基于二氧化钛纳米材料染料敏化太阳能电池的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的发展和技术的进步,人类对能源的消耗也越来越多。在可再生能源的研究中,太阳能技术是人们现在研究的热点。太阳能作为一种取之不尽、用之不竭的绿色能源是解决能源危机的最佳途径之一。
     目前,染料敏化纳米晶太阳能电池是纳米技术和光电转换材料研究领域的热点之一,它具有成本低、转化效率高的优点,因此具有广阔的发展前景。静电纺丝技术因其高效、操作简单等优点,近年来己成为制备无机氧化物低维纳米材料的重要方法之一。纳米Ti02作为一种光催化材料,在环境保护、光能转换、工业催化等领域有着极为广泛的应用。
     本文中采用溶胶-凝胶法配制具有一定粘度的前驱溶液,采用静电纺丝技术成功地制备出PVP/[Ti(SO4)2+(NH2)2CO]复合纳米纤维、纳米带以及中空纳米管,PVP/[Ti(SO4)2+AgNO3]复合纳米纤维、纳米带以及中空纳米管,PVP/[Ti(SO4)2+(NH2)2CO+AgNO3]纳米纤维、纳米带以及中空纳米管,PVP/Ti(OC4H9)4纳米纤维。经过高温焙烧制得掺N、Ag以及双掺二氧化钛纳米纤维、纳米带以及中空纳米管,并将制得的Ti02纳米纤维应用在染料敏化太阳能电池的基底物质上,采用N3染料对其进行敏化处理,I3-/I-作为液体电解质,组装并密封染料敏化太阳能电池。
     利用XRD、FTIR、SEM等分析手段对制备样品进行了系统表征。结果表明,掺氮TiO2纳米纤维平均直径在150-165nm,纳米带平均宽度在5000-8000 nm,厚度大约为600nm,中空纳米管平均直径在900-1200 nm。掺银Ti02纳米纤维平均直径在97-112 nm,纳米带平均宽度在5000-7000 nm,厚度大约为600 nm,中空纳米管平均直径在1700-2000 nm。氮和银双掺Ti02纳米纤维平均直径在110-150 nm,纳米带平均宽度在6000-7200 nm,中空纳米管平均直径1130-1270 nm。
With the advancement of world economy and technology, more and more energy is being consumed by mankind. Of all the available technologies producing renewable energy, photovoltaic techniques are a hot topic of research. The solar energy, an inexhaustible green energy, is one of the optimal ways to resolve energy crisis.
     Currently, dye-sensitized nano-crystalline solar cell (DSSC) is one of popular research realm in the fields of nanotechnology and photoelectric conversion material, and it has broad prospects due to its low cost and high efficiency.In recent years, electrospinning technology has been proved to be one of the effective methods to prepare inorganic oxides low-dimensional nonmaterial owing to its high efficiency, simple operation and so on. Nano-TiO2 particles, a prospective photocatalytic material, have expensive applications in areas such as environmental protection, solar energy conversion and industrial catalysts.
     In this dissertation, sol-gel method was applied to prepare the precursor solution with certain viscosity, and electrospinning technique was used to fabricate PVP/[Ti(SO4)2+ (NH2)2CO] composite nanofibers, nanobelts and nanotubes, PVP/[Ti(SO4)2+AgNO3] composite nanofibers, nanobelts and nanotubes, PVP/[Ti(SO4)2+(NH2)2CO+AgNO3] composite nanofibers, nanobelts and nanotubes, PVP/Ti(OC4H9)4 nanofibers.The prepared TiO2 nanofibers were employed as the thin film materials in assembling solar cells, N3 was used as sensitizers to sensitize the film and I3-/I- solution was used as electrolyte.
