch pathway transcriptioncomplexes. Oncogene.2008,27:5099-5109.
    [59] Baron M., An overview of the Notch signalling pathway.Semin Cel Dev Bio1.2003,14(2):113-119.
    [60] Takasugi N, Tomita T, et a1., The role of presenilin cofactors in the gamma-secretasecomplex. Nature.2003,422(6930):438-441.
    [61] Iso, T. et al. HES and HERP families: multiple effectors of the Notch signaling pathway.J. Cell. Physiol.2003,194,237-255.
    [62] Matsuno, K., et al., Human deltex is a conserved regulator of Notch signalling. NatGenet.1998,19(1):74-78.
    [63] Sharma VM, Draheim KM, et al.,"The Notch1/c-Myc pathway in T cell leukemia". CellCycle.2007,6(8):927-30.
    [64] Lawson, N. D., Scheer, N., et al., Notch signaling is required for arterial-venousdifferentiation during embryonic vascular development. Development,2001,128:3675-3683.
    [65] Zhong, T. P., Childs, S., et al., Gridlock signalling pathway fashions the first embryonicartery. Nature.2001,414:216-220.
    [66] Lawson, N. D., Vogel, A. M., et al., Sonic hedgehog and vascular endothelial growthfactor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell.2002,3:127-136.
    [67] Liu, Z. J., Shirakawa, T., et al., Regulation of Notch1and Dll4by vascular endothelialgrowth factor in arterial endothelial cells: implications for modulating arteriogenesis andangiogenesis. Mol. Cell. Biol.2003,23:14-25.
    [68] Duarte, A., Hirashima, M., et al., Dosage-sensitive requirement for mouse Dll4inartery development. Genes Dev.2004,18:2474-2478.
    [69] Gale, N. W., Dominguez, M. G., et al. Haploinsufficiency of delta-like4ligand resultsin embryonic lethality due to major defects in arterial and vascular development. Proc. Natl.Acad. Sci. U.S.A.2004,101:15949-15954.
    [70] Krebs, L. T., Shutter, J. R., et al., Haploinsufficient lethality and formation ofarteriovenous malformations in Notch pathway mutants. Genes Dev.2004,18:2469-2473.
    [71] Fischer, A., Schumacher, N., et al., The Notch target genes Hey1and Hey2are requiredfor embryonic vascular development. Genes Dev.2004,18:901-911.
    [72] Kokubo, H., Miyagawa-Tomita, S., et al., Mouse hesr1and hesr2genes are redundantlyrequired to mediate Notch signaling in the developing cardiovascular system. Dev. Biol.2005,278:301-309.
    [73] Iso, T., Maeno, T., et al., Dll4-selective Notch signaling induces ephrinB2geneexpression in endothelial cells. Biochem. Biophys. Res. Commun.2006,341:708-714.
    [74] Grego-Bessa, J., Luna-Zurita, L., et al., Notch signaling is essential for ventricularchamber development. Dev. Cell.2007,12:415-429.
    [75] Hayashi, H.&Kume, T., Foxc transcription factors directly regulate Dll4and Hey2expression by interacting with the VEGF-Notch signaling pathways in endothelial cells.PLoS ONE.2008,3, e2401.
    [76] Seo, S., Fujita, H., et al., The forkhead transcription factors, Foxc1and Foxc2, arerequired for arterial specification and lymphatic sprouting during vascular development. Dev.Biol.2006,294:458-470.
    [77] Sorensen, I., Adams, R. H., et al., DLL1-mediated Notch activation regulatesendothelial identity in mouse fetal arteries. Blood.2009,113:5680-5688.
    [78] Gerhardt, H., Golding, M., et al., VEGF guides angiogenic sprouting utilizingendothelial tip cell filopodia. J. Cell Biol.2003,161:1163-1177.
    [79] Gerhardt, H., Ruhrberg, C., et al., Neuropilin-1is required for endothelial tip cellguidance in the developing central nervous system. Dev. Dyn.2004,231:503-509.
    [80] Sainson, R. C., Aoto, J., et al., Cell-autonomous notch signaling regulates endothelialcell branching and proliferation during vascular tubulogenesis. FASEB J.2005,19:1027-1029.
    [81] Hellstrom, M., Phng, L. K., et al., Dll4signalling through Notch1regulates formation oftip cells during angiogenesis. Nature.2007,445:776-780.
    [82] Lobov, I. B., Renard, R. A., et al., Delta-like ligand4(Dll4) is induced by VEGF as anegative regulator of angiogenic sprouting. Proc. Natl. Acad. Sci. U.S.A.2007,104:3219-3224.
