锆钛酸钡钙基陶瓷与薄膜的电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电陶瓷因其具有特殊的力学,热学,电学光学等性能或机,电,声,光,热,磁之间的耦合功能在电能量存储、能量转换、大位移致动器等领域中都得到广泛应用。在近十年来,人们的环保意识越来越强烈,无铅功能陶瓷受到更多的专家学者的重视。锆钛酸钡以及掺杂改性的锆钛酸钡基陶瓷的因为其具有优良的电性能和成熟的制备工艺而得到认可,如(Ba1-xCax)(Zr1-yTiy)O3(BCZT)及其掺杂。本文以传统的高温固相法制备了(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3-xmol%Mn(0≤x≤0.5)的陶瓷以及溶胶凝胶法制备了(Ba0.90Ca0.10)(Zr0.25Ti0.75)O3薄膜,并研究了它们的电特性。
     对于120℃烧结的样品,从介温特性可以看出居里温度随着频率的增大而呈现驰豫特性,根据Maxwell Wagner理论和Vogel-Fulcher (VF)公式,得出其活化能Ea=1.15eV。增加烧结温度,最大介电常数有规律变化,最高可在烧结温度为1300C时达到9530。我们用居里外斯(修正)定律对陶瓷的介电常数随温度变化的规律进行了处理。BCZT样品都展现了很好的铁电特性,其剩余极化强度Pr和矫顽场Ec也随不同烧结温度分别呈现出一定的规律。压电性能也在1270℃烧结时最好,压电常数d33高达291pC/N。我们综合各项性能的测试得到在1270℃烧结的陶瓷的性能最好。
     为了解掺杂的二氧化锰对纯的BCZT陶瓷的性能的影响,我们按照(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3-xmol%MnO2(x=0.1,0.2,0.3,0.4,0.5)制备了陶瓷并进行了一系列的研究。结果表明添加的烧结助剂Mn02对陶瓷的电性能有很大的影响。我们对不同锰离子掺杂量的陶瓷样品做了SEM,发现x≈0.3时,进入BCZT陶瓷晶粒的锰离子饱和,x>0.3后锰离子进入晶界。总体看锰离子的掺杂降低了BCZT陶瓷介电常数。根据修正的居里外斯定律,我们计算得到(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3-x mol%MnO2(x=0.1,0.2,0.3,0.4,0.5)陶瓷的弥散性指数值Υ对应掺杂量x由小到大呈指数型增长。另外我们还对锰掺杂的BCZT的热释电性能做了一些研究,算出了他们的热释电系数。
     除此之外,我们采用传统的溶胶凝胶方法制备(Ba0.90Ca0.10)(Zr0.25Ti0.75)O3薄膜样品。我们测量了样品的结构、漏电流和铁电性能;研究了镍酸镧缓冲层对薄膜样品性能的影响。添加镍酸镧缓冲层增加了样品的漏电流,铁电性能也有很大区别,最后首次研究了这个系列薄膜的磁性能,并对这一系列性能进行了详细的分析。
Recently, because of the special mechanical, thermal, electrical, optical and other properties or the coupling function between the mechanical, electrical, acoustic, optical, thermal, magnetic, functional ceramics are widely used in the the electric energy storage, energy conversion, the large displacement actuators and other fields. In the past decade, the increasingly strong awareness of environmental protection make the lead-free functional ceramics gaining more and more attention. Barium zirconate titanate and modified by doping has been recognized because of its excellent electrical performance and mature preparation process, such as (Ba1-xCax)(Zr1-y,Tiy)03(BCZT) and its doping. We use the traditional solid phase method to prepare (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3-xmol%of Mn (0≤x≤0.5) ceramic and we use sol-gel method (Ba0.90Ca0.10)(Zr0.25Ti0.75)O3thin films and studied their electrical properties.