     The samples were systematically characterized by XRD, FTIR, SEM, et al. The average of diameter:N doped TiO2 nanofibers were 150~165 nm, nanotubes were 900-1200 nm. Widths of nanobelts were 5000-8000 nm and the thickness was 600 nm. Ag doped TiO2 nanofibers were 97~112 nm, nanotubes were 1700~2000 nm. Widths of nanobelts were 5000-7000 nm and the thickness was 600 nm. N, Ag doped TiO2 nanofibers were 110~150 nm. nanotubes were 1130~1270 nm. Widths of nanobelts were 6000~7200 nm and the thickness was 600 nm.
引文
[1]Jason Hill. Energy information administration. International Energy Outlook,2006,24 (4):281-281
    [2]BP. Statistical review of world energy. International Energy Outlook,2006,67(5):383.379-380
    [3]Gratzel. M. Synthesis of new metal-salen complexes of dye-sensitized solar cells. Nature,2001.414,338-340
    [4]Andrews, E. A. A Latin dictionary. Clarendon Press,1879,14(5):538-542, Oxford
    [5]Becquerel.Photo-electrochemical cells. A. E. C. R. Acad. Sci. Paris 1839,9.561-562
    [6]Smith, W. The measurement of magnetic quantities. J. Soc. Telegraph Eng,1873,2,31-33
    [7]Smith, W. Exclusion of paternity the current state of the art.Nature,1873.7.303-305
    [8]Adams, W. G. Photovoltaic principles day, R. E. Proc. R. Soc. Land. A 1877,25,113-115
    [9]Siemens, W. Van nostrand's eng. Mag.1885,32,392-340
    [10]Planck. M. Ann. On the law of distribution of energy in the normal spectrum.Phys.1901,4,553-555
    [11]Einstein. A.. The reality of atoms:1905 revisited. Phys.1905,17,132-133
    [12]Goldman. A. Brodsky. J. Ann. Zur Theoriedes becquer eleffektes.Phys.1914,44,849-860
    [13]Scotty. W. Generation of an emf in semiconductors with nonequilibrium current carrier concentrations.Physik. Z. 1930,31.913-920
    [14]Copeland. A. W. Black. O. D.Garrett. A. B.The Photovoltaic effect.Chem Rev.1942,31,177-179
    [15]Czochralski. J. Z. Growth of garnet laser crystals. Phys. Chem.1917,92,219-220
    [16]Adorer. R.Stoma. C. the Photovoltaic Effect.Compt. rends.1932,194,1124-1126
    [17]Fuller. C. From space to earth:the story of solar electricity.10-7-53. Book#24863. Loc.123-09-01
    [18]Chapin. D. From space to earth:the story of solar electricity.1-26-54 & 2-23-54. Book#29349, Loc.124-11-02
    [19]"Sunlight Converted to Electricity", Sunday Globe, Aug.19,1973. Boston
    [20]O'Brian B.Gratzel. M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature. 1991.353.737-740
    [21]Luque. A. Prog. Photovoltaic market and costs forecast based on a demand elasticity model.Photovoltaics.2001. 9.303-305
    [22]Green. M. A. Emery, K. King. D. L. Hishikawa, Y. Warta, W. Prog.Adapted from www.nrel.gov/pv/thin_film/docs/kaz_best_research_cells.ppt.Photovoltaics.2007,15.35-38
    [23]West. W. Proceedings of vogel centennial symposium.SCI. Eng.1974,18,35-37
    [24]J. Moser. Monatsch. Enhancing the open-circuit voltage of dye-sensitized solar cells Coadsorbents and Alternative Redox Couples. Chem.1887,8,373-375
    [25]Namba. S.Hishiki, Y. Dye sensitized solar cells. J. Phys. Chem.1965.69,774-776
    [26]Nelson. R. C. Mass spectrometry methods for structural determination and analysis of fatty acids.J. Phys. Chem. 1965,69,714-720
    [27]Bourdon J. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films.J. Phys. Chem.1965,69,705-710
