醋酸纤维素的改性及可控电纺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的发展,纳米纤维材料因其尺寸效应显著,在电、磁、光、热等方面展现出众多新奇的特性,因而受到研究者们的关注。静电纺丝技术是制备直径分布在纳米至微米级超细纤维简单且有效的方法之一。与传统纺丝方法不同,静电纺丝借助于高压电场作用获得超细纤维,所得纤维具有较大的比表面积以及孔隙率。醋酸纤维素首次制备于1865年,是纤维素的乙酸酯。由于其对光稳定、易溶于有机溶剂,具有温和、安全、良好的稳定性和相容性,常作为纤维素替代材料应用于静电纺丝领域。然而,醋酸纤维素性能单一,应用范围受限,大规模工业化生产具有难度,仍需要进一步系统的研究。
     本文采用静电纺丝技术,以醋酸纤维素为基体材料,分别将聚乙烯亚胺、聚苯胺、以及聚乳酸添加到CA中,制备了三个体系的改性CA复合纳米纤维。研究了体系中溶液浓度、聚合物组成、改性聚合物性能对改性CA纳米纤维的形貌、结构和性能的影响,主要分为以下四部分研究工作:
     (1)选取丙酮与水作为共溶剂,制备了CA/PEI电纺纳米复合材料。研究结果表明随着PEI含量的增加,复合纤维直径逐渐增大,且出现了两种不同直径的纤维分布;利用扫描电镜与透射电镜观察水洗后电纺纤维的形貌,水洗后的CA纤维表面仍然为光滑的圆柱形结构;而复合纤维表面出现大量的凹陷与孔洞,内部产生中空结构。结合DSC、FTIR、XPS等数据分析了复合纤维中两组分的分布,即PEI含量较低时,由于PEI和CA的侧基的极性基团相互作用增强,PEI均匀分散在CA体系中,水洗后形成中空结构;PEI含量逐渐增大,其侧基基团随电场力增大表现为斥力增强,在CA/PEI体系中向外扩散至纤维表面。
     (2)制备了具有导电性能的CA/PANI电纺纤维,并通过对电纺纤维定向机理的分析和有限元模拟方法,选取置于绝缘基板上相互平行的铜丝作为接收装置制备得到了具有宏观结构可控的纳米纤维。通过改变电纺条件得出:材料导电性增大,纤维排布有序度提高;在一定范围内提高铜丝间距可以提高纤维排布的有序度;PANI浓度增加,材料导电性增强,铜丝上纤维排布的有序度提高;添加HCSA可以提高PANI在CA/PANI溶液中的溶解度,材料导电性增强,纤维排布的有序度提高。
     (3)以氯仿和丙酮作为溶剂,制备了单组份左旋聚乳酸(PLLA)电纺纤维,通过提高溶液浓度能够有效的减少串珠结构,获得直径可控的超细纤维。引入CA组分后,复合纤维直径增大并伴有两相纤维产生,提高CA的含量,复合纤维直径呈递减趋势。DSC、XRD测试表明,两组分具有良好的相容性,CA组分是影响纤维焓变的主要因素。力学性能测试结果表明,复合纤维拉伸性能较纯CA纤维有所提高,两相纤维对于力学性能产生了有利的影响。此外,接触角测试表明,加入CA组分后,电纺纤维的亲水性能得到了显著提高。
     (4)基于第三部分的研究工作,选取CA/PLLA及PLLA作为基体材料,绑定生物素后通过电纺丝制备生物传感器界面,并利用生物素/链霉亲和素之间快速特异的结合作用,将蛋白质固载于纤维膜表面以达到探测蛋白的目的。结合SEM、XRD、比色实验、以及酶联免疫吸附试验对比发现,CA组分的引入能够使复合纤维产生多孔的微观结构,进一步提高基体材料中的生物素与蛋白接触的面积,提高生物传感器的灵敏性及有效性。
With the development of nanotechnology, nano-fiber material exhibited many novelfeatures in the fields of electricity, magnetism, light, heat, for which received extensiveattention of the researchers. Electrospinning was a simple and effective method to preparefibers with nano-and micro-diameter distribution. Cellulose acetate was first prepared in1865, and it was stable in light, soluble in organic solvents, and had good compatibility. CAis commonly used as the substrate material in the electrospinning. However, CA had lowoxidation and chemical affinity which limited its further applications. Therefore,modification of CA have become a commercially viable approach to produce new materialswith improved properties.
     In this dissertation, CA was modified by polyethyleneimine (PEI), polyaniline (PANI),and poly (lactic acid)(PLLA) respectively through electrospinning. CA composite fiberswere characterized by SEM, TEM, DSC, XPS, etc. In addition, the influences of the polymerconcentration, electrospinning condition and polymer properties on CA fibers were studiedsystematically. This thesis consisted of the following four parts:
     (1) CA/PEI electrospun nanofibers were successfully fabricated by electrospinning.Acetone and water was chosen as the co-solvent. SEM and TEM images showed thatelectrospun CA fibers after water-treated remained smooth surface and cylindrical shape,while eletrospun CA/PEI fibers had a large number of recesses and holes on the surface, andhollow structure in the interior. DSC, FTIR and XPS data proved the distribution of the twocontents. When PEI content was low, the enhanced interaction from the polar groups of CAand PEI led to even distribution of PEI in the CA/PEI system. And then hollow structure wasobtained after water treated. When PEI content increased gradually, the repulsive forcebetween the side group enhanced with the increasing of electric force. PEI content diffusedoutward to the surface of the composite fibers.
     (2) Based on the simulation of finite element and the analysis of the electrospun fibersorientation mechanism, the controllable CA/PANI nanofibers were fabricated successfully.The parallel copper wires on the insulated substrate were used as the collector. Theexperimental results were shown as followed. With the conductivity increased, the orderedarrangement of the electrospun fibers enhanced. Improving the distance between the two copper wires with a certain range, the order degree of the fibers increased. Whenconcentration of PANI increased, the conductivity of the fibers enhanced. And the fibersposited on the coppers had a better orientation. Besides, HCSA could increase the solubilityof the PANI in the CA/PANI solution effectively. Thus, fiber conductivity reinforced andordered orientation of the fibers raised.