     Relaxation characteristics was shown the dielectric temperature characteristics of the samples sintered1200℃measured at different frequencies. According to the formula of Maxwell Wagner theory and Vogel-Fulcher (VF) relationship, we obtain the value of activation energy Ea=1.15eV. The maximal dielectric constant (ε) of the BCZT ceramics increases rapidly with the increase of sintering temperature and reaches the maximum value of9530at1300℃, then decrease with further increase of sintering temperature. We take charge the permittivity by Curie-Weiss (modified) Law. All the BCZT ceramic sintered in different times shows good ferroelectric properties, and their remanent polarization Pr and coercive field Ec show regularity change with different sintering temperature, respectively. The piezoelectric constant d33increase with increasing the sintering temperature as well, from the value of81.1at1200℃to a maximum value of291pC/N respectively, at1270℃.
     In order to understand the impact on the performance of Manganese dioxide doped the the pure BCZT ceramics,(Ba0.85Ca0.15)(Zr0.10Ti0.90) O3-x mol%MnO2was (x=0.1,0.2,0.3,0.4,0.5) ceramics were prepared. The results shows that MnO2had a great influence on the dielectric properties of the BCZT ceramics. SEM is made on the ceramic samples with different content of Mn found that when x≈0.3, manganese ion doped in to the grains of BCZT ceramic and be saturation, for x>0.3manganese ions doped into the grain boundary. First of all, manganese doping reduce the dielectric constant of BCZT ceramic. According to the modified Curie-Weiss law, we get the diffuseness constant y of the BCZT-xMn mol%ceramic increases from1.80to1.94as the Mn content increases from0to0.5%. And then the pyroelectric was research, the pyroelectric coefficient was calculated.
     In addition, the phase, microstructure, dielectric and ferroelectric properties of thin films with and without LaNiO3buffer layer prepared by a sol-gel process. We studied the influence of the nickel-lanthanum (LaNiO3) buffer layer to thin films performance. The ferroelectric properties are also very different, and finally for the first time to study the magnetic properties of this series of films and detailed analysis had been done.
引文
[1]郭卫红,汪济奎,现代功能材料及其应用[M],化学工业出版社,2002.
    [2]曲远方,功能陶瓷的物理性能[M],化学工业出版社,2006.
    [3]何贤昶,陶瓷材料概论[M],上海科学普及出版社,2005.
    [4]蔡政,功能陶瓷的制备表征与铁电、介电性能研究[D],南京师范大学,2002.
    [5]苏勉增,固体化学导论[M],北京:北京大学出版社,1987.104:111.
    [6]范富康等,功能陶瓷现状与发展方向[J],硅酸盐通报,1995,4:29-36.
    [7]李斗星,透射电子显微学的新进展Ⅱz衬度像、亚埃透射电子显微学、像差校正透射电子显微学[J],电子显微学报,2004,6,278-292.
    [8]曲远方,功能陶瓷材料[M],化学工业出版社,2003.
    [9]蔡元霸,梁玉仓,纳米材料的概述制备及其结构表征[J],结构化学,2001,20(6):425-438.
    [10]刘粤惠,刘平安,X射线衍射分析与应用[M],北京:化学工业出版社,2003.
    [11]谢清连,黄国华,潘吟松,黄自谦,XRD在薄膜结构分析中常见问题的研究[J],广西物理,2010,41(4):15-18.
    [12]赵宗彦,X射线与物质结构[M],安徽:安徽大学出版社,2004.
    [13]Maheshwari, Preeti, [M], Electr. Comp. Proc. New Age International.2008:pp. 55ff, ISBN 9788122417944.
    [14]伍君博,锆酸铅钡基反铁电陶瓷的介电性能研究[D],广东工业大学,2011.
    [15]lincs ME, Glass AM, Principles and Applications of Ferroelectrics and Related Materials[M], Oxford:Clarendon Press,1977.
    [16]钟维烈,铁电体物理学[M],科学出版社,2000.
    [17]Katsuya M, Kazuhiko H, Shinji T et al. Human information sensor[J], Sen. Act.1998, 66:1-8.
    [18]刘梅冬,许毓春,压电铁电材料与器件[J],武汉:华中理工大学,1990.
    [19]Tang XG, Liu QX, Wang J, Chan HLW, Electric-field dependence of dielectric properties of sol-gel derived Ba(Zro.2Tio.8)03 ceramics[J], Appl. Phys. A 2009,96: 945-952.
    [20]Choi WS, Yi JS, Hong BY, The effect of cerium doping in barium zirconate titanate thin films deposited by rf magnetron sputtering system[J], Mater. Sci. Eng. B 2004, 109:146-151.