    [28]Gerischer. H.Tributsch. H. Ber. Bunsenges. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes.Phys. Chem.1968,72,437-440
    [29]Gerischer. H..Tributsch. H. Ber. Bunsenges. Phys. Chem.1969,73,251-252
    [30]Gerischer. H. Electroanal. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. Chem. Interfac. Electrochem.1975.58.263-265
    [31]Tsubomura. H.Matsumura. M.Noyamaura, Y.Amamyiya. T. Perspectives for dye-sensitized nanocrystalline solar cells.Nature 1976,261.402-420
    [32]Clark. W. D. K. Sutin. N. J. Am. Spectral sensitization of n-type titanium dioxide electrodes by polypyridineruthenium (Ⅱ) complexes.Chem. Soc.1977,99,4676-4680
    [33]Anderson. S.Constable. E. C. Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature,1979,280,571-580
    [34]Gerischer. H.Dye sensitised zinc oxide:aqueous electrolyte:platinum photocell.Photochem. Photobiol.1972,16, 243-250
    [35]Memming. R. Photochemical and electrochemical and electrochemical processes of excited dyes at semiconductor and metal electiodes.Photochem. Photobiol.1972,16,325-326
    [36]Fujishima. A.Watanabe. T.Tatsuoki, O.Honda. K. Dye sensitised zinc oxide:aqueous electrolyte:platinum photocell.Chem. Lett.1975,4,13-16
    [37]Jayadevaiah. T. S. Electrochemical, solid state.photochemical and technological aspects of photoelectrochemical energy converters.Appl. Phys. Lett..1974..399.25-27
    [38]Hamnett. A.Dare-Edwards. M. P.Chemistry of the alumina column.Phys.Chem.1979,83,3280-3285
    [39]Dare-Edwards, M. P.Goodenough. J. B.Hamnett. A.Seddon, K. R.Wright, R. D.Faraday Discuss. Highly efficient sensitization of titanium dioxide.Chem. Soc,1980,70,285-288
    [40]Fujishima, A.Honda, K. Bull. Photocatalytic activities of TiO2 loaded with NiO Chem. Soc. Jap.,1971.44. 1148-1150
    [41]Fujishima. A. Honda. K. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature, 1972,238.37-44
    [42]Duonghong. D.Serpone, N.Gratzel. M. Photophysical and photochemical primary events in semiconductor particulate systems. Colloidal CdS with methylviologen.Acta,1984,67,1012-1014
    [43]DeSilvestro,J.Gratzel.M.Kavan.L.Moser. J. Augustynski, J. J. Molecular photovoltaics.Am. Chem. Soc.,1985,107, 2988-2990
    [44]Vlachopoulos. N.Liska. P.Augustynski. J.Gratzel. M.J.cis-Diaquabis (2.2'-bipyridyl-4.4'-dicarboxylate) ruthenium (II) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible.Am. Chem. Soc.,1988,110,1216-1218
    [45]O'Regan B.Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature, 1991.353.737-740
    [46]Nazeeruddin. M.K.Kay. A.Rodicio. I.Humphry-Baker. R.Miiller. E.Liska. P. Vlachopoulos N.Gratzel. M. J. Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid) ruthenium (Ⅱ) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania.Am. Chem. Soc.1993.115.6382-6385
    [47]Nazeeruddin, M. K.Pechy, P. Gratzel. M. Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers.Chem. Commun..1997,11.1075-1080
    [48]Bach. U.Lupo. D.Comte. P.Moser. J. E.Weissortel, F.Salbeck. J.Spreitzer. H.Gratzel.M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies.Nature,1998,395.583-585
    [49]Gratzel. M. Dye-sensitized solid-state heterojunction solar cells.MRS Bull.2005,30,23-28