     (3) Poly(L-lactic) acid (PLLA) nanofiber was prepared successfully by electrospinningusing chloroform and acetone as the solvent. Increasing the concentration of the PLLA couldeffectively reduce the beaded structure to obtain controllable diameter of the fibers.CA/PLLA mixtures of different compositions were successfully electrospun to obtaincomposite nanofibrous membranes. The microstructures of the membranes changed fromhomogeneous to heterogeneous with the addition of CA, which was observed by FE-SEM.The CA/PLLA fabric membranes were characterized by mechanical testing, DSC andcontact angle measurements. The tensile stress of the composite fibrous membranesincreased obviously with the increase of CA content. DSC results indicated that the CAcomponent was the main factor for the changes of enthalpies in the composite fibers. Contactangle measurements showed the hydrophilicity of the electrospun nanofiber membranes wasimproved with.
     (4) PLLA and CA/PLLA fiber membranes were prepared as biosensor substrate. Biotinwas added into PLLA and CA/PLLA fibers successfully. By using of the rapid and specificbinding between the biotin/streptavidin, the protein was immobilized on the surface of thefiber membrane and detected. SEM, XRD, colorimetric assay and enzyme linkedimmunosorbnent assay (ELISA) were used to characterize the capability of PLLA/biotin andCA/PLLA/biotin fibers binding streptavidin. The results showed that the introduction of CAcomponent enabled composite fibers to produce micro-porous structure, and furtherimproved the effect of the substrate material binding biotin, and finally improve thesensitivity and effectiveness of the biosensor.
引文
[1] LI D, XIA Y N. Electrospinning of nanofibers: Reinventing the wheel [J]. AdvancedMaterials,2004,16(14):1151-1170.
    [2] GARY K, BOWLIN G L. Electrospinning jets and nanofibrous structures [J].Biomicrofluidics,2011,5(1):1-19.
    [3] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers byelectrospinning and their applications in nanocomposites [J]. Composites Science andTechnology,2003,63(15):2223-2253.
    [4] BURGER C, HSIAO B S. Nanofibrous materials and their applications [J]. AnnualReview of Materials Research,2006,36:333-368.
    [5] RENEKER D H, YARIN A L, FONG H, et al. Bending instability of electrically chargedliquid jets of polymer solutions in electrospinning [J]. Journal of Applied Physics,2000,87(9):4531-4547.
    [6] RENEKER D H, YARIN A L. Electrospinning jets and polymer nanofibers [J]. Polymer,2008,49:2387-2425.
    [7] YARIN A L, KOOMBHONGSE S, RENEKER D H. Bending instability inelectrospinning of nanofibers [J]. Journal of Applied Physics,2001,89(5):3018-3026.
    [8] ANTON F. RICHARD S G.Method of producing artificial fibers: US,2158415[P/OL].1939-05-16.
    [9] ANTON F. Method and apparatus for spinning: US,2349950[P/OL].1944-05-30.
    [10] ANTON F. RICHARD S G. Process and apparatus for artificial threads: US,1975504[P/OL].1934-10-02.
    [11] SIMONS H L. Process and apparatus for producing patterned non-Woven fabrics: US,No3280229[P/OL].1966-10-18. http://www.freepatentsonline.com/3280229.html
    [12] TAYLOR G. Electrically driven jets [J]. Mathematical Physical&Engineering Sciences,1969,313:453-475.
    [13] BAUMGARTEN P K. Electrostatic spinning of acrylic microfibers [J]. Journal ofColloid and Interface Science,1971,36(1):71-79.
    [14] HAYATI I, BAILEY A I, TADROS T F. Investigations into the mechanisms ofelectrohydrodynamic spraying of liquids:1. Effect of electric field and the environment onpendant drops and factors affecting the formation of stable jets and atomization [J]. Journalof Colloid and Interface Science,1987,117(1):205-221.
    [15] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospinningfibers [J]. Journal of Electrostatics,1995,35:151-160.
    [16] JAEGER R, BERGSHOEFF M M, BATTLE C M I, et al. Electrospinning of unltra-thinpolymer fibers [J]. Macromolecular Symposium,1998,127:141-50.
    [17] DEITZEL J M, KLEINMEYER J, HARRIS D, et al. The effect of processing variableson the morphology of electrospun nanofibers and textiles [J]. Polymer,2001,42(1):261-272.
    [18] HOHMAN M M, SHIN M, RUTLEDGE G C, et al. Electrospinning and electricallyforced jets.1.Stability theory [J]. Physics of Fluids,2001,13(8):2201-2217.
    [19] HOHMAN M M, SHIN M, RUTLEDGE G, et al. Electrospinning and electricallyforced jets.2.application [J]. Physics of Fluids,2001,13(8):2221-2237.
    [20] A Fundamental Investigation of the Formation and Properties of Electrospun Fibers [R]National Texile Center Annual Report.1998.
    [21] FENG J J. The stretching an electrified non-newtonian: A model for electrospinning [R].Physics of Fluids,2002,14:3912-3926.
    [22] FENG J. J.. Stretching of a straight electrically charged viscoelastic jet [J]. Journal ofnon-newtonian fluid mechanics,2003,116(1):55-70.
    [23] SPIVAK A F, DZENIS Y A. Asymptotic decay of radius of a weakly conductive viscousjet in an external electric field [J]. Applied Physics letters,1998,73(21):3067-3069.
    [24] YOU Y, MIN B-M, LEE S J, et al. In vitro degradation behavior of electrospunpolyglycolide, polylactide, and poly(lactide-co-glycolide)[J]. Journal of Applied PolymerScience,2004,95(2):195-200.
    [25] CHU C C, BROWNING A. The study of thermal and gross morphologic properties ofpolyglycolic acid upon annealing and degradation treatments [J]. Journal of BiomedicalMaterials Research,1998,22(8):699-712.
    [26] BOLAND E D, MATTHEWS J A, PAWLOWSKI K J, et al. Tailoring tissueengineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid)electrospinning [J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry2001,38(12):1231-1243.
