多元尖晶石铁氧体基微纳米纤维的电纺制备、表征与磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一维磁性纳米材料如纳米管、纳米带、纳米线和纳米纤维等因其新奇的物理和化学性质以及在基础研究和应用技术方面的重要价值而受到人们的广泛关注。它们不但具有普通纳米粒子的各种特殊效应,而且还具有独特的形状各向异性和磁各向异性,可以突破各向同性粉体材料对电磁性能的限制,被认为是构筑新型电磁光功能材料与器件的重要组元,有望在高密度磁记录、磁传感器、磁性复合材料、微纳功能器件、自旋电子器件、电磁波吸收、催化以及生物医学等方面得到实际应用。在制备一维微纳米结构材料的众多方法中,高压静电纺丝技术不仅具有制备过程简单、成本低、可大量生产等优势,更重要的是应用范围广泛,而且所得的纤维均匀、连续、直径可控、长度可达宏观尺度。尖晶石铁氧体是一种在工业和日常生活中应用非常广泛的磁性材料,它们的性质与其化学组成和形貌及微观结构有着密切的联系。目前有关尖晶石铁氧体一维微纳米结构的研究主要集中在单元尖晶石铁氧体方面,而对性能优越和应用范围更为广泛的多元尖晶石铁氧体的研究较少。为此,多元尖晶石铁氧体一维微纳米结构及其相关复合材料的研究将具有非常重要的科学价值和现实意义。
     本论文以高压静电纺丝技术为基础,与溶胶-凝胶技术和热处理过程控制相结合,围绕着一维多元尖晶石铁氧体微纳米纤维及其相关复合材料的可控制备、结构调控与磁性能进行研究,主要工作和创新成果如下:
     1.多元尖晶石铁氧体微纳米纤维。以PVP为络合剂,分别与相关无机盐反应制得前驱体溶液,利用静电纺丝技术先制备出PVP/无机盐的复合微纳米纤维,然后将得到的PVP/无机盐复合微纳米纤维经适当的高温焙烧处理获得了所需要的无机物微纳米纤维。(1)我们可控制备了二元尖晶石型Mn0.5Zn0.5Fe2O4、Ni1-xZnxFe2O4 (x= 0.0~0.8)> Co0.5Ni0.5Fe2O4、Co1-xZnxFe2O4 (x= 0.0~0.5)、Li0.5-0.5xZnxFe2.5-0.5xO4 (x=0.0-0.8)以及三元尖晶石型Ni0.5-xCuxZno.5Fe2O4 (x= 0.0~0.5)铁氧体微纳米纤维。(2)采用TG-DTA、FTIR、XRD、SEM(HR)TEM、SAED、EDS和VSM等技术对所制备的微纳米纤维进行了表征,系统研究了焙烧温度和化学组成对纤维的结构、微观形貌和宏观磁性能的影响,并对其原因进行了分析和讨论。(3)初步认识和揭示了一维或准一维多元尖晶石铁氧体的组成、结构与性能之间的关系,发现Co1-XZnxFe2O4微纳米纤维的晶格常数随Zn含量的变化呈一种非单调行为,不满足Vegard定律,而Ni1-XZnxFe2O4和Li0.5-0.5XZnXFe2.5-0.5X4微纳米纤维的晶格常数则随Zn含量的变化基本符合Vegard定律;确定了多元尖晶石铁氧体微纳米纤维Nio.5Zno.5Fe2O4、Coo.5Zno.5Fe2O4、Coo.5Nio.5Fe2O4、Li0.35Zn0.3Fe2.3504及Nio.3Cuo.2Zno.5Fe2O4的单磁畴临界尺寸,分别在33、39、30、35和53 nm左右;在单畴范围内,建立了Coo.5Zno.5Fe2O4、Coo.5Ni0.5Fe2O4及Nio.3Cuo.2Zno.5Fe2O4微纳米纤维的矫顽力与其晶粒尺寸的依赖关系,分别与其平均晶粒尺寸的0.65、0.70和0.71次方成正比,验证了随机各向异性模型对一维纳米体系所预测的结果(即Hc∝D2/3)。(4)此外,我们还分别探讨和表征了Nio.5Zno.5Fe204和Nio.3Cuo.2Zn05Fe2O4微纳米纤维的磁各向异性以及纤维与其相应粉体在磁学行为上的差异,并合理解释了引起这种差异的原因。
     2.多元尖晶石铁氧体/非磁性氧化物复合微纳米纤维。在成功制备出NiZn铁氧体微纳米纤维的基础上,结合溶胶-凝胶技术,采用静电纺丝法合成了Nio.5Zno.5Fe2O4/Si02和Nio.5Zno.5Fe2O4/A1203复合微纳米纤维。研究了Si02和A1203对Nio.5Zno.5Fe2O4微纳米纤维的物相、微观结构及形貌和宏观磁性能的影响规律,并探讨了相关的物理机制。发现引入非晶Si02和A1203非磁性氧化物是调控尖晶石铁氧体微纳米纤维微观结构及磁性能的一条有效途径。
     3.尖晶石铁氧体/磁性合金复合微纳米纤维。结合部分还原过程控制技术,利用静电纺丝法制备了平均直径约为170 nm的镍铁氧体/Fe-Ni合金微纳米纤维,研究了它们的晶体结构、物相组成、微观形貌和宏观磁性能,并与还原前的纯镍铁氧体微纳米纤维进行了比较。发现所制备的复合微纳米纤维由面心立方(FCC)、体心立方(BCC)结构Fe-Ni合金和尖晶石结构镍铁氧体所构成,Fe-Ni合金与镍铁氧体两相间具有较好的磁交换耦合,使之表现出了更为优良的磁性能,比饱和磁化强度和矫顽力分别由还原前的49.5 emu/g和17.4 kA/m提高到还原后的103.9 emu/g和36.6 kA/m。该制备新方法可扩展用于构筑其他类型的磁性金属或合金/铁氧体复合微纳米纤维。
In recent years, one-dimensional (1D) magnetic nanomaterials, such as nanotubes, nanobelts, nanowires and nanofibers, have attracted an intensive attention because of their distinctive physical and chemical properties from their bulk and nanoparticle counterpartes due to their large specific surface area, high aspect ratio and unique shape anisotropy, leading potential applications in high-density magntic recording, magnetic sensors, micro-nano functional devices, magnetic composites, spintronic devices, electromagnetic wave absorbing materials, calalyst, biomedicine, etc. Among the vaious methods for preparation of 1D micro-nanostructured materials, the electrospinning due to simple, low cost and high yield is proved to be a versatile and the most popular technique utilized in fabrication of functional micro/nanofibers with both solid and hollow interiors that are exceptionally long in length, uniform in diameter, and diversified in composition. Spinel ferrites are a kind of widely used soft magnetic materials in both industry and daily life, and their performances are found to be directly related to their stoichiometric composition, microstructure and morphology. Up to now, the researches on spinel ferrite 1D micro-nanostructures have been mainly focused on some simple spinel ferrites and a few for the complex spinel ferrites with excellent performances and wide applications. Therefore, there is important scientific interests and practical applications to develop 1D micro-nanostructured materials of the complex spinel ferrites and relative composites.
     In this dissertation, we combined electrospinning technique with sol-gel and heat treatment processes and carried out abundant research work on the controlled fabrication, structural adjustment and magnetic property characterization of the 1D complex spinel ferrite micro/nanofibers and relative composite materials. The main works and innovative results are as follows:
     1. Fabrication, structure and magnetic properties of the complex spinel ferrite micro/nanofibers. (1) We successfully prepared Mn0.5Zn0.5Fe204, Ni1-xZnxFe2O4(x= 0.0-0.8), Co0.5Ni0.5Fe2O4, Co1-xZnxFe2O4 (x= 0.0~0.5) and Li0.5-0.5xZnxFe2.5-0.5x04 (x= 0.0~0.8) binary spinel ferrite micro/nanofibers as well as Ni0.5-xCuxZn0.5Fe2O4 (x=0.0-0.5) ternary spinel ferrite micro/nanofibers with a narrow diameter distribution and uniform cross-section by calciantion of the electrospun PVP/inorganic component composite micro/nanofibers. (2) These micro/nanofiber samples were characterized using TG-DTA, FT-IR, XRD, SEM, (HR)TEM, SAED, EDS and VSM techniques. The effects of calcination temperature and chemical composition on the structures, micromorphologies and macro-magnetic properties of samples were systematically investigated and the reasons were analyzed and discussed. (3) We revealed and preliminarily understood the relationship between structure and performance of the investigated complex spinel ferrite in the one-dimensional or quasi one-dimensional case. It finds that the variation of the lattice constant with Zn content shows a nonmonotonic behavior and deviates from the Vegard's law for the Co1-xZnxFe2O4 nanofibers, but for Ni1-xZnxO4 and Li0.5-0.5xZnxFe2.5-0.5xO4 micro/nanofibers, this variation relationship basically complies with the Vegard's law. The single-domain critical sizes for Ni0.5Zn0.5Fe204, Co0.5Zn0.5Fe2O4, Co0.5Ni0.5Fe204, Lio.35Zno.3Fe2.35O4 and Nio.3Cu0.2Zn0.5Fe2O4 micro/nanofibers are estimated to be about 33,39,30,35 and 53 nm, respectively. Futhermore, the dependent relationships of the coercivity (Hc) on the average crystalline size (D) in a D range below the critical size are obtained for Coo.5Zno.5Fe204, Co0.5Ni0.5Fe2O4 and Ni0.3Cu0.2Zn0.5Fe204 micro/nanofibers. It is showed that Hc of these fiber samples follows a D power law with an exponent of 0.65, 0.70 and 0.71, respectively, which verifies the predicted results (i.e. Hc~D2/3) for 1D nanosystems based on the random anisotropy model. (4) In addition, we investigated the magnetic anisotropy and difference in magnetic behaviors between the fiber and the corresponding powder samples for the prepared Ni0.5Zn0.5Fe204 and Ni0.3Cuo.2Zno.5 Fe2O4 micro/nanofibers and reasonably explained the reason for the observed phenomena.