    [83] Ridgway, J., Zhang, G., et al., Inhibition of Dll4signalling inhibits tumour growth byderegulating angiogenesis. Nature.2006,444:1083-1087.
    [84] Scehnet, J. S., Jiang, W., et al., Inhibition of Dll4mediated signaling inducesproliferation of immature vessels and results in poor tissue perfusion. Blood.2007,109:4753-4760.
    [85] Noguera-Troise, I., Daly, C., et al., Blockade of Dll4inhibits tumour growth bypromoting non-productive angiogenesis. Nature.2006,444:1032-1037.
    [86] Dou GR, Wang YC, et al., RBP-J, the transcription factor downstream of Notchreceptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J,2008,22:1606-17.
    [87] Peirce, S. M., Computational and mathematical modeling of angiogenesis.Microcirculation.2008,15:739-751.
    [88] Bentley, K., Gerhardt, H., et al., Agent-based simulation of notch-mediated tip cellselection in angiogenic sprout initialisation. J. Theor. Biol.2008,250:25-36.
    [89] Bentley, K., Mariggi, G., et al., Tipping the balance: robustness of tip cell selection,migration and fusion in angiogenesis. PLoS Comput. Biol.2009,5, e1000549.
    [90] Qutub, A. A.,&Popel, A. S., Elongation, proliferation&migration differentiateendothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol.2009,3:13.
    [91] Benedito, R., Roca, C., et al., The notch ligands Dll4and Jagged1have opposing effectson angiogenesis. Cell.2009,137:1124-1135.
    [92] Hainaud, P., Contreres, J. O., et al., The role of the vascular endothelial growthfactor-Delta-like4ligand/Notch4-ephrin B2cascade in tumor vessel remodeling andendothelial cell functions. Cancer Res.2006,66:8501-8510.
    [93] Patel, N. S., Li, J. L., et al., Up-regulation of delta-like4ligand in human tumorvasculature and the role of basal expression in endothelial cell function. Cancer Res.2005,65:8690-8697.
    [94] Hoey, T., Yen, W. C., et al., DLL4blockade inhibits tumor growth and reducestumor-initiating cell frequency. Cell Stem Cell.2009,5:168-177.
    [95] Yan, M., Callahan, C. A., et al., Chronic DLL4blockade induces vascular neoplasms.Nature.2010,463:E6-E7.
    [96] Boulton ME, Cai J, et al., gamma-Secretase: a multifaceted regulator of angiogenesis. JCell Mol Med.2008,12(3):781-95.
    [97] Freyd G, Kim SK, et al. Novel cysteine-rich motif and homeodomain in the product ofthe Caenorhabditis elegans cell lineage gene lin-11. Nature,1990,344:876-9.
    [98] Newman AP, Acton GZ, et al. The lin-11LIM domain transcription factor is necessaryfor morphogenesis of C. elegans uterine cells. Development.1999,126:5319-26.
    [99] Gupta BP, Wang M, et al. The C. elegans LIM homeobox gene lin-11specifies multiplecell fates during vulval development. Development.2003,130:2589-601.
    [100] Karlsson, O., Thor, S., et al., Insulin gene enhancer binding protein Isl-1is a memberof a novel class of proteins containing both a homeo-and a Cys-His domain. Nature.1990,344:879-882.
    [101] Pfaff SL, Mendelsohn M, et al., Requirement for LIM homeobox gene Isl1in motorneuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell.1996,84:309-20.
    [102] Way, J.C.&Chalfie, M., Mec-3, a homeobox-containing gene that specifiesdifferentiation of the touch receptor neurons in C. elegans. Cell.1988,54:5-16.
    [103] Bach I. The LIM domain: regulation by association. Mech Dev.2000,91:5-17.
    [104] Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined bysubcellular localization and protein-protein interaction. Biol Cell.2007,99:489-502.
    [105] Kadrmas JL, Beckerle MC. The LIM domain: from the cytoskeleton to the nucleus. NatRev Mol Cell Biol.2004,5:920-31.
    [106] Hobert O, Westphal H. Functions of LIM-homeobox genes. Trends. Genet.2000,16:75-83.
    [107] Sanchez-Garcia. I.&Rabbits.T. H., The LIM domain: a new structural motif found inzinc-finger-like proteins. Trends Genet.1994,10:315-320.
    [108] Nishiya N, Sabe H, et al., The LIM domains of hic-5protein recognize specific DNAfragments in a zincdependent manner in vitro. NucAcids Res.1998,26:4267-73.