    [27] ZHOU H J, GREEN T B, JOO L Y. The thermal effects on electrospinning of polylacticacid melts [J]. Polymer,2006,47:7497-7505.
    [28] YANG F, MURUGAN R, WANG S, et al. Nano-veatured xcaffolds for tissueengineering: a review of spinning methodologies [J]. Tissue Engineering,2006,12(3):435-447.
    [29] RENEKERA D H, KATAPHINANA W, THERONB A, et al. Nanofiber garlands ofpolycaprolactone by electrospinning [J]. Polymer,2002,43(25):6785-6794.
    [30] YOSHIMOTOA H, SHINA Y M, TERAIA H, et al. A biodegradable nanofiber scaffoldby electrospinning and its potential for bone tissue engineering [J]. Biomaterials,2003,24(12):2077-2082.
    [31] MCCLUREA M J, SELLA S A, SIMPSONB D G, et al. A three-layered electrospunmatrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: Apreliminary study [J]. Acta Biomaterialia,,2010,6(7):2422-2433.
    [32] BOLAND E D, COLEMAN B D, BARNES C P, et al. Electrospinning polydioxanonefor biomedical applications [J]. Acta Biomaterialia,,2005,1(1):115-123.
    [33] GARG K, SELL S A, MADURANTAKAM P, et al. Angiogenic potential of humanmacrophages on electrospun bioresorbable vascular grafts [J]. Biomedical Materials,2009,4:1-9.
    [34] MCCLURE M J, SELL S A, BARNES C P, et al. Cross-linking electrospunpolydioxanone-soluble elastin blends: material characterization [J]. Journal of EngineeredFibers and Fabrics,2008,3(1):1-10.
    [35] MCCLURE M J, SELL S A, SIMPSON D G, et al. Electrospun polydioxanone, elastin,and collagen vascular scaffolds: uniaxial cyclic distension [J]. Journal of Engineered Fibersand Fabrics,2009,4(2):18-25.
    [36] BARNES C P, BRAND D D, SIMPSON D G, BOWLIN G L. Cross-LinkingElectrospun Type II Collagen Tissue Engineering Scaffolds with Carbodiimide in Ethanol [J].Tissue Engineering,2007,13(7):1593-1605.
    [37] BOLAND E D, MATTHEWS J A, PAWLOWSKI K J, et al. Electrospinning collagenand elastin: preliminary vascular tissue engineering [J]. Frontiers in Bioscience,2004,9:1422-1432.
    [38] MATTHEWS J A, WNEK G E, SIMPSON D G, et al. Electrospinning of collagennanofibers [J]. Biomacromolecules,2002,3(2):232-238.
    [39] AYRES C E, BOWLIN G L, PIZINGER R, et al. Incremental changes in anisotropyinduce incremental changes in the material properties of electrospun scaffolds [J]. ActaBiomaterialia,2007,3(5):651-661.
    [40] AYRES C E, JHA B S, MEREDITH H, et al. Measuring fiber alignment in electrospunscaffolds: a user's guide to the2D fast Fourier transform approach [J]. Journal ofBiomaterials Science,2008,19(5):603-621.
    [41] BUTTAFOCO L, KOLKMAN N G, ENGBERS-BUIJTENHUIJS P, et al.Electrospinning of collagen and elastin for tissue engineering applications [J]. Biomaterials,2006,27(5):724-734.
    [42] SELL S A, MCCLURE M J, BARNES C P, et al. Electrospun polydioxanone–elastinblends: potential for bioresorbable vascular grafts [J]. Biomedical Materials,2006,1:72-80.
    [43] SELL S A, MCCLURE M J, AYRES C E, et al. Preliminary Investigation of AirgapElectrospun Silk-Fibroin-Based Structures for Ligament Analogue Engineering [J]. Journalof Biomaterials Science,2010,22(10):1253-73.
    [44] JIN H-J, CHEN J, KARAGEORGIOU V, et al. Human bone marrow stromal cellresponses on electrospun silk fibroin mats [J]. Biomaterials,2004,25(6):1039-1047.
    [45] BARNES C P, SMITH M J, BOWLIN G L, et al. Feasibility of electrospinning theglobular proteins hemoglobin and myoglobin [J]. Journal of Engineered Fibers and Fabrics2006,1(2):16-29.
    [46] FREY M W. Electrospinning cellulose and cellulose derivatives [J]. Polymer Reviews,2008,48(2):378-3791.
    [47] KOOMBHONGSE S, LIU W, RENEKER D H. Flat polymer ribbons and other shapesby electrospinning [J]. Journal of Polymer Science Part B-Polymer Physics,2001,39(21):2598-2606.
    [48] SHIN Y M, HOHMAN M M, BRENNER M P, et al. Experimental characterization ofelectrospinning: the electrically forced jet and instabilities [J]. Polymer,2001,42(25):09955-09967.
    [49] RAYLEIGH L. On the equilbrium of liquid conducting masses charged with electricity[J]. Philosophical Magazine,1882,14(87):184-186.
    [50] SUN Z, ZUSSMAN E, YARIN A L, et al. Compound core-shell polymer nanofibers byco-electrospinning [J]. Advanced Materials,2003,15(22):1929-1932.
    [51] ZHANG Y, HUANG Z-M, XU X, et al. Preparation of core-shell structuredPCL-r-gelatin bi-component nanofibers by coaxial electrospinning [J]. Chemistry ofMaterials,2004,16(18):3406-3409.
    [52] HAN X J, HUANG Z, HE C, et al. Preparation and characterization of core—shellstructured nanofibers by coaxial electrospinning [J]. High Performance Polymers,2007,19(2):147-159.
    [53] LI D, XIA Y N. Direct fabrication of composite and ceramic hollow nanofibers byelectrospinning [J]. Nano Letters,2004,4:933-938.
    [54] YU J H, FRIDRIKH S V, RUTLEDGE G C. Production of submicrometer diameterfibers by two‐fluid electrospinning [J]. Advanced Materials,2004,16(17):1562-1566.