     2. Fabrication, structure and magnetic properties of the complex spinel ferrite/non-magnetic oxide composite micro/nanofibers. Based on the successful preparation of NiZn ferrite micro/nanofibers, we fabricated the non-magnetic Nio.5Zno.5Fe204/Si02 or Al2O3 micro/nanofibers by electrospinning technique combined with sol-gel process. The effects of SiO2 or Al2O3 additives on the phase, microstructure and morphology as well as macro-magnetic properties were studied in detail, and the related physical mechanisms were also discussed. The results indicate that the addition of amorphous non-magnetic oxides is an effective way to control and tune the microstructure and magnetic performances of spinel ferrite micro/nanofibers.
     3. Fabrication, structure and magnetic properties of the spinel ferrite/magnetic alloy composite micro/nanofibers. We successfully synthesized the Fe-Ni alloy/nickel ferrite composite micro/nanofibers with an average diameter of 170 nm by electrospinning and subsequent partial reduction process control technology for the first time. The crystal structure, phase composition, micromorpholgy and macro-magnetic properties of these micro/nanofibers were studied, in comparison with the pristine nickel ferrite micro/nanofibers before reduction. It finds that the synthesized composite micro/nanofibers consist of Fe-Ni alloy with the face centered cubic (FCC) and body centered cubic (BCC) mixed structures and nickel ferrite with the spinel structure. The two phases of the Fe-Ni alloy and nickel ferrite are well magnetic exchange-coupled, and consequently the prepared composite micro/nanofibers exhibit enhanced magnetic properties compared to the pristine nickel ferrite micro-nanofibers. The saturation magnetization and coercivity are increased from 49.5 emu/g and 17.4 kA/m before reduction to 103.9 emu/g and 36.6 kA/m after reduction, respectively. This new synthetic route can be conveniently expanded to prepare other types of magnetic metal or alloy/spinel ferrite composite micro/nanofibers as well.
引文
[1]郭卫红,汀济奎.现代功能材料及其应用[M].北京:化学工业出版社,2002.
    [2]徐彦.准一维金属、铁氧体的制备和磁性[D].兰州大学博十学位论文,2009.
    [3]Rao C N R, Cheetham A K. Science and technology of nano materials:current status and future prospects[J]. Journal of Materials Chemistry,2001,11:2887-2894.
    [4]黄绘敏.基于电纺丝技术的一维功能性纳米材料的研制[D].吉林大学博十学位论文,2009.
    [5]徐永生.磁性纳米线阵列的结构与磁性研究[D].吉林大学硕十学位论文,2009.
    [6]贾箫.磁性铁酸盐纳米材料的控制合成与性质表征[D].山东大学博士学位论文,2009.
    [7]都有为.纳米磁性材料及其应用[J].材料导报,2001,16(7):6-8.
    [8]宋力晶.AAO模板法制备的一维磁性纳米管及纳米线阵列的结构与磁性[D].兰州大学硕士学位论文,2007.
    [9]王海波.尖晶石NixZn1-xFe2O4铁氧体纳米颗粒、块体和薄膜的制备与磁性研究[D].兰州大学博十学位论文,2008.
    [10]毛忠泉.磁性纳米颗粒系统的磁学性质及偶极相互作用研究[D].中山大学博十学位论文,2008.
    [11]Batlle X, Labarta A. Finite-size effects in fine particles:magnetic and transport properties[J]. Journal of Physics D,2002,35:R15-R42
    [12]Qiu Z Q, Du Y W, Tang H, et al. A Mossbauer study of fine iron particles[J]. Journal of Applied Physics,1988,63:4100-4104.
    [13]Wang J B, Liu Q F, Xue D S, et al. Remanence properties and magnetization reversal mechanism of Fe nanowire arrays[J]. Chinese Physics Letters,2004,21(5):945-948.
    [14]Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets[J]. IEEE Transactions on Magnetics,1989,25:3327-3329.
    [15]Alben R, Becker J J, Chi M C. Random anisotropy in amorphous ferromagnets[J]. Journal of Applied Physics,1978,49:1853-1658.
    [16]Sellmyer D J, Liu Y, Shindo D. Handbook of Advanced Magnetic Materials, Vol.1, Advanced Magnetic Materials:Nanostructural Effects[M]. Beijing:Tsinghua University Press,2005, p.354.
    [17]Cao L F, Xie D, Guo M X, et al. Size and shape effects on curie temperature of ferromagnetic nanoparticles[J]. Transaction of Nonferrous Metals Society of China,2007,17:1451-1455.
    [18]Evans R, Nowak U, Dorfbaner, et al. The influence of shape and structure on the Curie temperature of Fe and Co nanoparticles[J]. Journal of Applied Physics,2006,99:08G703.
    [19]都有为,徐明祥,吴坚,等.镍超细微颗粒的磁性[J].物理学报,1992,41(1):149-154.
    [20]Zhang R J, Willis R F. Thickness-dependent curie temperature of ultrathin magnetic films[J]. Physics Review Letters,2001,86:2665-2668.
    [21]Kodama R H. Magnetic nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 1999,200:359-372.
    122] Gubin S P, Koksharov Y A, Khomutov G B, et al. Magnetic nanoparticles:preparation, structure and properties[J]. Russian Chemical Reviews,2005,74:489-520.
    [23]Gong W, Li H, Zhao Z R, et al. Ultrafine particles of Fe, Co, and Ni ferromagnetic metals[J]. Journal of Applied Physics,1991,69:5119-5121.
    [24]Wu H, Zhang R, Liu X X, et al. Electrospinning of Fe, Co, and Ni nanofibers:synthesis, assembly, and magnetic properties[J]. Chemistry of Materials,2007,19:3506-3511.
    [25]Mumtaz A, Maaz K, Janjua B, et al. Exchange bias and vertical shift in CoFe2O4 nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2007,313:266-272.
    [26]Kodama R H, Berkowitz A E, McNiff Jr E J, et al. Surface Spin Disorder in NiFe2O4 Nanoparticles[J]. Physics Review Letters,1996,77:394-397.
    [27]Chen J P, Sorensen C M, Klabunde K J, et al. Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation[J]. Physical Review B,1996, 54:9288-9296.
    [28]Niira K.Temperature Dependence of the Magnetization of Dysprosium Metal[J]. Physical Review,1960,117:129-133.
    [29]Hendriksen P V, Linderoth S, Lindgard P A. Finite-size modifications of the magnetic properties of clusters[J]. Physical Review B,1993,48:7259-7273.
    [30]Linderoth S, Balcells L, Labarta A, et al. Magnetization and Mossbauer studies of ultrafine Fe-C particles[J]. Journal of Magnetism and Magnetic Materials,1993,124:269-276.
    [31]Yao C, Zeng Q, Goya G F, et al. ZnFe2O4 nanocrystals:synthesis and magnetic properties[J]. Journal of Physical Chemistry C,2007,111:12274-12278.
    [32]Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Physical Review Letters,1988,61:2472-2475.
    [33]Nosgues J, Sort J, Langlais V, et al. Exchange bias in nanoparticles[J]. Physics Reports,2005, 422:65-117.
    [34]Lu A, Salabas E L, SchUth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application [J]. Angewandte Chemie International Edition,2007, 46:1222-1244.
    [35]Sellmyer D J, Liu Y, Shindo D. Handbook of Advanced Magnetic Materials, Vol.4, Advanced Magnetic Materials:Properties and Application[M]. Beijing:Tsinghua University Press,2005.
