我国部分地区鸡源H9N2亚型AIV的系统进化和HA抗原分析以及AIV NA分型方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽流感(Avian Influenza, AI)是由禽流感病毒(Avian Influenza Virus, AIV)引起的多种动物易感的传染病,是危害世界养禽业的重要传染病之一。人类历史上多次发生流感的流行毒株均与禽源流感病毒有关系。二十世纪末相继发生了H5,H7和H9亚型的AIV由禽类直接传染给人类的事件。因此对AIV在不同种类的宿主中的流行情况进行持续的追踪和监测,具有重要的公共卫生学意义。
     本文对我国部分养禽密集地区的H9N2亚型AIV流行株进行了分子流行病学监测和血凝素(Hemaglutinin, HA)抗原性分析,明确了这些毒株的进化特点。并针对目前因缺乏AIV的神经氨酸酶(Neuraminidase, NA)快速分型方法而导致的AIV监测中病毒NA分型困难的实际问题,建立了用于区分AIV 9个NA亚型的荧光定量RT-PCR方法。主要研究内容如下:
     1.我国部分地区鸡源H9N2亚型禽流感病毒的系统进化和抗原性分析
     H9N2是目前国内鸡群中流行最为广泛的禽流感病毒亚型,给我国的养鸡业造成了重要危害。相比于高致病性的H5N1亚型AIV, H9N2病毒因其致病力较低而易于在鸡群中持续感染和更广泛的传播,从而在流感病毒的基因重组中发挥着重要作用。1997年,香港禽流感感染人事件之后,我国加强了AIV的流行病学调查研究。但对近年来H9N2流感病毒在鸡群中的系统进化情况,尚缺乏系统和全面的研究资料。本研究中,我们对1998-2008年间分离自山东,河南,河北,天津和江苏北部的发病鸡群中的17株H9N2亚型禽流感病毒进行了全基因组的序列测定和血凝素抗原的分析,揭示了该地区鸡源H9N2病毒的系统进化特征。
     分别研究了17株AIV H9N2分离株各基因片段的基因类型(gene type)以及病毒的基因型(genotype)。对17株H9N2病毒的8个基因片段(PB2, PB1, PA, HA, NP, NA,M和NS)分别进行系统进化分析表明,各分离毒株的HA基因片段均隶属于H9基因系统进化树的A/chicken/Beijing/1/94分支(BJ 94分支);NS基因片段均隶属于NS基因系统进化树的A等位基因群的BJ 94分支;M基因隶属于该基因进化树的BJ 94分支或A/quail/HongKong/G 1/97分支(G1分支);NA基因隶属于N2基因进化树的BJ 94分支或A/chicken/Hong Kong/G9/97分支(G9分支);PB2,PB1和NP基因隶属于相应基因系统进化树的BJ 94分支或A/chicken/Shanghai/F/98分支(F98分支);PA基因隶属于该基因进化树的BJ 94分支,或者F 98分支,或者A/duck/Hong Kong/Y439/97分支(Y439分支)。对AIV各分离毒株的基因型(Genotype)分析表明,这17株病毒共划分为7种不同的基因型:A, H, M, N,0, P和Q。其中M-Q共5个基因型是首次报道的H9N2流感病毒基因型。以基因型A和H的H9N2病毒为进化母本,这些新基因型的H9N2分离株经历了一重到四重的基因重组。通过鸡源H9N2毒株基因型的比较分析,我们发现本研究中新基因型的H9N2病毒分离株,并非来源于华南地区已报道的H9N2流行株向北方地区的传播,而很可能来自不同流感病毒毒株的基因重组。
     对17个H9N2分离毒株的推导氨基酸序列的分子特征分析表明,有15个分离毒株的血凝素(HA)存在7个潜在的糖基化位点,而另外两个毒株(CK SD B1 98和CK BJ L1 05)潜在糖基化位点的数目为6个(298-300AA糖基化位点丧失);17株H9N2分离毒株的NA基因,其中4个隶属于G9分支者(CK ZB B1 08,CK HN L1 08, CK HN L2 08和CK HN L3 08)编码469AA的NA蛋白。而其余13个隶属于BJ 94分支者,则编码466AA的NA蛋白(其茎部的62-64位氨基酸缺失);有2株病毒(CKSD B4 07和CK ZB B1 08)的M2蛋白存在S31N的变异,而其余15株分离毒的M2蛋白不存在该位点的变异。这一变异是具有金刚烷胺抗药性的流感病毒的分子特征。
     血凝素是禽流感病毒诱导动物机体产生中和抗体的主要蛋白抗原,也是病毒毒力和宿主特异性的主要决定因素。上述分子流行病学的研究表明,本文中的H9N2分离毒株,其HA基因同源性很高(90.2%-100%),在系统进化上均属于H9基因的BJ 94分支。选取分离自2002-2008年间的12个H9N2亚型病毒株(分别属于A, H, N,O和Q基因型)分别制备灭活疫苗,接种SPF鸡,于隔离饲养器中饲养,制备阳性血清。然后以这12株H9N2病毒作抗原,与各毒株的阳性血清进行交叉血凝抑制试验(hemagglutination-inhibition test, HI)。结果表明:各分离株的血清能够抑制所有12株AIV的血凝活性,虽然其抑制价存在差异。进一步的R值分析表明,交叉HI效价差异不显著,即:这12株H9N2分离株的HA的血凝活性没有显著差异。该结果表明这些H9N2分离毒株HA基因的点突变并未造成血凝素抗原的明显变异。