    [55] SMITH M J, MCCLURE M J, SELL S A, et al. Suture-reinforced electrospunpolydioxanone–elastin small-diameter tubes for use in vascular tissue engineering: Afeasibility study [J]. Acta Biomaterialia,2008,4(1):58-66.
    [56] VAZ C M, TUIJI S V, BOUTEN C V C, et al. Design of scaffolds for blood vessel tissueengineering using a multi-layering electrospinning technique [J]. Acta Biomaterialia,2006,1(5):575-582.
    [57] YANG X, SHAH J D, WANG H. Nanofiber Enabled Layer-by-Layer Approach TowardThree-Dimensional Tissue Formation [J]. Tissue Engineering Part A,2008,15(4):945-956.
    [58] THOMAS V, ZHANG X, CATLEDGE S A, et al. Functionally graded electrospunscaffolds with tunable mechanical properties for vascular tissue regeneration [J]. BiomedicalMaterials,2007,2(4):224-232.
    [59] TELEMECO T A, AYRES C, BOWLIN G L, et al. Regulation of cellular infiltrationinto tissue engineering scaffolds composed of submicron diameter fibrils produced byelectrospinning [J]. Acta Biomaterialia,2005,1(4):377-385.
    [60] KUMAR A, WEI M, BARRY C, et al. Controlling fiber repulsion in multijetelectrospinning for higher throughput [J]. Macromolecular Materials and Engineering,2010,295(8):701-708.
    [61] UM I C, FANG D, HSIAO B S, et al. Electro-Spinning and Electro-Blowing ofHyaluronic Acid [J]. Biomacromolecules2004,5(4):1428-1436.
    [62]徐秀玲.电纺丝纤维药物担载与控制释放体系[D].中科院长春市应用化学研究所,2004.
    [63] THERON A, ZUSSMAN E, YARIN A L. Electrostatic field-assisted alignment ofelectrospun nanofibres [J]. Nanotechnology,2001,12(3):384-390.
    [64] ZUSSMAN E, THERON A, YARIN AL. Formation of nanofiber crossbars inelectrospinning.[J]. Applied Physics letters,2003,82:973-975.
    [65] DEITZEL J M, KLEINMEYER J D, HIRVONEN J K, et al. Controlled deposition ofelectrospun poly (ethylene oxide) fibers [J]. Polymer,2001,42(19):8163-8170.
    [66] DERSCH R, LIU T, SCHAPER A K, et al. Electrspun nanofibers:Internal structure andintrinsic orientationPolymer Science Part A: Polymer Chemistry,2003,41:545-553
    [67] FONG H, LIU W D, WANG C S, et al. Generation of electro-spun fibers of nylon6andnylon6-montmorillonite nano-composite [J]. Polymer,2002,43:775-780.
    [68] JHA B S, COLELLO R J, BOWMAN J R, et al. Two pole air gap electrospinning:fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction [J]. ActaBiomaterialia,2011,7(1):203-215.
    [69] LI D, WANG Y L, XIA Y N. Electrospinning of polymeric and ceramic nanofibers asuniaxially aligned arrays [J]. Nano Letters,2003,3(8):1167-1171.
    [70] HERRERA N V, MATHEW A P, WANG L Y, et al. Randomly oriented and alignedcellulose fibres reinforced with cellulose nanowhiskers, prepared by electrospinning [J].Plastics Rubber and Composites,2011,40(2):57-64.
    [71] LIU H Q, HSIEH Y L. Ultrafine fibrous cellulose membranes from electrospinning ofcellulose acetate [J]. Journal of Polymer Science:Part B:Polymer Physics,2002,40:2119-2129.
    [72] FONG H, CHUN I, REENEKER D H. Beaded nanofibers formed duringelectrospinning [J]. Polymer,1999,40:4585-4592.
    [73] EDA G, LIU J, SHIVKUMAR S. Fight path of electrospun polystyrene solutions:Effects of molecular weight and concentration [J]. Materials Letters,2007,61(7):1451-1459.
    [74] DEMIR M M, YILGOR Y, YILGOR I. Electrospinning of polyurethane fibers [J].Polymer,2002,43(11):3303-3309.
    [75] LIU H Q, HSIEH Y L. Ultrafine fibrous cellulose membranes from electrospinning ofcellulose acetate [J]. Journal of Polymer Science Part B-Polymer Physics,2002,40(18):2119-2129.
    [76] SONG H W, YU H Q, PAN G H. Electrospinning preparation, structure, andphotoluminescence properties of YBO3: Eu3+nanotubes and nanowires [J]. Chemistry ofMaterials,2008,20:4762-4767.
    [77] PHAM Q P, SHARMA U, MIKOS A G. Electrospinning of Polymeric Nanofibers forTissue Engineering Applications: A Review [J]. Tissue Engineering,2006,12(5):1197-1211.
    [78] H.ZONG X, KIM K, F.FANG D, et al. Structure and process relationship of electrospunbioabsorbable nanofiber membranes [J]. Polymer,2002,43(16):4403-4412.
    [79] ZONG X, KIM K, FANG D, et al. Structure and process relationship of electrospunbioabsorbable nanofiber membranes [J]. Polymer,2002,43(16):4403-4412.
    [80] ZHANG C X, YUAN X Y, WU L L, et al. Study on morphology of electrospunpoly(vinyl alcohol) mats [J]. European Polymer Journal,2005,41:423-432.
    [81] LIANG D, HSIAO B S, CHU B. Functional electrospun nanofibrous scaffolds forbiomedical applications [J]. Advanced Drug Delivery Reviews,2007,59:1392-1412.
    [82] BAKER B M, GEE A O, METTER R B, et al. The potential to improve cell infiltrationin composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers[J]. Biomaterials,2008,29(15):2348-2358.
    [83] SELL S, BARNES C, SIMPSON D, et al. Scaffold permeability as a means todetermine fiber diameter and pore size of electrospun fibrinogen [J]. Journal of BiomedicalMaterials Research Part A,2008,85A(1):115-126.