    [36]樊希安,官建国,王维,等.一维铁磁金属纳米材料的制备、结构调控及其磁性能[J].化学进展,2009,21(1):143-151.
    [37]孔祥存,吴玉程,杨友文,等.电沉积制备磁性纳米线的研究进展[J].物理,2009,38(5):349-355
    [38]付军丽,徐彦.一维纳米磁性材料:AAO模板法制备及性能研究[M].北京:中央民族大学出版社,2010.
    [39]Chou S Y, Wei M S, Krauss P R, et al. Single-domain magnetic pillar array of 35-nm diameter and 65-gbits/in2 density for ultrahigh density quantum magnetic storage[J]. Journal of Applied Physics,1994,76:6673-6675.
    [40]Mourachkine A, Yazyev O V, Ducati C, et al. Template Nanowires for Spintronics Applications:Nanomagnet Microwave Resonators Functioning in Zero Applied Magnetic Field[J]. Nano Letters,2008,8:3683-3687.
    [41]Thurn-Albrecht T, Schotter J, Kastle G A, et al. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates[J]. Science,2000,290:2126-2129.
    [42]Allwood D A, Xiong G, Cooke M D, et al. Submicrometer ferromagnetic NOT gate and shift register[J]. Science,2002,296:2003-2006.
    [43]Maurer T, Ott F, Chaboussant G, et al. Magnetic nanowires as permanent magnet materials[J]. Applied Physics Letters,2007,91:172501.
    [44]Son S J, Reichel J, He B, et al. Magnetic nanotubes for magnetic-field-assisted bioseparation, Biointeraction, and Drug Delivery [J]. Journal of the American Chemical Society,2005, 127:7316-7317.
    [45]Fan H M, Yi J B, Yang Y, et al. Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications[J]. ACS Nano,2009, 3:2798-2808.
    [46]Liu J R, Itoh M, Terada M, et al. Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range[J]. Applied Physics Letters,2007,91:093101.
    [47 ]于美,刘建华,李松梅,等.Ni纳米线的制备及其微波吸收电磁性能[J].金属学报,2007,43(1):99-102.
    [48]Whitney T M, Jiang J S, Searson P C, et al. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires[J]. Science,1993,261:1316-1319.
    [49]Piraux L, Dubois S, Duvail J L, et al. Arrays of nanowires of magnetic metals and multilayers:Perpendicular GMR and magnetic properties[J]. Journal of Magnetism and Magnetic Materials,1997,175:127-136.
    [50]Zeng H, Zheng M, Skomski R, et al. Magnetic properties of self-assembled Co nanowires of varying length and diameter[J]. Journal of Applied Physics,2000,87:4718-4720.
    [51]Hu H N, Chen H Y, Chen J L, et al. Magnetic properties of (110)-and (200)-oriented Fe-nanowire arrays[J]. Physica B,2005,368:100-104.
    [52]Ge S H, Ma X, Li C, et al. Fabrication of electrodeposited Co nanowire arrays with perpendicular anisotropy[J]. Journal of Magnetism and Magnetic Materials,2001,226:1867-1869
    [53]Cho J U, Wu J H, Min J H, et al. Control of magnetic anisotropy of Co nanowires[J]. Journal of Magnetism and Magnetic Materials,2006,303:e281-e285.
    [54]Foder P S, Tsoi G M, Wenger L E. Fabrication and characterization of Co1-xFex alloy nanowires[J]. Journal of Applied Physics,2002,91:8186-8188.
    [55]Kwon H W, Kim S K, Joeng Y. Effect of magnetic field on the electrodeposition of Fe, Co into the pores of anodic film on aluminum[J]. Journal of Applied Physics,2000, 87:6185-6187.
    [56]Ge S H, Li C, Ma X, et al. Approach to fabricating Co nanowire arrays with perpendicular anisotropy:Application of a magnetic field during deposition[J]. Journal of Applied Physics, 2001,90:509-601.
    [57]Ji G B, Tang S L, Xu B L, et al. Synthesis of CoFe2O4 nanowire arrays by sol-gel template method[J]. Chemical Physics Letters,2003,279:484-489.
    [58]Zhang L Y, Zhang Y F. Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters[J]. Journal of Magnetism and Magnetic Materials,2009,321:L15-L20.
    [59]Melle S, Menendez J L, Armelles G, et al. Magneto-optical properties of nickel nanowire arrays[J]. Applied Physics Letters,2003,83:4547-4549.
    [60]Piraux L, George J M, Despres J F, et al. Giant magnetoresistance in magnetic multilayered nanowires[J]. Applied Physics Letters,1994,65:2484-2486.
    [61]Blondel A, Meier J P, Doudin B, et al. Giant magnetoresistance of nanowires of multilayers[J]. Applied Physics Letters,1994,65:3019-3021.
    [62]姚素薇,孔亚西,迟广俊.多层纳米线的研究进展[J].化工进展,2004,23(2):136-139.
    [63]Tan L W. Templated synthesis of magnetic nanowires by electrochemical deposition[D]. Ph.D. Thesis, University of Minnesota, USA,2008.
    [64]Ohgai T, Hoffer X, Gravier L, et al. Bridging the gap between template synthesis and microelectronics:spin-valves and multilayers in self-organized anodized aluminium nanopores[J]. Nanotechnology,2003,14:978-982.
    [65]Doudin B, Blondel A, Anscrmet J P. Arrays of multilayered nanowires[J]. Journal of Applied Physics,1996,79:6090-6094.
    [66]Maurice J L, Imhoff D, Etienne P, et al. Microstructure of magnetic metallic superlattices grown by electrodeposition in membrane nanopores[J]. Journal of Magnetism and Magnetic Materials,1998,184:1-18.
    [67]Enculescu I, Toimil-Mlares M E, Zet C, et al. Current perpendicular to plane single-nanowire GMR sensor[J]. Applied Physics A,2006,86:43-47.
    [68]姚素薇,宋振兴,王宏智Co/Cu多层纳米线阵列的制备与磁性能[J].物理化学学报,2007,23(8):1306-1310.
    [69]Piraux L, Renard K, Guillemet R, et al. Template-Grown NiFe/Cu/NiFe Nanowires for Spin Transfer Devices[J]. Nano Letters,2007,7:2563-2567.
    [70]Blon T, Matefi-Tempfli M, Matefi-Tempfli S, et al. Spin momentum transfer effects observed in electrodeposited Co/Cu/Co nanowires[J]. Journal of Applied Physics,2007, 102:103906.
    [71]Slonczewski J. Current-driven excitation of magnetic multilayers [J]. Journal of Magnetism and Magnetic Materials,1996,159:L1-L7.
    [72]Berger L. Emission of spin waves by a magnetic multilayer traversed by a current[J]. Physical Review B,1996,54:9353-9358.
    [73]Myers E B, Ralph D C, Katine J A, et al. Current-Induced Switching of Domains in Magnetic Multilayer Devices[J]. Science,1999,285:867-870.
    [74]Jiang Y, Nozaki T, Abe S, et al. Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve[J]. Nature Materials,2004,3:361-364.
    [75]Diao Z T, Li Z J, Wang S Y, et al. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory[J]. Journal of Physics:Condensed Matter, 2007,19:165209.
    [76]徐东伟.磁性纳米线反磁化机理研究[D].兰州大学硕十学位论文,2007.
    [77]Peng Y, Zhang H L, Pan S L, et al. Magnetic properties and magnetization reversal of a-Fe nanowires deposited in alumina film[J]. Journal of Applied Physics,2000,87:7405-7408.
    [78]Hinzke D, Nowak U. Magnetization switching in nanowires:Monte Carlo study with fast Fourier transformation for dipolar fields[J]. Journal of Magnetism and Magnetic Materials, 2000,221:365-372.
    [79]Lu X C, Ge S H, Jiang L X, et al. Chain of ellipsoids approach to the magnetic nanowire[J]. Journal of Applied Physics,2005,97:084304.
    [80]Meier J, Doubin B, Ansermet J P. Magnetic properties of nanosized wires[J]. Journal of Applied Physics,1996,79:6010-6012.
    [81]Han G C, Zong B Y, Luo P, et al. Angular dependence of the coercivity and remanence of ferromagnetic nanowire arrays[J]. Journal of Applied Physics,2003,93:9202-9207.
    [82]Zhan Q F, Gao J H, Liang Y Q, et al. Dipolar interactions in arrays of iron nanowires studied by Mossbauer spectroscopy[J]. Physical Review B,2005,72:024428.
    [83]Sun L, Hao Y, Chien C L, et al. Tuning the properties of magnetic nanowires[J]. IBM Journal of Research and Development,2005,49:79-102.
