超重力燃烧合成YAG陶瓷热力学计算及过程仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钇铝石榴石(简称YAG)透明陶瓷是近年来快速发展起来的重要的先进陶瓷材料,目前,YAG透明陶瓷成为国内外研究的热点,尤其在激光领域。但长期以来,该材料的制备技术一直沿用粉末冶金工艺流程,其制备周期长,生产成本高,质量难以保证。同时,由于陶瓷熔点高、盛装困难,且高温陶瓷凝固后形成粗大组织,很少有采用类似金属材料的熔融铸造工艺路线进行制备。
     基于此,本研究在中科院理化技术研究所成功研制出Al2O3透明陶瓷等的基础上,利用热力学分析、动力学分析、实验及仿真模拟等理论及技术手段对超重力燃烧合成透明YAG陶瓷进行了深入的研究,并得出较好的研究成果,具体包括以下内容。
     首先,本文在建立有关热力学数据库的基础上,根据热力学原理,使用VisualBasic语言编制了热力学数据计算系统,并对编程计算结果进行可靠性验证。通过对不同体系自蔓延高温合成绝热温度的计算结果与分析和体系优选应遵循的原则,进行合成YAG陶瓷体系的优化选择。结果显示,采用Al/NiO/Y2O3体系进行燃烧合成YAG陶瓷最为合适。
     其次,通过静态下合成YAG试验研究表明:铝热剂原料粒度和压块密度会对压块的燃烧速度产生一定影响,这点与文献(宋月鹏,2009)结论相同。超重力熔铸技术是将燃烧合成技术与超重力技术相结合,利用铝热燃烧合成体系的强放热获得超高温的陶瓷/金属混合熔体,并实现二者的彻底分离。在超重力场中进行燃烧合成YAG陶瓷实验的研究结果显示,陶瓷体内金属颗粒的含量、气孔的多少和各种晶格缺陷与超重力的大小、熔体存在的时间密切相关,进而影响到YAG陶瓷的透明度。
     最后,利用ANSYS有限元分析软件,对超重力燃烧合成过程的温度场和应力场进行模拟,并结合实验结果验证模拟结果的可靠性。通过对温度场有限元模拟结果结合绝热温度计算和试验数据,得出了重力系数对多相熔体分离及产物致密化的影响规律。应力场的模拟结果显示压块的尺寸和质量对陶瓷的应力场有很大的影响,且热应力随温度的降低而降低。
Because of the important situation in the laser field, the Yttrium Aluminum Garnet (YAG) transparent ceramics, one of the advanced ceramic materials, has becomed a research hotspot at home and abroad. However, the powder metallurgy technical has been always mainly preparation method of YAG for a long time, which has so many defects such as long preparation time, high production costs, disguarantee quality and so on. At the same time, the high melting point of ceramics leads to liquid difficultly filling and thick organization formatting after high temperature solidification. Thereforce, it is very difficulty to prepare for the YAG by costing technique.
     It is reported that the Al2O3 transparent ceramics had been succeed to prepare by a new method-Combustion Synthesis under Ultra-high Gravity Field in Technical Institute of Physics and Chemistry of CAS. Based on this successful fact, some researches such as thermodynamic and kinetic analysis, simulation and experimental test and so on are carried on the YAG transparent ceramic in this paper. The results are lied on as follow:
     First of all, the thermodynamic database of materials is established. Combining with the common thermodynamic principle and Visual Basic language, a SHS system thermodynamic data calculation computer program is so obtained. And then, its reliability is verified by many ways. According to the adiabatic temperature of many SHS sytems, the thermite reaction system of YAG preparation is optimized by computer calculating. The results showed that the Al/NiO/Y2O3 thermite is the most appropriate system for YAG ceramic preparation.
     Secondly, the static experimental results of combustion synthesis show that the raw agents'facts such as sizes of aluminium powder and compact density have certain effect on combustion velocity. Melt-casting under ultra-high gravity integrates the combustion synthesis with ultra-high gravity technology. The ultra-temperature metal/ceramic mixing-melts can be achieved by heat generated from thermite combustion reaction. The ceramic product is separated in the ultra-high centrifugal field. The further researches show that the defects in YAG ceramic such as content of metal particles, the amount of pores and a variety of lattice defects are closely related to the magnitude of gravity and the existence time of melt, which can affect the transparency of YAG ceramic.