    [50]Wang, P.Zakeeruddin, S. M.Moser. J. E.Nazeeruddin. M. K.Sekiguchi. T.Gratzel. M. A solvent-free. SeCN-/(SeCN) 3-based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells.Nat.Mater.2003.2. 402-405
    [51]Wang. P.Klein. C.Humphry-Baker. R.Zakeeruddin, S. M.Gratzel. M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells.Am. Chem. Soc.2005.127,808-810
    [52]Kuang, D. B.Wang. P. Ito. S.Zakeeruddin. S. M.Gratzel. M. Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination. Am. Chem. Soc.2006,128.7732-7733
    [53]Kuang. D.High-Efficiency and Stable Mesoscopic Dye-Sensitized Solar Cells Based on a High Molar Extinction Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte.Adv. Mater.2007,19,1133-1135
    [54]Gregg. B. A.Hanna, M. C. J. Comparing organic to inorganic photovoltaic cells:Theory, experiment, and simulation.Appl. Phys,2003.93,3605-3607
    [55]Gregg. B. A. J. Optical Absorption of Poly (thienylene vinylene)-Conjugated Polymers:Experiment and First Principle Theoryt.Phys. Chem. B,2003.107,4688-4689
    [56]Peter L. M. J. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays:Transport, trapping, and transfer of electrons. Phys. Chem. C,2007,111.6601-6605
    [57]Gratzel, M. Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte.Chem. Lett.2005,34,8-11
    [58]Barbe, C. J.Sub-10 nm electron beam nanolithography using spin-coatable TiO2 resists.Ceram. Soc.1997,80, 3157-3160
    [59]IUPAC Compendium of Chemical Terminology. Electronic version. http://goldbook.iupac.org/R05419.html
    [60]Ito. S.Liska. P. Gratzel, M. Dye-Sensitized Solar Cells Incorporating a "Liquid"Hole-Transporting Material.Chem. Commun.2005,11.4351-4355
    [61]Hagfeldt, A. Gratzel, M. Synthesis and Characterization of Unsymmetrical.Chem. Rev.1995,95,49-55
    [62]Gratzel, M. Photoelectrochemical cells. Prog. Photovoltaics.2000,8,171-173
    [63]Barolo, C.Gratzel, M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizes,Inorg. Chem.2006,45.4642-4645
    [64]Watson. D. Meyer. G. Annu. Rev. Electron injection at dye-sensitized semiconductor electrodes. Phys.Chem.2005.56. 119-120
    [65]Anderson, N. Lian. T. Annu. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface Rev. Phys. Chem.2005,56.491-499
    [66]Gerischer H. Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis. Surf. Sci.1969,18,97-99
    [67]Marcus R. A. J. On the theory of electrochemical and chemical electron transfer processes.Chem. Phys,1956,24. 966-970
    [68]Marcus R. A. Annu Electron transfer reactions in chemistry theory and experiment.Rev. Phys.Chem.1964,15, 155-160
    [69]Tachibana. Y. Moser. J. E. Gratzel. M. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films.Phys. Chem.1996.100.20056-20062
    [70]Wenger, B.Gratzel. M. New architectures for dye-sensitized solar cells.Am. Chem. Soc.2005,127.12150-12155
    [71]Wenger, B.Gratzel. M.Moser, J. E. A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells.Chimia 2005.59,123-125
    [72]Cazzanti. S. A Novel Efficient Iodide-Free Redox Mediator for Dye-Sensitized Solar Cells. Am. Chem. Soc. 2006.128.9996-9999
    [73]Nusbaumer, H. Zakeeruddin. S. M. Moser, J.-E.Gratzel, M. an alternative efficient redox couple for the dye-sensitized solar cell system.Chem. Eur.J.2003.9,3756-3760
    [74]Wang, P.Klein. C.Humphry-Baker. R.Zakeeruddin. S. M.Gratzel. M. Enhancing the Open-circuit Voltage of Dye-sensitized Solar Cells:Coadsorbents and Alternative Redox Couples.Appl. Phys. Letts.2005.86,123-125