    [21]Jia QP, Shen B, Hao XH, Song SN, Zhai JW, Anomalous dielectric properties of Ba1-xCaxTiO3 thin films near the solubility limit[J], Mater.Lett.2009,63:464-466.
    [22]Mimura KC, Naka TKF, Shimura T, Sakamoto W, Yogo T, Synthesis and dielectric properties of (Ba,Ca)(Zr,Ti)O3 thin films using metal-organic precursor solutions[J], Thin Solid Films,2008,516:8408-8413.
    [23]Jiang LL,Tang XG, Li Q, Chan HLW, Dielectric properties of (Ba,Ca)(Zr,Ti)O3 /CaRuO3 heterostructure thin films prepared by pulsed laser deposition[J], Vacuum. 2009,83:1018-102.
    [24]Vendik OG, Hollmann EK, Kozyrev AB, and Prudan AM, Ferroelectric Tuning of Planar and Bulk Microwave Devices[M], J. Supercond 1999,12:325-338.
    [25]Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, and Setter N, Ferroelectric Materials for Microwave Tunable Applications [J], J. Electroceram 2003,11:5-66.
    [26]Xi XX, Li HC, Si WD, Sirenko AA, Akimov IA, Fox JR, Clark AM, and Hao JH, Oxide thin films for tunable microwave devices[J], J. Electroceram 2000,4:393-405.
    [27]Park BH, Peterson EJ, Jia QX, Lee J, Zeng X, Si W, and Xi XX, Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films[J], Appl. Phys. Lett.2001,78:533.
    [28]Miranda FA, Keuls FWV, Romanofsky RR, Mueller CH, Alterovitz S, and Subramanyam G, Ferroelectric thin film-based technology for frequency and phase-agile microwave communication applications[J], Integr. Ferroelectr.2002, 42:131-149.
    [29]Bellotti J, Akdogan EK, Safari A, Chang W, Kirchoefer S, Tunable dielectric properties of BST thin films for RF/MW passive components [J], Integr.Ferroelectr, 2002,49:113-122.
    [30]Wang C, Cheng BL, Wang SY, Lu HB, Zhou YL, Chen ZH, and Yang GZ, Improved dielectric properties and tunability of multilayered thin films of (Bao.8oSro.2o)(Ti1-xZrx)O3 with compositionally graded layer[J], Appl. Phys. Lett.2004, 84:765-768.
    [31]Tang XG, Wang J, Wang XX, Chan WHL, Effects of texture on the dielectric properties of Ba(Zr0.2Ti0.8)O3 thin films prepared by pulsed laser deposition[J], Solid. State. Commun.2004,131:163-168.
    [32]Ryu SS, Lee SK, Dang HY, Synthesis of fine Ca-doped BaTiO3 powders by solid-state reaction method-Part I:Mechanical activation of starting materials[J], J Electroceram, 2007,18:243-250.
    [33]Chen L, Li LT, Wang XH, Z.B. Tian, Gui ZL, The study of Ca-doped BCTZ ceramics sintered in reducing atmosphere[J], J. Electroceram,2008,21:569-572.
    [34]Neirman SM,The Curie point temperature of Ba(Ti1-xZrx)O3 solid solutions[J], J.Mater.Sci.1988,23:3973-3980.
    [35]Hennings D, Schnell A, Simon G, Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics[J], J.Am.Ceram.Soc.1982,65(11):539-544.
    [36]Dixit A, Majumder SB, Katiyar RS, A.S. Bhalla, Relaxor behavior in sol-gel derived BaZr0.40Ti0.60O3 thin films [J], Appl. Phys.Lett.2003,82:2679-2682.
    [37]Merz WJ, Double hyeteresis loop of BaTiO3 at the Curie point[J], Phys. Rev.1953,91: 513-517.
    [38]Viehland D, Wuttig M, Cross L.E, The glassy behavior of relaxor ferroelectrics[M], Ferroelectrics 1991,120:71-77.
    [39]Uchino K, Nomura S, Critical exponents of the dielectric constants in diffused phase-transition crystals[J], Ferroelectr. Lett. Sect.1982,44:55-61.