     Finally, the temperature and stress distribution during the combustion synthesis under ultra-high gravity were simulated and then were verified by ANSYS finite element analysis software. The experimental results agree very well with the simulation ones, which indicated the high reliability of this method. Combining with the adiabatic temperature calculation and experiments verification, the rules of the gravity coefficients effect on the separation of the multi-phase melts and on the densification of the products are so obtained. Furthermore, the stress field simulation results show that the size and quality of compacts have remarkable effects on the stress field of ceramics. And the thermal stress decrease along with system temperature decrease.
引文
陈启伟,施英,施剑林.陶瓷闪烁材料最新研究进展[J].材料科学与工程学报,2005.23(1):128-132
    陈威,李运良,孙长青.自蔓延焊接温度场及残余应力场有限元分析[J].机械工程师,2005,4:36-38
    陈智慧.钇铝石榴石纳米粉体及YAG透明陶瓷的制备研究[D].中国科学院理化技术研究所,2007,5
    陈秀华.TiC/Si固相反应制备Ti3SiC2/SiC复合材料的反应路径研究[D].昆明理工大学,2001,4
    戴锅生.传热学[M].第二版.北京:高等教育出版社,1999
    范景莲,严德剑,黄伯云等.国内外钨铜复合材料的研究现状[J].粉末冶金工业,2003,2(13):9-14
    范群成.用燃烧波淬熄法对自蔓延高温合成机理的研究[D].西安交通大学,2000,4
    方舟.ZrB2陶瓷的自蔓延高温合成与烧结[D].武汉理工大学,2002,5
    龚沛曾,陆慰民,杨志强.Visual Basic程序设计简明教程[M].高等教育出版社,2003,6
    郭伏安,符寒光.离心自蔓延高温合成陶瓷内衬复合钢管的研究与应用[J].湖南有色金属,2002.18(6):27-41
    郭旺.MgO作为烧结助剂制备Nd:YAG透明陶瓷的性能表征[D].四川大学,2007,5
    何南玲.YAG黄色荧光粉的合成与性能研究[D].重庆大学,2006,5
    侯晋.超重力共沉淀法制备CuO/ZnO/Al2O3催化剂的研究[D].北京化工大学,2008,5
    侯军刚.溶胶凝胶自蔓延法低温烧结MnZn铁氧体的研究[D].天津大学,2007,1
    胡文彬,郑子樵,刘业翔,等.自蔓延高温合成过程中绝热温度的编程计算[J].材料工程,1993:36-39
    黄朝红,王爱华,殷绍唐,等.Nd:YAG透明陶瓷制备技术的研究进展[J].硅酸盐学报,2003,31(9):873-877
    黄荣林.注塑齿轮热变形数值模拟及模具优化分析[D].合肥工业大学,2009,4
    黄自谦,贺跃辉,蔡海涛,等.TiAIN涂层的热残余应力分析[J].中国有色金属学报.2007,17:897-902
    雷鸣,张礼杰,王英伟,等.透明陶瓷的研究现状与发展[J].中国陶瓷工业,2005,12(4):45-49
    姜晓铭.VBScript编程指南[M].北京:中国石化出版社,2000.5
    金云学,张二林.自蔓延合成技术及原位自生复合材料[M].哈尔滨:哈尔滨工业大学出版社,2002:124-130
    李长青,张明福,左洪波,等.影响透明陶瓷透光性能的因素[J].兵器材料科学与工程,2006,29(2):26-30
    李长青,左洪波,张明福,等.固相反应法制备多晶YAG陶瓷[J].硅酸盐学报,2006,34(8):979-984
    李红云,赵社戌,孙雁.ANSYS10.0基础及工程应用[M].北京:中国铁道出版社,2007,5
    李江,邱发贵,孙兴伟等.真空烧结Nd:YAG透明陶瓷的研究[J].功能材料,2004年增刊(35)卷:367-370
    李黎明.ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005