    [84] KATAPHINAN W, TEYE-MENSAH R, EVANS E A. High-temperature fiber matrics:Electrospinning and rare-earth modification [J]. Journal of Vacuum Science&Technology A,2003,21:1574-1578.
    [85] BOGNITZKI M, CZADO W, FRESE T. Nanostructured fibers via electrospinning [J].Advanced Materials,2001,13:70-72.
    [86] LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers forpotential biomedical applications [J]. Science,2002,296:1673-1676.
    [87] GENTSCH R, BOYSEN B, LANKENAU A, et al. Single-step electrospinning ofbimodal fiber meshes for ease of cellular Infiltration [J]. Macromolecular RapidCommunications,2010,31(1):59-64.
    [88] GAO K, HU X, DAI C, et al. Crystal structures of electrospun PVDF membranes andits separator application for rechargeable lithium metal cells [J]. Materials Science andEngineering: B,2006,131(1-3):100-105.
    [89] STEPHENS J S, CHASE D B, RABOLT J F. Effect of the electrospinning process onpolymer crystallization chain conformation in nylon-6and nylon-12[J]. Macromolecules,2004,37:877-881.
    [90] CELEBIOGLU A, UYAR T. Electrospun porous cellulose acetate fibers from volatilesolvent mixture [J]. Materials Letters,2011,65(14):2291-2294.
    [91] HAAS D, HEINRICH S, GREIL P. Solvent control of cellulose acetate nanofibre feltstructure produced by electrospinning [J]. Journal of Materials Science,2010,45(5):1299-1306.
    [92] ZHANG L, HSIEH Y-L. Ultra-fine cellulose acetate/poly(ethylene oxide) bicomponentfibers [J]. Carbohydrate Polymers,2008,71(2):196-207.
    [93] CASTILLO-ORTEGA M M, ROMERO-GARCIA J, RODRIGUEZ F, et al. Fibrousmembranes of cellulose acetate and poly(vinyl pyrrolidone) by electrospinning method:preparation and characterization [J]. Journal of Applied Polymer Science,2009,116(4):1873-1878.
    [94] TANG C Y, CHEN P P, LIU H Q. Preparation of cellulose acetate(CA)/polyurethane(PU)composite nanofiber by electrospinning [C]. Proceedings of the2007InternationalConference on Advanced Fibers and Polymer Materials Vols1and2,2007.
    [95] SUWANTONG O, RUKTANONCHAI U, SUPAPHOL P. Electrospun cellulose acetatefiber mats containing asiaticoside or Centella asiatica crude extract and the releasecharacteristics of asiaticoside [J]. Polymer,2008,49(19):4239-4247.
    [96] SUWANTONG O, RUKTANONCHAI U, SUPAPHOL P. In vitro biological evaluationof electrospun cellulose acetate fiber mats containing asiaticoside or curcumin [J]. Journal ofBiomedical Materials Research Part A,2010,94A(4):1216-1225.
    [97] SUWANTONG O, OPANASOPIT P, RUKTANONCHAL U, et al. Electrospuncellulose acetate fiber mats containing curcumin and release characteristic of the herbalsubstance [J]. Polymer,2007,48(26):7546-7557.
    [98] ZHOU W T, HE J X, CUI S Z, et al. Nanofibrous Membrane of Silk Fibroin/CelluloseAcetate Blend for Heavy Metal Ion Adsorption [M]. Manufacturing Processes and Systems,Pts1-2.2011:1431-1435.
    [99] ZHOU W T, HE J X, CUI S Z, et al. Preparation of electrospun silk fibroin/celluloseacetate blend nanofibers and their spplications to heavy metal Ions adsorption [J]. Fibers andPolymers,2011,12(4):431-437.
    [100] ZHOU W T, HE J X, DU S, et al. Electrospun silk fibroin/cellulose acetate blendnanofibres: structure and properties [J]. Iranian Polymer Journal,2011,20(5):389-397.
    [101] TSIOPTSIAS C, SAKELLARIOU K G, TSIVINTZELIS I, et al. Preparation andcharacterization of cellulose acetate-Fe2O3composite nanofibrous materials [J].Carbohydrate Polymers,2010,81(4):925-930.
    [102] LI J, KEE C D, VADAHANAMBI S, et al. A Novel Biocompatible Actuator based onElectrospun Cellulose Acetate [M]. Advances in Key Engineering Materials.2011:359-363.
    [103] PITTARATE C, YOOVIDHYA T, SRICHUMPUANG W, et al. Effects ofpoly(ethylene oxide) and ZnO nanoparticles on the morphology, tensile and thermalproperties of cellulose acetate nanocomposite fibrous film [J]. Polymer Journal,43(12):978-986.
    [104] ANITHA S, BRABU B, THIRUVADIGAL D J, et al. Optical, bactericidal and waterrepellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO[J]. Carbohydrate Polymers,2011,87(2):1065-1072.
    [105] HENDRICK E, FREY M, HERZ E, et al. Cellulose Acetate Fibers with FluorescingNanoparticles for Anti-counterfeiting and pH-sensing Applications [J]. Journal of EngineeredFibers and Fabrics,2010,5(1):21-30.
    [106] RUBENSTEIN D A, VENKITACHALAM S M, ZAMFIR D, et al. In vitrobiocompatibility of sheath-core cellulose-acetate-based electrospun scaffolds towardsendothelial cells and platelets [J]. Journal of Biomaterials Science-Polymer Edition,2010,21(13):1713-1736.
    [107] BEDFORD N M, STECKL A J. Photocatalytic self cleaning textile fibers by coaxialelectrospinning [J]. Acs Applied Materials&Interfaces,2010,2(8):2448-55.
    [108] LISUNOVA M, HILDMANN A, HATTING B, et al. Nanofibres of CA/PAN with highamount of carbon nanotubes by core-shell electrospinning [J]. Composites Science andTechnology,2010,70(11):1584-1588.
    [109] DENG H B, ZHOU X, WANG X Y, et al. Layer-by-layer structured polysaccharidesfilm-coated cellulose nanofibrous mats for cell culture [J]. Carbohydrate Polymers,2009,80(2):474-479.