    [84]Chen M, Chien C L, Searson P C. Potential modulated multilayer deposition of multisegment Cu/Ni nanowires with tunable magnetic properties[J]. Chemistry of Materials,2006, 18:1595-1601.
    [85]Crowley T A, Ziegler K J, Lyons D M, et al. Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template[J]. Chemistry of Materials,2003, 13:3518-3522.
    [86]Keller N, Pham-huu C, Estournes C, et al. Carbon nanotubes as a template for mild synthesis of magnetic CoFe2O4 nanowires[J]. Carbon,2004,42:1395-1399.
    [87]Lv R T, Cao A Y, Kang F Y, et al. Single-crystalline permalloy nanowires in carbon nanotubes:Enhanced encapsulation and magnetization[J]. The Journal of Physical Chemistry C,2007,111:11475-11479.
    [88]Kinsella J M, Ivanisevic A. DNA-templated magnetic nanowires with different compositions: Fabrication and analysis[J]. Langmuir,2007,23:3886-3890.
    [89]Wang J, Chen Q W, Zeng C, et al. Magnetic-field-induced growths of single-crystalline Fe3O4 nanowires [J]. Advanced Materials,2004,16:137-140.
    [90]Zhang G Q, Zhang T, Lu X L, et al. Controlled synthesis of 3D and 1D nickel nanostructures using an external magnetic field assisted solution-phase approach[J]. The Journal of Physical Chemistry C,2007,111:12663-12668.
    [91]Hu M J, Lin B, Yu S H. Magnetic Field-induced solvothermal synthesis of one-dimensional assemblies of Ni-Co Alloy Microstructures[J]. Nano Research,2008,1:303-313.
    [92]He K, Xu C Y, Zhen L, et al. Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity [J]. Materials Letters,2007, 61:3159-3162.
    [93]Huang Z B, Zhang Y Q, Tang F Q. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity[J]. Chemical Communication,2005, 35:342-344.
    [94]Zhang Z T, Blom D A, Gai Z, et al. High-yield solvothermal formation of magnetic CoPt alloy nanowires[J]. Journal of the America Chemistry Society,2003,125:7528-7529.
    [95]Yang J B, Xu H, You S X, et al. Large scale growth and magnetic properties of Fe and Fe3O4 nanowires[J]. Journal of Applied Physics.2006,99:08Q507.
    [96]Li X C, Gong R A, Nie Y, et al. Electromagnetic properties of Fe55Ni45 fiber fabricated by magnetic-field-induced thermal decomposition[J]. Materials Chemistry and Physics,2005, 94:408-411.
    [97]Li D, Herricks T, Xia Y N. Magnetic nanofibers of nickel ferrite prepared by electrospinning[J]. Applied Physics Letters,2003,83:4586-4588.
    [98]Chronakis I S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review[J]. Journal of Materials Processing Technology,2005, 167:283-293.
    [99]Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electro-spinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003,63:2223-2253.
    [100]Schiffman J D, Schauer C L. A review:Electrospinning of biopolymer nanofibers and their applications[J]. Polymer Reviews,2008,48:317-352.
    [101]Ramaseshan R, Sundarrajan S, Jose R, et al. Nanostructured ceramics by electrospinning[J]. Journal of Applied Physics,2007,102:111101.
    [102]崔启征,董相廷,于伟利,等.静电纺丝技术制备无机物纳米纤维的最新研究进展[J].稀有金属材料与工程,2006,35(7):1167-1171.
    [103]Lu X F, Wang C, Wei Y. One-dimensional composite nanomaterials:Synthesis by electrospinning and their applications [J]. Small,2009,5:2349-2370.
    [104]Li D, Xia Y N. Electrospinning of nanofibers:Reinventing the wheel[J]. Advanced Materials, 2004,16,1151-1170.
    [105]Zhan S H, Gong C R, Chen D R, et al. Preparation of ZnFe2O4 nanofibers by sol-gel related electrospinning method[J]. Journal of Dispersion Science and Technology,2006, 27:931-933.
    [106]Ju Y W, Park J H, Jung H R, et al. Electrospun MnFe2O4 nanofibers:Preparation and morphology[J]. Composites Science and Technology,2008,68:1704-1709.
    [107]Ju Y W, Park J H, Jung H R, et al. Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning[J]. Materials Science and Engineering B,2008,147:7-12.
    [108]Wang Z L, Liu X J, Lv M F, et al. Preparation of ferrite MFe2O4 (M= Co, Ni) ribbons with nanoporous structure and their magnetic properties[J]. The Journal of Physical Chemistry B, 2008,112:11292-11297.
    [109]Wang Z L, Liu X J, Lv M F, et al. Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties [J]. The Journal of Physical Chemistry C,2008, 112:15171-15175.
    [110]Ponhan W, Maensiri S. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4)nanofibers[J]. Solid State Science,2009,11:479-484.
    [111]Barakat N A M, Kim B, Yi C, et al. Influence of cobalt nanoparticles'incorporation on the magnetic properties of the nickel nanofibers:Cobalt-doped nickel nanofibers prepared by electrospinning[J]. The Journal of Physical Chemistry C,2009,113:19452-19457.
    [112]Wang M, Singh H, Hatton T A, et al. Filed-responsive superparamagnetic composite nanofibers by electrospinning[J]. Polymer,2004,45:5505-5514.
    [113]Yang D, Lu B, Zhao Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning[J]. Advanced Materials,2007,19:3702-3706.
    [114]Song T, Zhang Y Z, Zhou T J. Fabrication of magnetic composite nanofibers of poly(ε-caprolactone) with FePt nanoparticles by coaxial electrospinning[J]. Journal of Magnetism and Magnetic Materials,2006,303:e286-e289.
    [115]陆海纬.静电纺丝法制备过渡金属氧化物纳米丝三维电极及其电化学性能研究[D].复旦大学博十学位论文,2008.
    [116]Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology,1996,7:216-223.
    [117]Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics,2000,87:4531-4547.
    [118]Yarin A L, Koombhongse S, Reneker D H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers[J]. Journal of Applied Physics,2001,90:4836-4846.
    [119]Shin Y M, Hobman M M, Brenner M P, et al. Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]. Polymer,2001,42:9955-9967.
    [120]赵一阳.高压静电纺丝技术构筑一维微纳米结构材料[D].吉林大学博士学位论文,2007.
    [121]Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42:261-272.
    [122]卓坚锐,严玉蓉,李诗丞.静电纺丝接收装置和辅助电极的研究进展[J].合成纤维工业,2009,32(5):40-43.
    [123]李新松,姚琛.静电纺丝——从无规纳米纤维膜到取向连续长纱[J].化学通报,2009,(7):579-586.
    [124]Li D, Wang Y L, Xia Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano letters,2003,8:1167-1171.
    [125]Li D, Wang Y L, Xia Y N. Electrospinning nanofibers as uniaxially aligned array and layer-by layer stacked films[J]. Advanced Materials,2004,16:361-366.
    [126]杨恩龙,史晶晶.多喷头静电纺丝研究进展[J].工业用纺织品,2009,(9):1-4.
    [127]Theron S A, Yarin A L, Zussman E, et al. Multiple jets in electrospinning:Experiment and modeling[J]. Polymer,2005,46:2889-2899.
    [128]Dosunmu O O, Chase G G, Kataphinan W, et al. Electrospinning of polymer nanofibers from multiple jets on a porous tubular surface[J]. Nanotechnology,2006,17:1123-1127.
    [129]Varabhas J S, Chase G G, Reneker D H. electrospun nanofibers from a porous hollow tube[J]. polymer,2008,49:4226-4229.
    [130]Tomaszewski W, Szadkowski M. Investigation of electrospinning with the use of a multi-jet electrospinning head[J]. Fibers & Textiles in Eastern Europe,2005,13:22-26.
    [131]过丽萍.纳米晶尖晶石型铁氧体基复合纤维的制备、结构和磁性能研究[D].江苏大学硕士学位论文,2010.
    [132]都有为.铁氧体[M].南京:江苏科学技术出版社,1996.
    [133]李荫远,李国栋.铁氧体物理学[M].北京:科学出版社,1978.
    [134]Appell D. Nanotechnology:Wired for success[J]. Nature,2002,553-555.
    [1]Sugimoto M. The past, present, and future of ferrites[J]. Journal of the American Ceramics Society,1999,82(2):269-280.
    [2]Dasgupta S, Das J, Eckert J, et al. Influence of environment and grain size on magnetic properties of nanocrystalline Mn-Zn ferrite[J]. Journal of Magnetism and Magnetic Materials, 2006,306(1):9-15.
    [3]李海华,冯则坤,余洪斌,等.低损耗MnZn铁氧体材料的研究现状及发展趋势[J].硅酸盐通报,2003,(2):62-65.