    李淑华,王建江,尹玉军,等.自蔓延高温合成法制备陶瓷内衬管[J].河北工业科技,1999.16(2):78-81
    李霞.掺钕钇铝石榴石(Nd:YAG)激光陶瓷的制备与性能表征[D].山东大学,2005,3
    李霞,刘宏,王继扬,等.钇铝石榴石透明激光陶瓷的研究进展[J].硅酸盐学报,2004,32(4):485-489
    李小川,施明恒,张东辉.非均匀多孔介质有效热导率分析[J].工程热物理学报,2006,27(4):644-646
    李艳.超重力场传热研究[D].中北大学,2007,5
    李永正.YAG激光在超精细焊接中的应用研究[D].长春理工大学,2003,1
    李玉新.Al-C-Ti系粉末材料激光点火自蔓延燃烧及产物的研究[D].吉林大学,2008,6
    李泽敏,张林,李建伟,等.自蔓延高温合成NiTi形状记忆合金的热力学 计算与分析[J].粉末冶金工业,2008.2,18(1):33-35
    李珍.Nd:YAG粉体及透明陶瓷制备工艺研究[D].西安电子科技大学,2009,1
    李战发.稀土掺质YAG(YSGG)纳米材料的制备及性能的研究[D].山东大学,2006,4
    李志翔,杨晓青.W-Cu合金的最新研究进展[J].工程材料,2005,8(32):53-59
    刘军芳,傅正义,张东明,等.透明陶瓷的研究现状与发展展望[J].陶瓷学报,2002.23(4):226-250
    刘文涛.Visual Basic+ Access数据库开发与实例[M].北京:清华大学出版社,2006
    刘威,张磊,汤秀山等.钢表面氧乙炔火焰辅助SHS反应辊压制备TiC-Ni涂层[J].材料热处理技术.2009,12(38):89-92
    刘永合,殷声,张维敬等.相图计算技术在复相陶瓷燃烧合成热力学分析中的应用[J].稀有金属,2000.1,24(1):37-40
    刘庄,吴肇基,吴景之,等.热处理过程的数值模拟[M].北京:科学出版社,1996
    罗克[Bill Locke]. Visual C++程序设计:VB程序员指南[M].北京:机械工业出版社,2002.10
    马海霞,楼祺洪,凌磊,等.陶瓷激光器的研究进展[J].激光与光电子学进展,2006.13(2):42-53
    (美)Rod Stephens著;侯普秀,曹俊译.Visual Basic 2005设计与开发专家[M].教程北京:清华大学出版社,2008
    (美)Rod Stephens著;徐璐,姜玲玲译.Visual Basic 2005编程参考手册[M].北京:清华大学出版社,2008
    潘传增,赵忠民,张龙,等.超重力下合成Al2O3/YAZ复合陶瓷的组织与性能[J].特种铸造及有色合金,2008.28(1):47-50
    裴军.氧化铝基陶瓷材料的超重力熔铸制备新技术研究[D].中国科学院研究生院博士学位论文,2009.5
    裴军,李江涛,粱睿,等.以超重力熔铸新技术制备Al203陶瓷材料[J].自然科学进展,2009,19(4):462-466
    彭小燕,徐协文,伍协,等.自蔓延合成TiN-Al2O3复合粉体[J].硅酸盐通报,2004.2:70-72
    钱越进,蒋明学.Cr203铝热还原制备Cr2O3-Al2O3-Cr金属陶瓷的热分析[J].硅酸盐通报,2009.4,28(2):328-332
    曲振生,赵忠民,张龙,等.TiC-TiB2复合陶瓷制备与性能[J].热加工工艺技术与材料研究,2009,7:91-97
    石建稳,王引真,李小龙.自蔓延高温合成TIC-Ni金属陶瓷的热力学编程与分析[J].材料热处理学报,2005.2,26(1):93-96
    宋亚林,赵忠民,张龙,等.超重力下燃烧合成ZrO2(4Y)/Al2O3的成分、显微组织于力学性能[J].复合材料学报,2009,6,26(3):138-45
    宋月鹏;李江涛;林志明,等.燃烧合成Y3A15O12过程中铝粉粒度与压块密度对燃烧速率的影响[J].硅酸盐学报,2009,37(2):873-877
    宋月鹏.超重力铝热燃烧合成陶瓷材料绝热温度计算及过程仿真[R].中国科学院理化技术研究所博士后出站报告,2009.8
    王刚.超重力技术制备有序介孔氧化铝的机理研究[D].北京化工大学,2008,6
    王洪涛.自蔓延高温合成Al-Ti-C中间合金结构与性能的研究[D].兰州理工大学,2004,6
    王丽丹.YAG及Nd:YAG透明陶瓷的粉体制备及性能研究[D].吉林大学,2006,11
    王向阳,黄存新.8-14μm红外波段的窗口材料[J].人工晶体学报,1998,24(4):358-363
    王晓峰,李建伟,曹钦存.Ti-Si-C三元体系自蔓延高温合成的反应热力学研究[J].粉末冶金技术,2008.26(4):287-290无机热力学数据手册[Z].