    [40]Hench LL, and West JK, Principles of Electronics Ceramics [M], Wiley, New York 1990:189.
    [41]Long XF, Ye ZG, Morphotropic phase diagram and dielectric and ferroelectric properties of (1-x)Ba(Zn1/3Nb2/3)O3-xPbTiO3 solid solution[J], Appl. Phys.Lett. 2007,90:112905.
    [42]Panigrahi MR, Panigrah S, Diffuse phase transition and dielectric study in Ba0.95Ca0.05TiO3 ceramic[J], Physica B,2010,405:2556-2559.
    [43]Weber U, Greuel G, Boettger U, Weber S, Hennings D, Waser R, Dielectric Properties of Ba(Zr,Ti)O3 Based Ferroelectrics for Capacitor applications[J], J. Am. Ceram. Soc.2001,84(4):759-766.
    [44]Li W, Xu ZJ, Chu RQ, Fu P, Zang GZ, Polymorphic phase transition and properties of (Ba1-xCax)(Ti0.90Zr0.10)O3 lead-free ceramics[J], Physica B,2010,405: 4513-4516.
    [45]Yu Z, Ang C, Guo RY, Bhalla AS, Ferroelectric-Relaxor Behavior of BaTi0.7Zr0.3O3 Ceramics[J], J. Appl. Phys.2002,92:2572-2656.
    [46]Gao L, Zhai JW, Zhang YW, Yao X, Influence of rare-earth addition on dielectric properties and relaxor behavior of barium zirconium titanate thin films[J], J. Appl. Phys.2010,107:064105.
    [47]Zhang SW, Zhang HL, Zhang BP, Zhao GL, Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere[J], J. Eur. Ceram. Soc.2009,29:3235-3242.
    [48]Merz WJ, Double hyeteresis loop of BaTiO3 at the Curie point[J], Phys. Rev.1953, 91:513-517.
    [49]Kassarjian, R.E. Newnham, et al., Reduction of losses in lead-iron niobate dielectric ceramics[J], Am. Ceram. Soc. Bull.1985,64(9):1245-1248.
    [50]Takahara H, Effect of manganese oxide additive on the dielectric properties of mixed-sintering ceramics[J], J. Am. Ceram. Soc.,1989,72(8):1532-1535.
    [51]薛昊,艾晨,王希林,王寒风,周和平.Mn02掺杂对Ba0.6Sr0.4TiO3陶瓷介电调谐性能的影响[J],稀有金属材料与工程2006,35(S2):263-266.
    [52]Gao LF, Huang YQ, et al, Dielectric and ferroelectric properties of (1-x)BaTiO3-xBio.5Nao.5Ti03 ceramics[J], Ceram. Int.2007,33:1041-1046.
    [53]Li W, Xu ZJ, Chu RQ, Fu P, and Zang GZ, Polymorphic phase transition and piezoelectric properties of (Ba1-xCax)(Ti0.90Zr0.10)O3 lead-free ceramics[J], Physica B 2010,405:4513-4516.
    [54]丁南唐新桂匡淑娟伍君博刘秋香何琴玉锰掺杂对Ba(Zr,Ti)O3陶瓷压电与介电性能的影响[J],物理学报,2010,59,9:6613-6618.
    [55]Cai W, Gao JC, Fu CL, and Tang LW, Dielectric properties, microstructure and diffuse transition of Ni-doped Ba(Zr0.2Ti0.8)O3 ceramics[J], J. Alloys Comp. 2009,487:668-674.
    [56]Xi XX, Li HC, Si WD, Sirenko AA, Akimov IA, Fox JR, Clark AM and Hao JH, Oxide Thin Films for Tunable Microwave Devices [J], J. Electrochem. Soc., 2000,4:393-405.
    [57]Cole MW, Nothwang WD, Hubbard C, Ngo E, Ervin M, Low dielectric loss And enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods[J], J. Appl. Phys.,2003,93: 9218-9225.
    [58]Mimura K, Naka T, Shimura T, Sakamoto W, Yogo T, Synthesis and dielectric properties of (Ba,Ca)(Zr,Ti)O3 thin films using metal-organic precursor solutions[J], Thin Solid Films,2008,516:8408-8413.