    [110] DING B, FUJIMOTO K, SHIRATORI S. Preparation and characterization ofself-assembled polyelectrolyte multilayered films on electrospun nanofibers [J]. Thin SolidFilms,2005,491(1-2):23-28.
    [111] RITCHAROEN W, SUPAPHOL P, PAVASANT P. Development of polyelectrolytemultilayer-coated electrospun cellulose acetate fiber mat as composite membranes [J].European Polymer Journal,2008,44(12):3963-3968.
    [112] DING B, GONG J, KIM J, et al. Polyoxometalate nanotubes from layer-by-layercoating and thermal removal of electrospun nanofibres [J]. Nanotechnology,2005,16(6):785-790.
    [113] DING B, LI C, FUJITA S, et al. Layer-by-layer self-assembled tubular filmscontaining polyoxometalate on electrospun nanotibers [J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects,2006,284:257-262.
    [114] DING B, LI C, HOTTA Y, et al. Conversion of an electrospun nanofibrous celluloseacetate mat from a super-hydrophilic to super-hydrophobic surface [J]. Nanotechnology,2006,17(17):4332-4339.
    [115] SUNDARRAJAN S, RAMAKRISHNA S. Fabrication of functionalized nanofibermembranes containing nanoparticles [J]. Journal of Nanoscience and Nanotechnology,2010,10(2):1139-1147.
    [116] TIAN Y, WU M, LIU R G, et al. Electrospun membrane of cellulose acetate for heavymetal ion adsorption in water treatment [J]. Carbohydrate Polymers,2010,83(2):743-748.
    [117] TANG C, LIU H. Cellulose nanofiber reinforced poly(vinyl alcohol) composite filmwith high visible light transmittance [J]. Composites Part A-Applied Science andManufacturing,2008,39(10):1638-1643.
    [118] CHEN P C, HUANG X J, HUANG F, et al. Immobilization of lipase onto celluloseultrafine fiber membrane for oil hydrolysis in high performance bioreactor [J]. Cellulose,2011,18(6):1563-1571.
    [119] CHEN S L, HUANG X J, XU Z K. Functionalization of cellulose nanofiber mats withphthalocyanine for decoloration of reactive dye wastewater [J]. Cellulose,2011,18(5):1295-1303.
    [120] HUANG X J, CHEN P C, HUANG F, et al. Immobilization of candida rugosa lipaseon electrospun cellulose nanofiber membrane [J]. Journal of Molecular CatalysisB-Enzymatic,2011,70(3-4):95-100.
    [121] DIXIT V, TEWARI J, OBENDORF S K. Fungal growth inhibition of regeneratedcellulose nanofibrous membranes containing quillaja saponin [J]. Archives of EnvironmentalContamination and Toxicology,1999,59(3):417-423.
    [122] MA Z W, KOTAKI M, RAMAKRISHNA S. Electrospun cellulose nanofiber asaffinity membrane [J]. Journal of Membrane Science,2005,265(1-2):115-123.
    [123] RODRIGUEZ K, RENNECKAR S, GATENHOLM P. Biomimetic calcium phosphatecrystal mineralization on electrospun cellulose-based scaffolds [J]. Acs Applied Materials&Interfaces,2011,3(3):681-689.
    [124] LU P, HSIEH Y L. Multiwalled carbon nanotube (MWCNT) reinforced cellulosevibers by electrospinning [J]. Acs Applied Materials&Interfaces,2010,2(8):2413-2420.
    [125] MA Z, RAMAKRISHNA S. Electrospun regenerated cellulose nanofiber affinitymembrane functionalized with protein A/G for IgG purification [J]. Journal of MembraneScience,2008,319(1-2):23-28.
    [126] DAVIS B W, NIAMNONT N, HARE C D, et al. Nanofibers Doped with DendriticFluorophores for Protein Detection [J]. Acs Applied Materials&Interfaces,2010,2(7):1798-1803.
    [127] CHEN L, BROMBERG L, HATTON T A, et al. Electrospun cellulose acetate fiberscontaining chlorhexidine as a bactericide [J]. Polymer,2008,49(5):1266-1275.
    [128] LIANG J H, YANG J X, HUANG Y X, et al. Fabrication of TiO2nanofibers in a novelsolvent system through electrospinning [J]. Acta Chimica Sinica,2010,68(17):1713-1718.
    [129] LIU R L, HUANG Y X, XIAO A H, et al. Preparation and photocatalytic property ofmesoporous ZnO/SnO2composite nanofibers [J]. Journal of Alloys and Compounds,2010,503(1):103-110.
    [130] BOUSSIF O, LEZAOUALCM F, ZANTA M A. A versatile vector for gene andoligonucleotide transfer into cells in culture and in vivo: polyethylenimine [C].ProcNatlAcad SciUSA,1995.
    [131] BOUSSIF O, ZANTA M A, BEHR J P. Optimized galenics improve in vitro genetransfer with cationic molecules up to1000-fold [J]. Gene Therapy,1996,3(12):1074-1080.
    [132]黄绘敏,李振宇,杨帆, et al.静电纺丝法制备超细聚苯乙烯纳米纤维[J].高等学校化学学报,2008,28(6):1200-1202.
    [133] RENEKER D H, CHUN I. Nanometre diameter fibres of polymer, produced byelectrospinning [J]. Nanotechnology,1996,7:216-223.
    [134] ZHOU C, CHU R, WU R, et al. Electrospun polyethylene oxide/cellulose nanocrystalcomposite nanofibrous mats with homogeneous and heterogeneous microstructures [J].Biomacromolecules,2011,12(7):2617-2625.
    [135] CHEN C Z, WANG L G, HUANG Y. Electrospun phase change fibers based onpolyethylene glycol/cellulose acetate blends [J]. Applied Energy,2011,88(9):3133-3139.
    [136]张文娟,王东伟,王善元.二醋酸纤维素的碱降解性能[J].纤维素科学与技术,2008,16(1):45-49.
    [137]何建新,唐予远,王善元.醋酸纤维素的结晶结构域热性能[J].纺织学报,2008,29(10):12-16.