    王学荣,米晓云,卢歆等.透明陶瓷的研究进展[J].硅酸盐学报,2007,35(12):1671-1674
    席文君,周和平.复杂铝热反应的平衡热力学分析[J].复合材料学报,2003.8,20(4),14-17
    肖筱南,赵来军,党林立.现代数值计算方法[M].北京:北京大学出版社,2007
    闫丽静.Mg-TiO2自蔓延高温合成反应研究[D].兰州理工大学,2007,5
    杨权,张龙,赵忠民,等.氧化物/氧化物共晶复合陶瓷研究进展[J].材料开发与应用,2009,8:79-83
    叶大伦.实用无机物热力学数据手册[M].北京:冶金出版社,1981
    殷声.燃烧合成[M].北京:冶金工业出版社,2004:63-73
    尹衍升,张景德.氧化铝陶瓷及其复合材料[M].北京:化学工业出版社,2001,7
    张靖,张龙,赵忠民,等.超重力对燃烧合成A12O3/Zr2O3自生复合陶瓷的影响[J].特种铸造及有色合金,2007,27(11):871-874
    臧春和.Yb:YAG晶体是生长及其性能研究[D].长春理工大学,2004,10
    常春雷.自蔓延高温合成Al/Mg2Si复合材料及性能表征[D].兰州理工大学,.2008,5
    张朝晖.ANSYS工程应用范例入门与提高[M].北京:清华大学出版社
    张朝晖.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007,5
    赵金龙.几种自蔓延高温合成新技术及其应用基础研究[D].大连理工大学,2001,12
    张金升,张银燕,王美婷.陶瓷材料显微结构与性能[M].北京:化学工业出版社,2007,4
    张金咏.自蔓延燃烧合成的非平衡动力学及其对材料结构的影响[D].武汉理工大学,2002,5
    张伟娜.动力学因素对Cr-Ti-C体系自蔓延高温合成反应产物的影响[D].吉林大学,2006,9
    赵忠民,叶明惠,辛文彤,等.重力分离SHS双衬陶瓷复合管的组织于性能[J].特种铸造及有色合金,2000.3:1-4
    赵忠民,张龙,张靖,等.超重力下燃烧合成Al2O3/Zr2O3自生复合陶瓷研究[J].稀有金属材料与工程,2008,37(增刊1):745-748
    周芙蓉Al2O3-Zr2O3-YAG复相陶瓷的制备及性能研究[D].武汉理工大学,2007,52
    皱志伟.Nd:YAG透明陶瓷的制备和光学性能研究[D].长春理工大学,2005,12
    庄洪宇.自蔓延合成Al-Ti-C中间合金结构与性能研究[D].大连理工大学,2008,12
    Anstis G. R, Chantikul P, Lawn B. R, et al, A critical evaluation of indentation techniques for measuring fracture toughness:I, Direct crack measurements, J. Am. Ceram. Soc.,64,533-538 (1981)
    BHATTACHARYA A K. Modelling of the effects of porosity and particle size on the steady-state wave velocity in combustion synthesis[J]. J Mater Sci, 27(1992):1521-1527
    Calderon-Moreno Jose M, Yoshimura Masahiro. Y3Al5O12(YAG)-Zr02Binary eutectic composites obtained by melt quenching, Mater. Sci. Eng, A, 375-377, 1250-1254 (2004)
    Chantikul P, Anstis G. R, Lawn B. R, et al, A critical evaluation of indentation techniques for measuring fracture toughness:Ⅱ, Strength method, J. Am. Ceram. Soc,64,538-543 (1981)
    D. Klimma, Ganschowa, Pajaczkowskab, et al. On the solubility of Nd3+ in Y3Al5O12[J]. Journal of Alloys and Compounds, 2007 (436):204-208
    Du Zhongze, Fu Hanguang, Fu Hanfeng, et al. A study of ceramic-lined compound copper pipe produced by SHS-centrifugal casting. Mater. Lett.,59, 1853-1858(2005)
    Fratello. V. J, Brandle. C. D, Physical properties of a Y3Al5O12 melt, J. Cryst. Growth,128,1006-1010 (1993)
    H. Yagi, T. Yanagitani, T. Numazawa, et al. The physical properties of transparent Y3Al5O12 Elastic modulus at high temperature and thermal conductivity at low temperature[J]. Ceramics International, 33 (2007):711-714 http://webbook.nist.gov/ http://www.factsage.com/ http://www.matweb.com/