    [75]Kuang. D.Klein, C. Ito. S.Moser. J. E.Humphry-Baker, R. Zakeeruddin. S. M. Gratzel.M. Recent advances in dye-sensitized solar cells.Adv. Func. Mater.2007,17,154-158
    [76]Peter. L. M. Dye-sensitized nanocrystalline solar cells.Phys. Chem. Chem. Phys,2007,9.263-267
    [77]Wasserscheid, P.Welton. T. Ionic Liquids in Synthesis Wiley Weinheim.Transition-metal nanoparticles in imidazolium ionic liquids:recycable catalysts for biphasic hydrogenation reactions.Germany.2002.9.2630-2639
    [79]Tae-Sik Kang. Effects of the morphology of the electrode nanostructures on the performance of dye-sensitized solar cell [J].Nano Res,2008,1.483-489
    [80]Hagfeldt,A.Gratzel,M.Maruska Effect of electrolyte in electrospum poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers on dye-sensitized solar cell.[J].Solar Energy Materials and Solar Cell.2009.93:803-807
    [78]张凤.陶杰.陶海军等.柔性TiO2纳米管薄膜电极的制备及其光电性能[J].影像科学与光化学.2008.26(3):224-232
    [81]Lion.W.Park. et al.Fabrication of dye-sensitized solar cells using TiO2 nanotube arrays on Ti-grid substrates [J].Thin Solid Films,2009,417:4196-4198
    [82]Kruger, J.; Plass. R.:Gratzel. M.; Cameron, P. J.:Peter. L. M. J. Nanowire dye-sensitized solar cells.Phys. Chem. B 2005,,7536,107-110
    [83]刘文鹏,张庆礼.邵淑芳等Eu:GGG纳米荧光粉体制备及其光学特性[J].中国稀土学报.2007,25(4):470-473
    [84]Li Xianxue. Hu Zhanggui, Li Jiangtao. et al. Nanostructured GGG powders via gel combustion [J]. Optical Materials, 2007,29:854-857
    [85]李梅.李志强.李珍.正负极同电场静电纺丝电场性质及其机理[J].高等学校化学学报.2008.29(5):1041-1045
    [86]季宏伟.周德凤,周险峰等.静电纺丝法制备LaFeO3微纳米纤维[J].高等学校化学学报.2009.30(11):2112-2115
    [87]Yu Hongquan, Song Hongwei, Pan Guohui. et al. Preparation and luminescent properties of europium-doped yttria fibers by electrospinning.[J]. Journal of Luminescence,2007,124:39-44
    [88]黄绘敏,李振宇,杨帆等.静电纺丝法制备超细聚苯乙烯纳米纤维[J].高等学校化学学报.2007.28(6):1200-1202
    [89]Murakami. T. N. Wang, Q.Gratzel, M. Counter electrodes for DSC:application of functional materials as catalysts J. Electro. Soc.2006, A2255.153-155
    [90]F.Ko, Y.Gogotsi, A.Ali. Electrospinning of Continuous Carbon Nanotube-Filled NanofiberYarns [J].Adv.Mater.2003, 15(14):1161-1165
    [91]Tamai H, Ikeya T. Nishiyama F. NO decomposition by ultrafine noble metals dispersed on the rare earth phosphate hollow particles [J]. Journal of Materials Science.2000, (35):4945-4953
    [92]Renker D H.Chun I. Nanometer fibres of polymer produced by electros pinning [J].Nanotechnology.1996.7.216-220
    [93]Katta P.Alessandro M.Ramsier R D.et al. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nanoletter.2004,4(11):2215-2218
    [94]Theron A. Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres.Nanotechnology [J]. 2001.12:384-390
    [95]Bornat A. Of Mice and'Manimal':The Patent & Trademark Office's Latest Stance against Patent Protection for Human-Based Inventions.US Patent [P].1987.4(11):2215-2218
    [96]Smit E. Buttner U . Sanderson R D. Continuous yarns from electrospun fibers.Polymer,2005,46(8):2419-2423
    [97]Taylor G I, Proc R Soc London.Electrically driven jets.Ser A [J].1969,313:453-475
    [98]李志国.静电纺丝技术制备二氧化钛纳米材料与表征:[硕士学位论文].长春:长春理工大学.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700