    [138] LI P, ZHANG S, CHEN S, et al. Preparation and adsorption properties ofpolyethylenimine containing fibrous adsorbent for carbon dioxide capture [J]. Journal ofApplied Polymer Science,2008,108:3851-3858.
    [139]王青,文利雄,郑田菀, et al.聚乙烯亚胺对纳米SiO2空心颗粒分散行为的影响[J].高校化学工程学报,2006,20(5):752-758.
    [140] ZENG K, LIU Y, ZHENG S. Poly(ethelene imine)hybrids containing polyhedraloligomeric silsesquioxanes: Preparation, structure and properties [J]. European PolymerJournal,2008,44:3946-3956.
    [141] KIM M N, KOH J, LEE Y, et al. Preparation of PVA/PAN bicomponent nanofiber viaelectrospinning and selective dissolution [J]. Journal of Applied Polymer Science,2009,113(1):274-282.
    [142] KIM C, JEONG Y I, NGOC B T N, et al. Synthesis and characterization of porouscarbon nanofibers with hollow cores through the thermal treatment of electrospuncopolymeric nanofiber webs [J]. Small,2007,3(1):91-95.
    [143] ZHANG D M, CHANG J. Patterning of electrospun fibers using electroconductivetemplates [J]. Advanced Materials,2007,19:3664-3667.
    [144]李霞,邓晓军,刘化毅, et al.紫外光照催化法合成聚苯胺纳米管[J].牡丹江师范学院学报,2011,1:26-28.
    [145]赵晓峰,江奇,郭亚楠, et al.有机化学合成法制备碳纳米管/聚苯胺复合材料[J].无机材料学报,2010,25(1):91-95.
    [146]王杏,关荣锋,田大垒,赵文卿.聚苯胺复合材料的研究进展及其应用[J].化工新型材料,2008,36(1):12-14.
    [147]郭海鹰.大型通用有限元分析软件ANSYS简介及应用体会[J].无线电通信技术,1996,5:51-55.
    [148] JUN J H, CHO K, YUN J, et al. Enhancement of electrical characteristics ofelectrospun polyaniline nanofibers by embedding the nanofibers with Ga-doped ZnOnanoparticles [J]. Organic Electonics,2008,9:445-4451.
    [149]张璐.聚苯胺静电纺丝工艺及其电性能研究[D].天津大学:天津大学材料学院,2007.
    [150]王佛松.聚苯胺的掺杂反应[J].武汉大学学报,1993,6:65-73.
    [151]薛涛.高导电率聚苯胺膜和可溶性聚苯胺涂料的制备及功能PCB板的探索[D].天津大学:天津大学材料学院,2005.
    [152] ROUHOLLAH J, MOHAMMAD M, SEYED A, et al. Fundamental parametersaffecting electrospinning of PAN nanofibers as uniaxially aligned fibers [J]. Journal ofApplied Physics,2006,101(6):4350-4357.
    [153] MOHAMED B. BAZBOUZ, GEORGE K. STYLIOS. Alignment and optimization ofnylon6nanofibers by electrospinning [J]. Journal of Applied Physics,2008,107:3023-3032.
    [154]段宏伟,毕淑娟,张玉军, et al.基于电场结构参数化建模的纺丝机结构优化[J].哈尔滨理工大学学报,2009,14(3):117-121.
    [155]李静,黄锋林,蔡以兵, et al.壳聚糖/聚氧乙烯复合放丝溶液性能对静电纺丝的影响[J].化工新型材料,2012,40(1):66-68.
    [156] BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabricaitiontechnique [J]. Biotechnology Advances,2010,28:325-347.
    [157] SUBBIAH T, BHAT G S, TOCK R W, et al. Electrospinning of nanofibers [J]. Journalof Applied Polymer Science,2005,96:557-569.
    [158] FOSHI J, RENEKER D H. Electrospinning process and applications of electrospunfibers [J]. Journal of Electrostatics,1995,35:151-160.
    [159]李妮,覃小红,王善元.溶液性质对静电纺纤维形态的影响[J].纺织学报,2008,29(4):1-4.
    [160]黄丽,李从举,袁俊崧.静电纺丝法制备高分子量聚左旋乳酸纳米纤维及其表征[J].化工新型材料,2011,39(3):36-38.
    [161] WASANASUK K, TASHIRO K. Theoretical and experimental evaluation of crystallitemoduli of various crystalline forms of poly(L-lactic acid)[J]. Macromolecules,2012,45:7019-7026.
    [162] LI M, GUO Y, WEI Y, et al. Electrospinning polyaniline-coated gelatin nanofibers fortissue engineering applications [J]. Biomaterials,2006,27:2705.
    [163]张建松,张鹏云,徐晓红, et al.两种聚(左旋乳酸-己内酯)静电纺纳米纤维膜的性能比较[J].中国组织工程研究与临床修复,2009,13(8):1495-1499.
    [164] ZHOU H, KIM K W, GIANNELIS E P, et al. Nanofibers of Poly(L-lactic) acidnanocomposites:effects of nanoclay on molecular structures [M]. Polymeric NanofibersACSSymposium Series Book,2005.
    [165] CUI W, LI X, ZHOU S, et al. Investigation on process parameters of electrospinningsystem through orthogonal experimental design [J]. Journal of Applied Polymer Science,2007,103:3105-3112.
    [166] OGATA N, LU G, IWATA T. Effects of ethylene content of poly(ethylene-co-vinylalcholo)on diameter of fibers produced by melt-electrospinning [J]. Journal of AppliedPolymer Science,2007,104:1368-1375.
    [167] ZHOU C J, ZHUANG Q X, QIAN J, et al. A simple modification method ofmultiwalled carbon nanotube with polyhydroxyamide [J]. Chemistry Letters,2008,37:254-255.
    [168] OH C, LEE J H, LEE Y G, et al. New approach to the immobilization of glucoseoxidase on non-porous silica microspheres functionalized by (3-aminopropyl)trimethoxysilane [J]. Colloid Surface B,2006,53:225-232.