    [109] J.M. Matthews, M. Bhati, et al., It Takes Two to Tango: The Structure and Function ofLIM, RING, PHD and MYND Domains, Current Pharmaceutical Design.2009,15:3681-3696.
    [110] Sanchez-Garcia, I., Osada, H., et al., The cysteine-rich LIM domains inhibit DNAbinding by the associated homeodomain in Isl-1. EMBO J.1993,12:4243-4250.
    [111] Bridwell, J.A., Price, J.R., et al., Role of the LIM domains in DNA recognition by theLhx3neuroendocrine transcription factor. Gene.2001,277:239-250.
    [112] Yaden, B.C., Savage, J.J., et al., DNA recognition properties of the LHX3b LIMhomeodomain transcription factor. Mol. Biol. Rep.2005,32:1-6.
    [113] Jurata LW,&Gill GN. Functional analysis of the nuclear LIM domain interactor NLI.Mol Cell Biol.1997,17:5688-98.
    [114] Gong Z,&Hew CL. Zinc and DNA binding properties of a novel LIM homeodomainprotein Isl-2. Biochemistry.1994,33:15149-58.
    [115] Lee S, Lee B, et al. Aregulatory network to segregate the identity of neuronal subtypes.Dev Cell.2008,14:877-89.
    [116] Ryan DP, Sunde M, et al. Identification of the key LMO2-binding determinants onLdb1. J Mol Biol.2006,359:66-75.
    [117] O'Neil J, Shank J, et al. TAL1/SCL induces leukemia by inhibiting the transcriptionalactivity of E47/HEB. Cancer Cell.2004,5:587-96.
    [118] Ryan DP, Duncan JL, et al. Assembly of the oncogenic DNA-binding complexLMO2-Ldb1-TAL1-E12. Proteins.2008,70:1461-74.
    [119] Schmeichel KL&Beckerle MC. The LIM domain is a modular protein-bindinginterface. Cell.1994,79:211-9.
    [120] Velyvis A, Vaynberg J, et al. Structural and functional insights into PINCH LIM4domainmediated integrin signaling. Nat Struct Biol.2003,10:558-64.
    [121] Velyvis A, Yang Y, et al. Solution structure of the focal adhesion adaptor PINCH LIM1domain and characterization of its interaction with the integrin-linked kinase ankyrin repeatdomain. J Biol Chem.2001,276:4932-9.
    [122] Turner J, Nicholas H, et al. The LIM protein FHL3binds basic Kruppel-likefactor/Kruppel-like factor3and its co-repressor C-terminal-binding protein2. J Biol Chem.2003,278:12786-95.
    [123] Chang DF, Belaguli NS, et al. Cysteine-rich LIM-only proteins CRP1and CRP2arepotent smooth muscle differentiation cofactors. Dev Cell.2003,4:107-18.
    [124] Muller JM, Metzger E, et al. The transcriptional coactivator FHL2transmits Rhosignals from the cell membrane into the nucleus. EMBO J.2002,21:736-48.
    [125] Cattaruzza M, Lattrich C, et al. Focal adhesion protein zyxin is a mechanosensitivemodulator of gene expression in vascular smooth muscle cells. Hypertension.2004,43:726-30.
    [126] Wu R, Durick K, et al. Specificity of LIM domain interactions with receptor tyrosinekinases. J Biol Chem.1996,271:15934-41.
    [127] Morgan MJ,Madgwick AJ.The fourth member of the FHL family of LIM proteins isexpressed exclusively in the testis. Biochem Biophys Res Commun.1999,255(2):251-55.
    [128] Fimia GM, De Cesare D, et al., A family of LIM-only transcriptionalcoactivators:tissue-specific expression and selective activation of CREB and CREM.MolCell Biol.2000,20(22):8613-22.
    [129] Morgan MJ&Whawell SA. The structure of the human LIM protein ACT gene and itsexpression in tumor cell lines. Biochem Biophys Res Commun.2000,273:776-83.
    [130] Chalmel F, Rolland AD, et al. The conserved transcriptome in human and rodent malegametogenesis. Proc NatlAcad Sci USA.2007,104(20):8346-8351.
    [131] Steger K, Behr R, et al. Expression of activator of CREM in the testis (ACT) duringnormal and impaired spermatogenesis: correlation with CREM expression. Mol Hum Reprod.2004,10(2):129-135.
    [132] Palermo I, Litrico L, et al. Cloning and expression of activator of CREM in testis inhuman testicular tissue. Biochem Biophys Res Commun.2001,283(2):406-411.
    [133] Blocher S, Behr R, et al. Different CREM-isoform gene expression between equine andhuman normal and impaired spermatogenesis. Theriogenology.2003,60(7):1357-1369.