    [4]Gu M, Liu G Q. Effects of MoO3 and TiO2 additions on the magnetic properties of manganese-zinc power ferrites[J].Journal of Alloys and Compounds,2009,475(1-2):356-360.
    [5]Shokrollahi H, Janghorban K. Influence of additives on the magnetic properties, microstrucrture and densification of Mn-Zn soft ferrites[J]. Materials Science and Engineering B,2007,141:91-107.
    [6]Shokrollahi H. Magnetic properties and densification of manganese-zine soft ferrites (Mn1-xZnxFe2O4) doped with low melting point oxides[J]. Journal of Magnetism and Magnetic Materials,2008,320:463-474.
    [7]Ahmed M A, Okasha N, El-Sayed M M. Enhancement of the physical properties of rare-earth-substitured Mn-Zn ferrites prerared by flash method[J]. Ceramics International,2007,33:49-58.
    [8]Song J, Wang L X, Xu N C, et al. Microwave electromagnetic and absorbing properties of Dy3+ doped MnZn ferrites[J]. Journal of Rare Earths,2010,28(3):451-455.
    [9]Yamada S, Otsuki E. Analysis of eddy current loss in Mn-Zn ferrites for power supplies[J]. Journal of Applied Physics.1997,81(8):4791-4793.
    [10]Azadmanjiri J. Preparation of Mn-Zn ferrite nanoparticles from chemical sol gel combustion method and the magnetic properties after sintering[J]. Journal of Non-Crystalline Solids,2007, 353:4170-4173.
    [11]Mathur P, Thakur A, Singh M. Effect of nanoparticles on the magnetic properties of Mn-Zn soft ferrite[J]. Journal of Magnetism and Magnetic Materials,2008,320:1364-1369.
    [12]Nalbandian L, Oelimitis A, Zaspalis V T, et al. Hydrothermally prepared nanocrystalline Mn-Zn ferrites:Synthesis and characterization [J]. Microporous and Mesoporous Materials, 2008,114:465-473.
    [13]Shultz M D, Allsbrook M J, Carpeuter E E. Control of the cation occupancies of MnZn ferrite synthesized via reverse micelles[J]. Journal of Applied Physics,2007,101:09M518.
    [14]Makovec D, Kosak A, Drofenik M. The preparation of MnZn-ferrite nanoparticles in water-CTAB-hexanol microemulsions [J]. Nanotechnology,2004,15:S160-S166.
    [15]Wang L X, Bai J M, Li Z H, et al. The influence of substrate on the magnetic properties of MnZn ferrite thin film fabricated by alternate sputtering[J]. Physica Status Solidi A,2008, 205(10):2453-2457.
    [16]Etoh H, Sato J, Murakami Y, et al. Magnetic properties of Mn-Zn ferrite thin films fabricated by pulsed laser deposition[J]. Journal of Physics:Conference Series,2009,165:012031.
    [17]向军,沈湘黔,朱永伟.锰锌铁氧体空心纤维的制备及其磁性能[J].硅酸盐学报,2009,37(1):6-11.
    [18]向军,沈湘黔,朱永伟.热处理制度对纳米晶Mno.6Zno.4Fe204铁氧体纤维结构和磁性能的影响[J].中国有色金属学报,2009,19(1):114--118.
    [19]Ogasawara T, Tavares L M, Marins S S. Thermodynamic interpretation of the manganese-zinc ferrite synthesis by calcination of a powder mixture[J]. Materials Letters,2007,61:5063-5066.
    [20]Gillot G, Guendouzi M E. Effect of the Preparation Method on the Oxidation-Reduction Mechanism and the Cation Distribution of Mn-Zn ferrites[J]. Journal of Solid State Chemistry, 1993,106:443-450.
    [21]Zhao L J, Yang H, Cui Y M, et al. Study of preparation and magnetic properties of silica-coated cobalt ferrite nanocomposites[J]. Journal of Materials Science,2007, 42:4110-4114.
    [22]Isfahani M J N, Myndyk M, Menzel D, et al. Magnetic properties of nanostructured MnZn ferrite[J]. Journal of Magnetism and Magnetic Materials,2009,321:152-156.
    [23]Maaz K, Khalid W, Mumtaz A, et al. Magnetic characterization of Co1-xNixFe2O4 (0≤x≤1) nanoparticles prepared by co-precipitation route[J]. Physica E,2009,41:593-599.
    [24]Song Q, John Zhang Z. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals[J]. Journal of the American Chemistry Society,2004,126:6164-6168.
    [25]Mandal K, Chakraverty S, Mandal S P, et al. Size-dependent magnetic properties of Mn0.5Zn0.5Fe2O4 nanoparticles in SiO2 matrix[J]. Journal of Applied Physics,2002,92:501-505.
    [26]Rondinone A J, Liu C, John Zhang Z. Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles[J]. The Journal of Physical Chemistry B,2001,105:7967-7971.
    [27]Stoner E C, Wohlfarth E P.A mechanism of magnetic hysteresis in heterogeneous alloys[J]. IEEE Transaction on Magnetics,1991,27:3475-3518.
    [28]Brown W F. Thermal fluctuations of a single-domain particle[J]. Physics Review,1963, 130:1677-1683.
    [1]Pankhurst Q A, Thanh N K T, Jones S K, et al. Progress in applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D:Applied Physics,2009,42:224001.
    [2]Kuanr B K, Veerakumar V, Lingam K, et al. Size dependent microwave properties of ferrite nanoparticles:Application to microwave devices[J]. Journal of Applied Physics,2009,105: 07B522.
    [3]Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application[J]. Angewandte Chemie International Edition,2007,46: 1222-1244.
    [4]秦润华,李凤生,姜 炜,等.尖晶石型(Zn1-δFeδ)[CoδFe2-δ]04铁氧体纳米粒子的制备与磁性研究[J1.功能材料,2009,40(9):1468-1470.
    [5]邱琴,张晏清,张雄.电磁吸波材料研究进展[J].电子元件与材料,2009,28(8):78-81.
    [6]Vaidyanathan G, Sendhilnathan S. Synthesis and magnetic properties of Co-Zn magnetic fluid[J]. Journal of Magnetism and Magnetic Materials,2008,320:803-805.
    [7]Koseoglu K, Baykal A, Gozuak F, et al. Structural and magnetic properties of Co1-xZnxFe2O4 nanocrystals synthesized by microwave method[J]. Polyhedron,2009,28:2887-2892.
    [8]Pradhan S K, Bidb S, Gateshki M, et al. Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling[J]. Materials Chemistry and Physics,2005,93:224-230.
    [9]Singhal S, Namgyal T, Bansal S, et al. Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol-gel route[J]. Journal of Electromagnetic Analysis and Applications,2010, (2):376-381.
    [10]Wang Z L, Liu X J, Lv M F, et al. Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties[J]. The Journal of Physical Chemistry C,2008,112:15171-15175.
    [11]Akhtar M J, Nadeem M, Javaid S, et al. Cation distribution in nanocrystalline ZnFe2O4 investigated using X-ray absorption fine structure spectroscopy[J]. Journal of Physics: Condensed Matter,2009,21:405303.
    [12]Wang L, Li F S. Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticles[J]. Chinese Physics B,2008,17(5):1858-1862.
    [13]Giri J, Sriharsha T, Bahadur D. Optimization of parameters for the synthesis of nano-sized CO1-xZnxFe2O4, (0≤x≤0.8) by microwave refluxing[J]. Journal of Materials Chemistry,2004, 14:875-880.
    [14]Kumar S, Singh V, Aggarwal S, et al. Influence of processing methodology on magnetic behavior of multicomponent ferrite nanocrystals[J]. The Journal of Physical Chemistry C, 2010,114:6272-6280.
    [15]Duong G V, Hanh N, Linh D V, et al. Monodispersed nanocrystalline Co1-xZnxFe2O4 particles by forced hydrolysis[J]. Journal of Magnetism and Magnetic Materials,2007,311:46-50.
    [16]Ravinder D, Shalini P. Investigation of superparamagnetism in Co-Zn ferrite thin films produced by pulsed-laser deposition[J]. Applied Physics Letters,2003,82:4738-4739.
    [17]Matsushita N, Ichinose M, Nakagawa S, et al. Co-Zn ferrite films prepared by facing targets sputtering system for longitudinal recording layer[J]. Journal of Magnetism and Magnetic Materials,1999,193:68-70.
    [18]Ju Y W, Park J H, Jung H R, et al. Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning[J]. Materials Science and Engineering B,2008,147:7-12.
    [19]Sangmanee M, Maensiri S. Nanostructures and magnetic properties of cobalt ferrite (CoFe204) fabricated by electrospinning[J]. Applied Pysics A,2009,97:167-177.