    [169] LIU X Q, GUAN Y P, SHEN R, et al. Immobilization of lipase onto micron-sizemagnetic beads [J]. Journal of Chromatogr B,2005,822:91-97.
    [170] MERTZ C J, KAMINSKI M D, XIE Y M, et al. In vitro studies of funtionalizedmagnetic nanospheres for selective removal of a simulant biotoxin [J]. Journal of MagneticMaterials,2005,293:572-577.
    [171] ALEXIOU C, JURGONS R, SELIGER G, et al. Medical applications of magneticnanoparticles [J]. Journal of Nanoscience and Nanotechnology,2006,6:2762-2768.
    [172] ZHU H G, SRIVASTAVA R, BROWN J Q, et al. Combined physical and chemicalimmobilization of glucose oxidase in alginate microspheres improves stability ofencapsulation and activity [J]. Bioconjugate Chemistry,2005,16:1451-1458.
    [173] SHI Q, CHEN X, LIU T, et al. The immobilization of proteins on biodegradablepolymer fibers via click chemistry [J]. Biomaterials,2008,29:1118-1126.
    [174] WANG Z G, KE B, XU Z. Covalent immobilization of redox enzyme on electrospunnonwoven poly (acrylonitrile-acrylic) nanofiber mesh filled with carbon nanotubes: acomprehensive study [J]. Biotechnology and Bioengineering,2006,97:708-720.
    [175] CHEW S Y, WEN J, YIM E K F, et al. Sustained release of proteins from electrospunbiodegradable fibers [J]. Biomacromolecules,2005,6:2017-2024.
    [176] BURNHAM M R, TURNER J N, SZAROWSKI D, et al. Biological functionalizationand surface micropatterning of polyacrylamide hydrogels [J]. Biomaterials,2006,27:5883-5891.
    [177] HEO J, CROOKS R M. Microfluidic biosensor based on an array ofhydrogel-entrapped enzymes [J]. Analytical Chemistry,2005,77:6843-6851.
    [178] DONG H, LI C, CHEN W, et al. Sensitive amperometric immunosensing usingpolypyrrolepropylic acid films for biomolecule immobilization [J]. Analytical Chemistry,2006,78:7424-7431.
    [179] TRAU D, RENNEBERG R. Encapsulation of glucose oxidase microparticles within ananoscale layer-by-layer film: immobilization and biosensor applications [J]. Biosensors andBioelectronics,2003,18:1491-1499.
    [180] LU T, CHEN X, SHI Q, et al. The immobilization of proteins on biodegradable fibersvia biotin-streptavidin bridges [J]. Acta Biomaterialia,2008,4(6):1770-1777.
    [181] MAREK P, SENECAL K, NIDA D, et al. Application of a biotin functionalized QDassay for determining available binding sites on electrospun nanofiber membrane [J]. Journalof nanobiotechnology,2011,9(48):1-7.
    [182]吕丰.生物素-亲和素自组装膜及其在生物传感器上的应用研究[D].天津大学:天津大学材料学院,2005.
    [183] ROSANO C, AROSIO P, BOLOGNESI M. The X-ray three-dimensional structure ofavidin [J]. Biomolecular Engineering,1999,15:5-12.
    [184] HYRE D E, STAYTON P S, TRONG I L, et al. Ser45plays an important role inmanaging both the equilibrium and transition state energetics of the streptavidin-biotinsystem [J]. Protein Science,2000,9(5):878-85.
    [185] BOGUSIEWICZ A, MOCK N I, MOCK D M. A biotin-protein bond with stability inplasma [J]. Analytical Biochemistry,2005,337(1):98-102.
    [186] GREEN N M. Avidin [J]. Advances in Protein Chemistry[M],1975,29:85-133.
    [187] SUN X Y, SHANKAR R, BORNER H G, et al. Field-driven biofunctionalization ofpolymer fiber surfaces during electrospinning [J]. Advanced Materials,2007,19:87-91.
    [188] ROYEN P V, SANTOS A M, SCHAHT E, et al. Characterisation of electrospunnanowebs with static secondary ion mass spectrometry (S-SIMS).[J]. Applied SurfaceScience,2006,252:6992-6995.
    [189]王江南,刘海清.静电纺丝制备多孔醋酸纤维素超细纤维[J].高分子材料科学与工程,2011,27(5):133-136.
    [190] KONGHLANG T, KOTAKI M, KOUSAKA Y. Electrospun polyoxymethylene:spinning conditions and its consequent nanoporous nanofiber [J]. macromolecules,2008,41(3):4746-4752.
    [191] SRINIVASARAO M, COLLINGS D, PHILIPS A. Three-dimensionally ordered armyof air bubbles in a polymer film [J]. Science,2001,292(5512):79-81.
    [192] LI D P, FREY M W, BAEUMNER A J. Electrospun polylactic acid nanofibermembranes as substrates for biosensor assemblies [J]. Journal of Membrane Science,2006,279(1-2):354-363.
    [193] THAKUR R A, FLOREK C A, KOHN J. Electrospun nanofibrous polymeric scaffoldwith targeted drug release profiles for potential application as wound dressing [J].International Journal of Pharmaceutics,2008,364(1):87-93.
    [194] FREY M W, LI D, TSONG T, et al. Incorporation of biotin into PLA nanofibers viasuspension and dissolution in the electrospinning dope [J]. Journal of Biobased Materialsand Bioenergy,2007,1(2):220-228.
    [195] GREEN N M. A spectrophotometric assay for avidin and biotin based on binding ofdyes by avdin[J]. Biochemical Journal,1965,94:23C-24C.
    [196] GREEN N M.Spectrophotometric determination of avidin and biotin[J]. Methods inEnzymology,1970,18:418-424.
    [197] BAYER E A, BEN-HUR H, HILLER Y, et al. Postsecretory modifications ofstreptavidin [J]. Biochemical Journal,1989,259:369-376.
    [198] LI D, FREY M W, VYNIAS D, et al. Availability of biotin incorporated in electrospunPLA fibers for streptavidin binding [J]. Polymer,2007,48(21):6340-6347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700