    [134] Peri A&Serio M., The CREM system in human spermatogenesis. J Endocrinol Invest.2000,23(9):578-583.
    [135] Kotaja N, De Cesare D, et al., Abnormal sperm in mice with targeted deletion of the act(activator of cAMP-responsive element modulator in testis) gene. Proc Natl Acad Sci USA.2004,101(29):10620-10625.
    [136] Lardenois A, Chalmel F, et al. Fhl5/Act, a CREM-binding transcriptional activatorrequired for normal sperm maturation and morphology, is not essential for testicular geneexpression, Reprod Biol Endocrinol.2009,7:133.
    [137] Simon Ming Yuen Lee, Stephen Kwok Wing Tsui, et al. Chromosomal Mapping of aSkeletal Muscle Specific LIM-Only Protein FHL3to the Distal End of the Short Arm ofHuman Chromosome1, Somatic Cell and Molecular Genetics.1998,24(3):197-202.
    [138] Morgan, M. J.&Madgwick, A. J., Slim defines a novel family of LIM-proteinsexpressed in skeletal muscle. Biochem. Biophys. Res. Commun.1996,225:632-638.
    [139] Coghill, I. D., Brown, S., et al., FHL3is an actin-binding protein that regulatesalpha-actinin-mediated actin bundling: FHL3localizes to actin stress fibers and enhances cellspreading and stress fiber disassembly. J. Biol. Chem.2003,278:24139-24152.
    [140] Denny L. Cottle&Meagan J. McGrath, FHL3binds MyoD and negatively regulatesmyotube formation, J Cell Sci.2007,120(8):1423-35.
    [141] Samson T, Smyth N, et al. The LIM-only proteins FHL2and FHL3interact with alpha-and beta-subunits of the muscle alpha7beta1integrin receptor, J Biol Chem.2004,279(27):28641-52.
    [142] Fimia, G. M., De Cesare, D. et al., A family of LIM-only transcriptional coactivators:tissue-specific expression and selective activation of CREB and CREM. Mol. Cell. Biol.2000,20:8613-8622.
    [143] Turner, J., Nicholas, H., et al., The LIM protein FHL3binds basic Kruppel-likefactor/Kruppel-like factor3and its corepressor C-terminal-binding protein2. J. Biol. Chem.2003,278:12786-12795.
    [144] McLoughlin, P., Ehler, E., et al., The LIM-only protein DRAL/FHL2interacts with andis a corepressor for the promyelocytic leukemia zinc finger protein. J. Biol. Chem.2002,277:37045-37053.
    [145] Takahashi, K., Matsumoto, C. et al., FHL3negatively regulates human high-affinityIgE receptor beta-chain gene expression by acting as a transcriptional corepressor of MZF-1.Biochem. J.2005,386:191-200.
    [146] Mils, V., Lee, S. M., et al., LIM-only protein FHL3interacts with CDC25B2phosphatase. Exp. Cell Res.2003,285:99-106.
    [147] Purcell, N. H., Darwis, D., et al., Extracellular signal-regulated kinase2interacts withand is negatively regulated by the LIM-only protein FHL2in cardiomyocytes. Mol. Cell.Biol.2004,24:1081-1095.
    [148] Huang X, Wang JF, et al., Identification of the transactivation domain of the humanFHL3, Mol Biol (Mosk).2010,44(2):335-9.
    [149] Chan KK, Tsui SK, et a1. Molecular cloning and characterization of FHL2, a novelLIM domain protein preferentially expressed in human heart. Gene,1998,210(2):345.
    [150] Kong Y., Shelton J. M., et al., Cardiac-specific LIM protein FHL2modifies thehypertrophic response to beta-adrenergic stimulation. Circulation.2001,103:2731-2738.
    [151] Chu P. H., Ruiz-Lozano P., et al., Expression patterns of FHL/SLIM family memberssuggest important roles in skeletal muscle and cardiovascular system. Mech. Dev.2000,95:259-265.
    [152] M. Johannessen, S. Moller, et al., The multifunctional roles of the four-and-a-half-LIMonly protein FHL2, Cell. Mol. Life Sci.2006,63:268-284.
    [153] Morgan MJ, Madgwick AJ, et al. The developmental regulation of a novel muscleLIM-protein. Biochem Biophys Res Commun.1995,212:840-6.
    [154] Lee SM, Tsui SK, et al., Chromosomal mapping, tissue distribution and cDNAsequence of four-and-a-half LIM domain protein1(FHL1). Gene.1998,216(1):163-70.