    [20]王进贤,张 贺,董相廷,等ZnO@SiO2同轴纳米电缆的静电纺丝技术制备与表征[J].无机化学学报,2010,26(1):29-34.
    [21]刘莹,王进贤,董相廷,等.静电纺丝技术制备Gd3Ga5012:Eu3+多孔发光纳米带[J].高等学校化学学报,2010,31(7):1291-1296.
    [22]Denton A R, Ashcroft NW. Vegard's law[J]. Physical Review A,1991,43:3161-3164.
    [23]Pandya P B, Joshi H H, Kulkarni R G. Bulk magnetic properties of Co-Zn ferrites prepared by the co-precipitation method[J]. Journal of Materials Science,1991,26:5509-5512.
    [24]Maaz K, Khalid W, Mumtaz A, et al. Magnetic characterization of Co1-xNixFe2O4 (0≤x≤1) nanoparticles prepared by co-precipitation route [J]. Physica E,2009,41:593-599.
    [25]Liu C, Zhang Z J. Size-dependent superparamagnetic properties of Mn spinel ferrite nanopartiles synthesized form reverse micelles[J]. Chemistry of Materials,2001,13:2092-2096.
    [26]Chinnasamy C N, Jeyadevan B, Shinoda K, et al. Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles[J]. Applied Physics Letters,2003,83:2862-2864.
    [27]Sellmyer D J, Liu Y, Shindo D. Handbook of Advanced Magnetic Materials, Vol.1, Advanced Magnetic Materials:Nanostructural Effects[M]. Beijing:Tsinghua University Press,2005, p.354.
    [28]Neel L. Magnetic properties of ferrites:ferrimagnetism and antiferromagnetism[J]. Annales de Physique,1948,3:137-198.
    [29]Yafet Y, Kittel C. Antiferromagnetic arrangements in ferrites[J]. Physical Review,1952,87: 290-294.
    [30]Salazar-Alvarez G, Olsson R T, Sort J, et al. Enhanced coercivity in Co-rich near-stoichiometric CoxFe3-xO4+δ nanoparticles prepared in large batches[J]. Chemistry of Materials,2007,19:4957-4963.
    [31]Sawatzky G A, Vander W F, Morrish A H. Mossbauer study of several ferromagnetic spinels[J]. Physical Review,1969,197:747-757.
    [1]任利,张怀武,苏桦NiZn软磁铁氧体材料的性能与应用[J].磁性材料与器件,2005,36(4):38-40.
    [2]李济林,刘海定,贺文海,等.高性能大功率NiZn软磁铁氧体材料研制[J].磁性材料与器件,2006,37(6):53-56.
    [3]王海波.尖晶石NixZn1-xFe2O4铁氧体纳米颗粒、块体和薄膜的制备与磁性研究[D].兰州大学博士学位论文,2008.
    [4]Slama J, Gruskova A, Usakova M, et al. Contribution to analysis of Cu-substituted NiZn ferrites[J]. Journal of Magnetism and Magnetic Materials,2009,321:3346-3351.
    [5]Sun K, Lan Z W, Yu Z, et al. Effects of SnO2 addition on the microstructure and magnetic properties of NiZn ferrites[J]. Journal of Magnetism and Magnetic Materials,2008,320: 3352-3355.
    [6]苏桦,张怀武,唐晓莉CuO、MoO3和WO3掺杂对NiZn铁氧体磁性能的影响[J].材料研究学报,2005,19(5):549-554.
    [7]Sun K, Lan Z W, Yu Z, et al. Grain growth, densification and magnetic properties of NiZn ferrites with Bi2O3 additive[J]. Journal of Physics D:Applied Physics,2008,41:235002.
    [8]Slama J, Usak E, Soka M, et al. Analysis of selected Be-substituted NiZn ferrites[J]. IEEE Transactions on Magnetics,2010,46:447-450.
    [9]Rezlescu N, Rezlescu E, Pasnicu C, et al. Effects of the rare-earth ions on some properties of a nickel-zinc ferrite[J]. Journal of Physics:Condensed Matter,1994,6:5707-5716.
    [10]Wang K Q, Sun Y, Li Y B, et al. Effects of SiO2 addition on microstructure and magnetic properties of NiZn ferrites prepared by SHS[J]. Journal of Alloys and Compounds,2010, 494:236-238.
    [11]Gabal M A, Al Angari Y M. Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4[J]. Materials Chemistry and Physics,2009,115:578-584.
    [12]Albuquerque A S, Ardisson J D, Macedo W A A, et al. Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism[J]. Journal of Applied Physics,2000,87:4352-4357.
    [13]Deka S, Joy P A. Enhanced Permeability and Dielectric Constant of NiZn Ferrite Synthesized in Nanocrystallinc Form by a Combustion Method[J]. Journal of the American Ceramic Society,2007,90:1494-1499.
    [14]Morrison S A, Cahill C L, Carpenter E E, et al. Magnetic and Structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature[J]. Journal of Applied Physics,2004, 95:6392-6395.
    [15]Gul I H, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route[J]. Journal of Magnetism and Magnetic Materials,2008,320:270-275.
    [16]钟海胜,李强,张一玲,等.沸腾回流法制备纳米NiZn铁氧体的研究[J].无机化学学报,2006,22(2):375-378.
    [17]Li G J, Yan S F, Zhou E L, et al. Preparation of magnetic and conductive NiZn ferrite-polyaniline nanocomposites with core-shell structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,276:40-44.
    [18]Peng C H, Wang H W, Kan S W, et al. Microwave absorbing materials using Ag-NiZn ferrite core-shell nanopowders as fillers[J]. Journal of Magnetism and Magnetic Materials,2004, 284:113-119.
    [19]聂小亮,兰中文,孙科,等.NiZn铁氧体薄膜制备技术的研究进展[J].材料导报,2007,21(专辑Ⅸ):81-83+88.
    [20]Acher O, Ledieu M, Abe M, et al. Experimental results and model for the permeability of sprayed NiZn ferrite films[J]. Journal of Applied Physics,2009,105:07A513
    [21]Yu M, Liu J H, Li S M. Fabrication and characterization of highly ordered Ni05Zn0.5Fe2O4 nanowire/tube arrays by sol-gel template method[J]. Journal of University of Science and Technology Beijing,2007,14(5):469-472.
    [22]Nam J H, Joo Y H, Lee J H, et al. Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation[J]. Journal of Magnetism and Magnetic Materials,2009,321:1389-1392.
    [23]Li Q L, Wang Y F, Chang C B. Study of Cu, Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method[J]. Journal of Alloys and Compounds,2010,505: 523-526.
    [24]Lu J Q Chang P C, Fan Z Y. Qusai-one-dimensional metal oxide materials—synthesis, properties and applications[J]. Materials Science and Engineering R,2006,52:49-91.
    [25]Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica,1796, A32:751-767.
    [26]Kodama R H, Makhlouf S A, Berkowitz A E. Finite size effects in antiferromagnetic NiO nanoparticles[J]. Physical Review Letters,1997,79:1393-1396.
    [27]Liu Y, Qiu T. Microstructure and magnetic characteristics of nanocrystalline Ni0.5Zn0.5 ferrite synthesized by a spraying-coprecipitation method[J]. Chinese Physics,2007,16(12):3837-3842.
    [28]周志刚.铁氧体磁性材料[M].北京:科学出版社,1981.
    [29]Priyadharsini P, Pradeep A, Rao P S, et al. Structural, spectroscopic and magnetic study of nanocrystalline Ni-Zn ferrites[J]. Materials Chemistry and Physics,2009,116:207-213.
    [30]孔祥存,吴玉程,杨友文,等.电沉积制备磁性纳米线的研究进展[J].物理,2009,38(5):349-355.
    [31]Albuquerque A S, Ardisson J D, Macedo W A A. A study of nanocrystalline NiZn-ferrite-SiO2 synthesized by sol-gel[J]. Journal of Magnetism and Magnetic Materials,1999,192:277-280.
    [32]Wu K H, Huang W C, Yang C C, et al. Sol-gel auto-combustion synthesis of Ni0.5Zn0.5Fe204 /(SiO2) (x=10,20,30 wt.%) nanocomposites and their characterizations[J]. Materials Research Bulletin,2005,40:239-248.
    [33]Liu C, Zhang Z J. Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles[J]. Chemistry of Materials,2001,13:2092-2096.
    [34]Vestal C R, Zhang Z J. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core[J]. Nano Letters.2003,3:1739-1743.
    [35]Wang Z L, Liu X J, Lv M F, et al. Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties[J]. The Journal of Physical Chemistry C,2008,112:15171-15175.