    Jackson K. A, in: Doremus R. H, Roberts B. W, Turnbull D (Eds.), Growth and Perfection of Crystals, John Wiley, New York, 319-324, 1958
    Jun Pei, Jiang-tao Li, G.H.Liu, et al. Fabrication of Bulk Al2O3 by Combustion Synthesis Melt-Casting under Ultra-High Gravity[J]. Journal of Alloys and Compounds, 476(2009):854-858
    Jun Pei, Jiang-tao Li, G.H.Liu, et al. Rapid fabrication of bulk graded Al2O3/YAG/YSZ eutectics by combustion synthesis under ultra-high-gravity field, Ceramic international, in press, 18 June 2009
    K. NAGASHIO, K. KURIBAYASHI. RAPID SOLIDIFICATION OF Y3Al5O12 GARNET FROM HYPERCOOLED MELT[J]. Acta mater. 2001 (49):1947-1955
    K. Nagashio, K. Kodaira, K. Kuribayashi, et al. Spreading and solidification of a highly undercooled Y3Al5O12 droplet impinging on a substrate[J]. International Journal of Heat and Mass Transfer 51 (2008):2455-2461
    Larrea A, de la Fuente. G. F, Merino. R. I, et al, ZrO2-Al2O3 eutectic plates produced by laser zone melting, J. Eur. Ceram. Soc, 22, 191-198 (2002)
    LLorca J, Orera V. M, Directionally solidified eutectic ceramic oxides, Prog. Mater Sci.,51,711-809 (2006)
    L.L.Wang, Z.A.Munir, Y.M.Maximov. Thermite reactions:their utilization in the synthesis and processing of materials. Journal of Materials Science, 28(1993):3693-3708
    LU Jianren, PRABHU M, XU Jianqiu, et al. Highly efficient 2%Nd: yttrium garnet ceramic laser[J]. Appl Phys Lett, 2000, 77(23):3707-3709
    Nagashio. K, Kodaira. K, Kuribayashi. K, et al, Spreading and solidification of a highly undercooled Y3Al5O12 droplet impinging on a substrate, Int. J. Heat Mass Transfer,51,2455-2461 (2008)
    Nagashio. K, Kuribayashinrapid. K, Solidification of Y3Al5O12 garnet from hypercooled melt, Acta Mater., 49, 1947-1955 (2001)
    Paradis P. F, Yu J, Ishikawa T, et al, Contactless density measurement of superheated and undercooled liquid Y3Al5O12, J. Cryst. Growth., 249, 523-530 (2003)
    Ping Zhu, J.C.M. Li, C.T. Liu. Adiabatic temperature of combustion synthesis of Al-Ni systems[J]. Materials Science and Engineering A357 (2003):248-257
    Richard Weber J. K, Felten John J, Cho Benjamin, et al, Glass fibres of pure and erbium- or neodymium-doped yttria-alumina compositions, Nature, 393, 769-771 (1998)
    Ruppi.S, Deposition, microstructure and properties of texture-controlled CVD a-Al2O3 coatings, Int. J. Refrac. Met Hard Mate. 23,306-316 (2005)
    Turkdogan E.T, Physical Chemistry of High Temperature Technology, Ch.3, Academic Press, 1980
    Uematsu Keizo, Grain-oriented microstructure of alumina ceramics made through the injection molding process, J. Am. Ceram. Soc. 80 [5],1313-15 (1997)