    [155] Ng EK, Lee SM, et al., Characterization of tissue-specific LIM domain protein(FHL1C) which is an alternatively spliced isoform of a human LIM-only protein (FHL1). JCell Biochem.2001,82:1-10.
    [156] Lee SM, Li HY, et al., Characterization of a brain-specific nuclear LIM domain protein(FHL1B) which is an alternatively spliced variant of FHL1. Gene.1999,237:253-63.
    [157] Brown S, McGrath MJ, et al., Characterization of two isoforms of the skeletal muscleLIM protein1, SLIM1. Localization of SLIM1at focal adhesions and the isoform slimmer inthe nucleus of myoblasts and cytoplasm of myotubes suggests distinct roles in thecytoskeleton and in nuclear-cytoplasmic communication. J Biol Chem.1999,274:27083-91.
    [158] Taniguchi Y, Furukawa T, et al., LIM protein KyoT2negatively regulates transcriptionby association with the RBP-J DNA-binding protein. Mol Cell Biol.1998,18:644-54.
    [159] Qin H, Wang J, et al. RING1inhibits transactivation of RBP-J by Notch throughinteraction with LIM protein KyoT2. Nucleic Acids Res.2004;32:1492-501.
    [160] Qin H, Du D, et al., The PcG protein HPC2inhibits RBP-J-mediated transcription byinteracting with LIM protein KyoT2. FEBS Lett.2005,579:1220-6.
    [161] G. Weinmaster, V.J. Roberts, et al., A homolog of Drosophila Notch expressed duringmammalian development, Development,1991,113:199-205.
    [162] G. Weinmaster, V.J. Roberts, et al., Notch2: a second mammalian Notch gene,Development,1992,116:931-941.
    [163] R. Kopan, H.&Weintraub, Mouse Notch: expression in hair follicles correlates withcell fate determination, J. Cell Biol,1993,121:631-641.
    [164] M. Lardelli, J. Dahlstrand, et al., The novel Notch homologue mouse Notch3lacksspecific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium,Mech. Dev,1994,46:123-136.
    [165] H. Uyttendaele, G. Marazzi, et al., Notch4/int-3, a mammary proto-oncogene, is anendothelial cell-specific mammalian Notch gene, Development,1996,122:2251-2259.
    [166] L. Waltzer, F. Logeat, et al., The human J kappa recombination signal sequence bindingprotein (RBP-J kappa) targets the Epstein–Barr virus EBNA2protein to its DNA responsiveelements, EMBO J,1994,13:5633-5638.
    [167] T. Henkel, P.D. Ling, et al., Mediation of Epstein–Barr virus EBNA2transactivation byrecombination signal-binding protein J kappa, Science,1994,265:92-95.
    [168] S. Dou, X. Zeng, et al., The recombination signal sequence-binding protein RBP-2Nfunctions as a transcription repressor, Mol. Cell. Biol.1994,14:3310-3319.
    [169] E.C. Lai, Keeping a good pathway down: transcriptional repression of Notch pathwaytarget genes by CSL proteins, EMBO reports,2002,3:840-845.
    [170] K. Kuroda, H. Han, et al., Regulation of marginal zone B cell development by MINT, asuppressor of Notch/RBP-J signaling pathway, Immunity,2003,18:301-312.
    [171] J. Wang, H. Qin, et al., The transcriptional repression activity of KyoT2on theNotch/RBP-J pathway is regulated by PIAS1-catalyzed SUMOylation, J. Mol. Biol.2007,370:27-38.
    [172] EmcA. JAFFE, RALPH L. NACHMAN, et al., Culture of Human Endothelial CellsDerived from Umbilical VeinsThe Journal of Clinical Investigation,1973,2745-2756.
    [173] Ambrose L. Cheung, Isolation and Culture of Human Umbilical Vein Endothelial Cells(HUVEC), Current Protocols in Microbiology.2007, A.4B.1-A.4B.8.
    [174] Jaeger Davis, Steve P. Crampton, et al., Isolation of Human Umbilical Vein EndothelialCells (HUVEC),Journal of Visualized Experiments.2007.
    [175]黄红艳,李蓉等,LIM蛋白KyoT2与人类紧密连接蛋白2的相互作用,遗传学报.2002,29(11):953-8.
    [176] Elisabetta Dejana, Endothelial cell–cell junctions: happy together, Nature ReviewsMolecular Cell Biology.2004,5:261-270.
    [177] Hu XB, Feng F, et al., Blockade of Notch signaling in tumor-bearing mice may lead totumor regression, progression, or metastasis, depending on tumor cell types. Neoplasia.2009,
    11:32-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700