    [36]Batoo K M, Kumar S, Lee C G, et al. Study of ac impedance spectroscopy of Al doped MnFe2-2xAl2xO4[J]. Journal of Alloys and Compounds,2009,480:596-602.
    [37]Deraz N-A M. The formation and physicochemical characterization of Al2O3-doped manganese ferrites[J]. Thermochimica Acta,2003,401:175-185.
    [38]葛慧琳,彭志坚,邢庆凯,等.掺杂的Ni-Zn铁氧体磁性材料的制备与性能[J].硅酸盐学报,2010,38(8):1383-1387.
    [39]Raghavender A T, Pajic D, Zadro K, et al. Synthesis and magnetic properties of NiFe2-xAlxO4 nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2007,316:1-7.
    [40]Shui J L, Li J C M. Platinum nanowires produced by electrospinning[J]. Nano letters,2009,9: 1307-1314.
    [41]Kakatkar S V, KaKatkar S S, Patil R S, et al. X-ray and bulk magnetic properties of aluminium substituted ferrites[J]. Journal of Magnetism and Magnetic Materials,1996,159:361-366.
    [1]Ahmed T T, Rahman I Z, Rahman M A. Study on the properties of the copper substituted NiZn ferrites[J]. Journal of Materials Processing Technology,2004,153-154:797-803.
    [2]Su H, Zhang H W, Tang X L, et al. Effects of nanocrystalline ferrite particles on densification and magnetic properties of the NiCuZn ferrites[J]. Journal of Materials Science,2007,42:2849-2853.
    [3]代建清,周小兵,陈辉.低温烧结NiCuZn铁氧体粉体的制备与磁性能[J].硅酸盐学报,2010,38(6):1020-1025.
    [4]Su H, Zhang H W, Tang X L, et al. Effects of MoO3 and WO3 additives on densification and magnetic properties of highly permeable NiCuZn ferrites[J]. Materials Chemistry and Physics, 2007,102:271-274.
    [5]Hsu J Y, Ko W S, Chen C J. The effect of V2O5 on the sintering of NiCuZn ferrite[J]. IEEE Transactions on Magnetics.1995,31:3994-3996.
    [6]何新华,熊茂仁,凌志远,等.多层片式电感器用NiCuZn铁氧体的低温烧结[J].无机材料学报,1999,14(1):71-77.
    [7]周济,王晓慧,岳振星,等.用软化学过程制备高性能片式电感材料[J].材料研究学报,2001,15(1):23-28.
    [8]Kim J S, Ham C W. The effect of calcining temperature on the magnetic properties of the ultra-fine NiCuZn-ferrites[J]. Materials Research Bulletin,2009,44:633-637.
    [9]Fu Y P. Characterization of Ni-Cu-Zn Ferrite Prepared from Steel Pickling Liquor and Waste Solutions of Electroplating[J]. Journal of the America Ceramic Society,2006,89:3547-3549.
    [10]Zahi S, Hashim M, Daud A R. Preparation of Ni-Cu-Zn ferrite particles by sol-gel technique[J]. Materials Letters,2006,60:2803-2806.
    [11]Dimri M C, Verma A, Kashyap S C, et al. Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method[J]. Materials Science and Engineering B, 2006,33:42-48.
    [12]Roy P K, Bera J. Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol-gel auto-combustion method[J]. Journal of Materials Processing Technology,2008,197: 279-283.
    [13]Roy P K, Bera J. Electromagnetic properties of samarium-substituted NiCuZn ferrite prepared by auto-combustion method[J]. Journal of Magnetism and Magnetic Materials,2009, 321:247-251.
    [14]Gabal M A, Al-Thabaiti S A, El-Mossalamy E H, et al. Structural, magnetic and electrical properties of Ga-substituted NiCuZn nanocrystalline ferrite[J]. Ceramics International,2010, 36:1339-1346.
    [15]Bayoumy W A, Gabal M A. Synthesis characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite[J]. Journal of Alloys and Compounds,2010, 506:205-209.
    [16]Usakova M, Lukac J, Dosoudil R, et al. Influence of Cu2+ions on structural and magnetic properties of NiZn ferrites[J]. Journal of Materials Science:Materials in Electronics,2007, 18:1183-1198.
    [17]Priyadharsini P, Pradeep A, Sambasiva Rao P, et al. Structural, spectroscopic and magnetic study of nanocrystalline Ni-Zn ferrites[J]. Materials Chemistry and Physics,2009,116:207-213.
    [18]Yan H W, Zhang K, Blanford C F, et al. In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure[J]. Chemistry of Materials,2001,13:1374-1382.
    [19]Haneda K, Morrish A H. Noncollinear magnetic structure of CoFe2O4 small particles[J]. Journal of Applied Physics.1988,63:4258-4260.
    [20]Respaud M, Broto J M, Rakoto H, et al. Surface effects on the magnetic properties of ultrafine cobalt particles[J]. Physical Review B,1998,57:2925-2935.
    [21]Sellmyer D J, Liu Y, Shindo D. Handbook of Advanced Magnetic Materials, Vol.1, Advanced Magnetic Materials:Nanostructural Effects[M]. Beijing:Tsinghua University Press,2005, p.354.
    [22]Sellmyer D J, Liu Y, Shindo D. Handbook of Advanced Magnetic Materials, Vol.1, Advanced Magnetic Materials:Nanostructural Effects[M]. Beijing:Tsinghua University Press,2005, p.30.
    [23]Chen C, Kitakami O, Shimada Y. Particle size effects and surface anisotropy in Fe-based granular films[J]. Journal of Applied Physics,1998,84:2184-2188.
    [24]Li D, Herricks T, Xia Y N. Magnetic nanofibers of nickel ferrite prepared by electrospinning[J]. Applied Physics Letters,2003,83:4586-4588.
    [25]Jacobs I S, Bean C P. An approach to elongated fine-particle magnets[J]. Physical Review, 1955,100:1060-1067.
    [1]Saafan S A, Assar S T, Moharram B M, et al. Comparison study of some structural and magnetic properties of nano-structured and bulk Li-Ni-Zn ferrite samples[J]. Journal of Magnetism and Magnetic Materials,2010,322:628-632
    [2]Harris V G, Geiler A, Chen Y J, et al. Recent advances in processing and applications of microwave ferrites[J]. Journal of Magnetism and Magnetic Materials,2009,321:2035-2047.
    [3]江红,郭佳,赵璐,等. LiZn铁氧体的制备和吸波性能研究[J].无机材料学报,2010,25(1):73-76.
    [4]Gee S H, Hong Y K, Park M H, et al. Synthesis of nanosized (Li0.5xFe0.5xZn1-x)Fe2O4 particles and magnetic properties[J]. Journal of Applied Physics,2002,91(10):7586-7588.
    [5]Xu Z C. Magnetic anisotropy and Mossbauer spectra in disordered lithium-zinc ferrites[J]. Journal of Applied Physics,2003,93(8):4746-4749.
    [6]Liu C Y, Lan Z W, Jiang X N, et al. Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites[J]. Journal of Magnetism and Magnetic Materials,2008,320:1335-1339.
    [7]Jiang X N, Lan Z W, Yu Z, et al. Sintering characteristics of LiZn ferrites fabricated by a sol-gel process[J]. Journal of Magnetism and Magnetic Materials,2009,321:52-55.
    [8]Soibam I, Phanjoubam S, Sharma H B, et al. Magnetic studies of Li-Zn ferrites prepared by citrate precursor method[J]. Physica B,2009,404:3839-3841.
    [9]Song Y Y, Grinolds M S, Krivosik P, et al. Pulsed laser-deposited single-crystal LiZn-ferrite films with low microwave loss[J]. Journal of Applied Physics,2005,97,103516.
    [10]Dash J, Prasad S, Venkataramani N, et al. Study of magnetization and crystallization in sputter deposited LiZn ferrite thin films[J]. Journal of Applied Physics,1999,86:3303-3311.
    [11]Sun C, Sun K N. Preparation and characterization of magnesium-substituted LiZn ferrites by a sol-gel method[J]. Physica B,2007,391:335-338.
    [12]Gruskova A, Slama J, Dosoudil R, et al. Microwave properties of some substituted LiZn ferrites[J]. Journal of Magnetism and Magnetic Materials,2008,320:e860-e864.
    [13]Kang K U, Hyun S W, Kim C S. Size-dependent magnetic properties of order Li0.5Fe2.5O4 prepared by the sol-gel method[J]. Journal of Applied Physics,2006,99:08M917.
    [14]Jovic N G, Masadeh A S, Kremenovic A S, et al. Effects of thermal annealing on structural and magnetic properties of lithium ferrite nanoparticles[J]. The Journal of Physical Chemistry C,2009,113:20559-20567.