    Suzuki. T. S, Uchikoshi.T, Sakka.Y, Control of texture in alumina by colloidal processing in a strong magnetic field. Sci & Technol Adv Mater. 7, 356-364 (2006)
    Suzuki. T. S, Sakka Y, Kitazawa. K, Orientation Amplification of Alumina by Colloidal Filtration in a Strong Magnetic Field and Sintering, Adv. Eng. Mater. 3 [7],490-492 (2001)
    V. N. Sanin, V.I.Yukhvid, A.E. Sytschev, et al. Liquid-phase final product formed by an SHS of NiO-Al system under microgravity conditions, Microgravity Science and Technology, 2009, onlinefirst
    WANG L L,MUNIR Z A, MAXIMOV Y M. Review thermite reactions:their utilization in the synthesis and processing of materials[J]. J Mater Sci, 1993, 28:3693-3708
    WEN Lei, SUN Xudong, XIU Zhimeng, et al. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics [J]. J Eur Ceram Soc,2004,24:2681-2688
    Yasuda Hideyuki, Ohnaka Itsuo, Mizutani Yoshiki, et al, Solidification and shape casting of Al2O3-YAG eutectic ceramics from the undercooled melt produced by melting Al2O3-YAP eutectics, Sci. Technol. Adv. Mater.,5, 207-217 (2004)
    Yin S, Liu M, Yao C, et al, Feldspar Additive in Ceramic Composite Pipes Made by a Centrifugal SHS Process, Int. J. Self-Propag. High-Temp Synth. 2 [1],69 (1993)
    Yoshizawa Yu-ichi, Toriyama Motohiro, Kanzaki Shuzo, Fabrication of texture alumina by high-temperature deformation, J. Am. Ceram. Soc. 84[6], 1392-1394 (2001)
    Z.A.Munir. "Synthesin of High Temperature Materiais by selfpropagating Combustuion Methods" Am Ceram Soc Bull.l988,67(2):342-49
    Zhao Zhongmin, Zhang Long, Song Yigang, et al, Microstructures and properties of rapidlysolidified Y2O3 doped Al2O3/ZrO2 composites prepared by combustion synthesis, Scripta Mater.55,819-822 (2006)
    Zhao Zhongmin, Zhang Long, Song Yigang, et al, Al2O3/ZrO2 (Y2O3) self-growing composites prepared by combustion synthesis under high gravity, Scripta Mater.58,207-210 (2008)
    Zhao Zhongmin, Zhang Long, Zheng Jian, Microstructures and mechanical properties of Al1O3/ZrO2 composite produced by combustion synthesis, Scripta Mater, 53,995-1000 (2005)
    Odawara Osamu, Ikeuchi Jun, Ceramic composite pipes produced by a centrifugal-exothermic process, J. Am. Ceram. Soc. 69[4], C80-C-81 (1986)
    Odawara Osamu, Ikeuchi Jun, Vacuum centrifugal-thermite process for producing ceramic-lined pipes, J. Am. Ceram. Soc. 69[4], C-85-C-86 (1986)
    Odawara Osamu, Long Ceramic-Lined Pipes Produced by a Centrifugal Process, J. Am. Ceram. Soc.73 [3],629-33 (1990)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700