    [59]Jiang LL, Tang XG, Li Q, Chan HLW, Dielectric properties of (Ba,Ca)(Zr,Ti)O3 /CaRuO3 heterostructure thin films prepared by pulsed laser deposition[J], Vacuum, 2009,83:1018-1021.
    [60]Mukherjee A, Victor P, Parui J, and Krupanidhi SB, Leakage current behavior in pulsed laser deposited Ba(Zr0.05 Ti0.95)O3 thin films[J], J. Appl. Phys.,2007,101: 034106.
    [61]Tang XG, Wang J, Wang XX, and Chan HLW, Preparation and Electrical Properties of Highly (111)-Oriented (Na0.5Bi0.5)TiO3 Thin Films by a Sol-Gel Process[J], Chem. Mater.,2004,16(25):5293-5296.
    [62]Rao CNR, Serrao CR, New Routes to Multiferroics[J], J. Mater. Chem. B,2007,17: 4931-4938.
    [63]Hill NA, Why Are There so Few Magnetic Ferroelectrics[J], J. Mater. Chem. B,2000, 10(4):6694-6709.
    [64]Eerenstein W, Mathur ND, Scott JF, Multiferroic and Magnetoelectric Materials[J], Nature 2006,442:759-765.
    [65]Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR, Ferromagnetism as a Universal Feature of Nanoparticles of the Otherwise Nonmagnetic Oxides [J], Phys. Rev. B 2006,74:161306.
    [66]Sundaresan A, Rao CNR, Ferromagnetism as a Universal Feature of norganic Nanopa rticles[J], Nano Today 2009,4:96-106.
    [67]Hu J, Zhang Z, Zhao M, Qin H, Jiang M, Room-Temperature Ferromagnetism in MgO Nanocrystalline Powders [J], Appl. Phys. Lett.2008,93:192503.
    [68]Madhu C, Sundaresan A, Rao CNR, Room-Temperature Ferromagnetism in Undoped GaN and CdS Semiconductor Nanoparticles [J], Phys. Revs. B 2008,77: 201306.
    [69]Mangalam RVK, Ray N, Waghmar UV, Sundaresan A, Rao CNR, Multiferroic Properties of Nanocrystalline BaTiO3[J], Solid State Commun.2009, 149:1-5.
    [70]Mangalam RVK, Chakrabrati M, Sanyal D, Chakrabati, A, Sundaresan, A. Identifying Defects in Multiferroic Nano-crystalline BaTiO3 by Positron echniques [J], J. Phys.:Condens. Matter.2009,2:445902.
    [71]Qin SB, Liu D, Zuo ZY, Sang YH, Zhang XL, Zheng FF, Liu H,and Xu XG, UV-Irradiation-Enhanced Ferromagnetism in BaTiO3 [J], Journal Phy. Chem. Lett. 2010,1 (1):238-241.
    [72]Na-Phattalung S, Smith MF, Kim K, et al, First-Principles Study of Native Defects in Anatase TiO2[J], Phys Rev B.2006,73(12):125205-125210.
    [73]Cho E, Han S, Ahn HS, et al, First-Principles Study of Point Defects in Rutile Tio2-x[J], Phys Rev B.2006,73(19):193202-193204.
    [74]Duhalde S, Vignolo M F. Golmar F, et al, Appearance of Room-Temperature Ferromagnetism in Cu-Doped TiO2-Delta Films[J], Phys Rev B.2005,72(16): 161313-161314.
    [75]Errico LA, Renteria M, and Weissmann M, Theoretical Study of Magnetism in Transition-Metal-Doped TiO2 and TiO-Delta[J], Phys Rev B.2005,72(18): 184425-184428.
    [76]Park MS, Kwon SK, and Min BI, Electronic Structures of Doped Anatase TiO2:Ti1-x MxO2(M=Co, Mn, Fe, Ni)[J] Phys Rev B.2002,65(16):161201-161204.
    [77]Yang F, Jin KJ, Lu HB, He M, Wang C, Wen J, Yang GZ, Oxygen vacancy induced magnetism in BaTiO3-δ and Nb:BaTiO3-δ thin films[J], Sci.China Phys.Mech. Astron. 2010,53(5):852-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700