    [15]Wang Z L, Liu X J, Lv M F, et al. Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties[J]. The Journal of Physical Chemistry C,2008,112:15171-15175.
    [16]Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys[J]. IEEE Transaction on Magnetics,1991,27:3475-3518.
    [17]Verma S, Joy P A. Magnetic properties of superparamagnetic lithium ferrite nanoparticles[J]. Journal of Applied Physics,2005,98:124312.
    [18]White G O, Edmondson C A, Goldfarb R B, et al. High field magnetization studied in lithium-zinc ferritea[J]. Journal of Applied Physics,1979,50:2381-2383.
    [19]Shaikh A M, Watawe S C, Bellad S S, et al. Microstructural and magnetic properties of Zn substituted Li-Mg ferrites[J]. Materials Chemistry and Physics,2000,65:46-50.
    [1]张伯军,华杰,刘梅,等.纳米复合材料Co0.5Ni0.5Fe204-Si02的显微结构和磁性[J].硅酸盐学报,2008,36(3):292-295.
    [2]Pankhurst Q A, Thanh N K T, Jones S K, et al. Progress in application of magnetic nano-particles in biomedicine[J]. Journal of Physics D,2009,42:22401.
    [3]Mathe V L, Kamble R B. Anomalies in electrical and dielectric properties of nanocrystalline Ni-Co spinel ferrite[J]. Materials Research Bulletin,2008,43:2160-2165.
    [4]刘银,丘泰,沈春英,等.纳米晶Co1-xNixFe2O4铁氧体的制备及Ni2+对其磁性能的影响[J].硅酸盐学报,2007,35(2):160-163.
    [5]Kim D H, Nikles D E, Johnson D T, et al. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia [J]. Journal of Magnetism and Magnetic Materials,2008,320:2390-2396.
    [6]Niu Z P, Wang Y, Li F S. Magnetic properties of nanocrystalline Co-Ni ferrite [J]. Journal of Materials Science,2006,41:5726-5730.
    [7]Gul I H, Amin F, Abbasi A Z, et al. Physical and magnetic characterization of co-precipitated nanosize Co-Ni ferrites[J]. Scripta Materials,2007,56:497-500.
    [8]Kasapoglu N, Birsoz B, Baykal A, et al. Synthesis and magnetic properties of octahedral ferrite NixCo1-xFe2O4 nanocrystals[J]. Central European Journal of Chemisty,2007, 5:570-580.
    [9]Jiang J. A facile method to the Ni0.8Co0.2Fe2O4 nanocrystalline via a refluxing route in ethylene glycol [J]. Materials Letters,2007,61:3239-3242.
    [10]Shobana M K, Rajendran V, Jeyasubramanian K, et al. Preparation and characterisation of NiCo ferrite nanoparticles[J]. Materials Letters,2007,61:2616-2619.
    [11]Singhal S, Singh J, Barthwal S K, et al. Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1-xNixFe2O4)[J]. Journal of Solid State Chemisty,2005, 178:3183-3189.
    [12]Zhang F, Kitamoto Y, Abe M, et al. Effect of Ni addition into Co ferrite thin films for perpendicular recording media[J]. Journal of Applied Physics,2000,87:6881-6883.
    [13]Bayrakdar H, Esmer K. Dielectric characterization of NixCo1-Fe2O4 nanocrystals thin film over a broad frequency range (1 MHz-3 GHz)[J]. Journal of Applied Physics,2010, 107:044102.
    [14]Kodama R H. Magnetic nanoparticles[J]. Journal of Magnetism and Magnetic Materials,1999, 200:359-372.
    [15]Kodama R H, Berkowitz A E, McNiff Jr E J, et al. Surface Spin Disorder in NiFe2O4 Nanoparticles[J]. Physical Review Letters,1996,77:394-397.
    [16]Chen J P, Sorensen C M, Klabunde K J, et al. Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation[J]. Physical Review B,1996,54:9288-9296.
    [17]Martin J I, Nogues J, Liu K, et al. Ordered magnetic nanostructures:fabrication and properties[J]. Journal of Magnetism and Magnetic Materials,2003,256:449-501.
    [18]Mumtaz A, Maaz K, Janjua B, et al. Exchange bias and vertical shift in CoFe2O4 nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2007,313:266-272.
    [19]王九经,郁黎明,曹世勋,等.镍锌铁氧体薄膜的显微结构和低温磁性质[J].功能材料,2005,36(12):1855-1858.
    [20]Wu H, Zhang R, Liu X X, et al. Electrospinning of Fe, Co, and Ni nanofibers:Synthesis, assembly, and magnetic properties[J]. Chemistry of Materials,2007,19:3506-3511.
    [21]Sellmyer D J, Liu Y, Shindo D. Handbook of Advanced Magnetic Materials, Vol.1, Advanced Magnetic Materials:Nanostructural Effects[M]. Beijing:Tsinghua University Press,2005: p.354.
    [1]Leslie-Pelecky D L, Rieke R D. Magnetic properties of nanostructured materials[J]. Chemistry of Materials,1996,8:1770-1783.
    [2]Yu S H, Yoshimura M. Ferrite/metal composites fabricated by soft solution processing[J]. Advanced Functional Materials,2002,12:9-15.
    [3]Tihay F, Roger A C, Kiennemann A, et al. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catalysis Today,2000,58:263-269.
    [4]Zeng H, Li J, Liu J P, et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly[J]. Nature,2002,420:395-398.
    [5]Bonetti E, Del Bianco L, Signoretti S, et al. Synthesis by ball milling and characterization of nanocrystalline Fe3O4 and Fe/Fe3O4 composite system[J]. Journal of Applied Physics,2001, 89:1806-1815.
    [6]Liu J R, Itoh M, Machida K I. Magnetic and electromagnetic wave absorption properties of a-Fe/Z-type Ba-ferrite nanocomposites[J]. Applied Physics Letters,2006,88:062503.
    [7]Liu X G, Liang G Y, Zhang Y M, et al. Synthesis of FeNi3/(Ni0.5Zn0.5)Fe2O4 nanocomposite and its high frequency complex permeability[J]. Nanotechnology,2007,18:015701.
    [8]Caillot T, Pourroy G, Stuerga D. Microwave hydrothermal flash synthesis of nanocomposites Fe-Co alloy/cobalt ferrite[J]. Journal of Solid State Chemistry,2004,177:3843-3848.
    [9]Li S M, Han Z Y, Yang H, et al. Influence of Co/Fe ratios on the structures and the magnetic properties of FexCo1-x/CoyFe1-xFe2O4[J]. Journal of Magnetism and Magnetic Materials,2007, 309:36-39
    [10]Zhao L J, Yang H, Li S M, et al. The effect of aging time and calcination temperature on the magnetic properties of α-Fe/Fe3O4 composite[J]. Journal of Magnetism and Magnetic Materials,2006,301:287-291.
    [11]Wang Q, Cui Y M, Yang X W, et al. Hydrothermal synthesis and magnetic properties of CoxFe1-x/CoyLazFe3-y-zO4 composites[J]. Journal of Materials Science:Materials in Electronics, 2009,20:425-432.
    [12]Han Z, Li D, Liu X G, et al. Microwave-absorption properties of Fe(Mn)/ferrite nanocapsules[J]. Journal of Physics D,2009,42:055008.
    [13]Cabral F A O, Machado F L A, Araujo J H, et al. Preparation and magnetic study of the CoFe204-CoFe2 nanocomposite powders[J]. IEEE Transactions on Magnetics,2008,44:4235-4238.
    [14]Zeng H, Li J, Wang Z L, et al. Bimagnetic core/shell FePt/Fe3O4 nanoparticles[J]. Nano Letters,2004,4:187-190.
    [15]Zhao Y W, Zhang T, Xiao J Q. Explosion compacted FeCo particles coated with ferrites:A possible route to achieve artificial soft ferrites[J]. Journal of Applied Physics,2003,93:8014-8016.
    [16]Bahgat M, Paek M K, Pak J J. Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCo1-xFe2O4[J]. Journal of Alloys and Compounds,2008, 466:59-66.
    [17]Yang J B, Malik S K, Zhou X D, et al. Magnetic and transport properties of nanocomposite Fe/Fe3-δO4 and Fe3-δO4 films prepared by plasma-enhanced chemical vapour deposition[J]. Journal of Physics D,2005,38:1215-1220.
    [18]Viart N, Hassan R S, Meny C, et al. Diversity of the magnetic coupling behaviors in the CoFe2/CoFe2O4 system[J]. Applied Physics Letters,2005,86:192514.
    [19]Sellmyer D J, Liu Y, Shindo D. Handbook of Advanced Magnetic Materials, Vol.1, Advanced Magnetic Materials:Nanostructural Effects[M]. Beijing:Tsinghua University Press,2005, p.30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700