     此外,本研究的17个分离毒株的PB1-F2基因编码6种不同长度的蛋白。该基因所编码蛋白长度的多态性促使我们进一步调查了国内不同亚型和宿主来源的A型流感病毒(Influenza A virus, IAV)中PB1-F2基因的流行情况。本研究从Genbank数据库下载了禽源、猪源和人源H5N1和H9N2亚型AIV、人源和猪源H1N1和H3N2流感病毒的PB1-F2基因共计337个,系统的对其进行了分子进化分析。结果表明流感病毒PB1-F2基因的进化与其HA基因的进化相关联:H1和H3亚型病毒的PB1-F2基因在系统进化上具有独立的分支,明显区别与H5和H9亚型的AIV的PB 1.F2基因的进化;IAV因宿主来源的不同,编码功能性的PB1-F2蛋白的比率也存在差异。对PB1-F2流行特征的分析有利于对该蛋白功能及作用机理的深入研究。
     2.禽流感病毒NA亚型分型的荧光定量RT-PCR方法研究
     禽流感病毒的分子生物学检测方法为其流行病学监测提供了敏感而快速的技术手段。目前已发展了多种针对AIV的型特异性抗原(M或NP)基因以及常见的HA和NA亚型鉴定的分子检测方法,但是对全部9种NA亚型进行分型鉴定的分子生物学方法则鲜见报道。本研究应用Primer Hunter软件分别设计了针对9种NA亚型的AIV引物,使用SYBR Green I为检测染料,以体外转录的N1-N9亚型的RNA标准品为检测模板,建立了用于NA分型的荧光定量RT-PCR(real time RT-PCR, RRT-PCR)方法。在上述基础上,设计了引物池(primer pool)实验,进行4个反应即可鉴别AIV的9种不同的NA亚型。所建立的RRT-PCR方法敏感性高,每个反应可以检测到351-8000拷贝,或者4-62fg的不同NA亚型的AIV RNA。RRT-PCR方法的特异性强,各NA亚型的引物仅与相同亚型的AIV鸡胚尿囊液样品的RNA发生反应,而与其它NA亚型或者几种重要禽病病毒的RNA没有交叉反应。本研究为AIV尿囊液样品的NA亚型鉴定提供了一种敏感而特异的检测方法。
Avian Influenza (AI) is a disease caused by Avian Influenza Virus (AIV). Multiple species of animals are susceptible to AIV infection. AI is also a big problem for the global poultry industry. Furthermore, the end of last century saw the infection of AIVs of several subtypes (H5, H7 and H9) in humans, which demonstrate the capability of AIV to transmit directly from poultry to human being and arise a great public health concern. Therefore, it's crucial to take long-time surveillance of AIV to trace its evolution and prevalence in diiferent hosts. In this study, H9N2 subtype AIVs were collected from several intensive farming districts in China. Molecular epidemiology and HA antigenicity analysis were conducted to illuminate the genesis and evolution of these isolates. To meet the practical need for NA subtyping in AIV surveillance, one step real-time RT-PCR were developed for NA differentiation. The major work is as following:
     1. Phylogenetic and antigenic analysis of chicken H9N2 AIVs in China
     H9N2 subtype is the most prevalent Avian Influenza virus in poultry in mainland China. Infection of chickens with H9N2 virus may cause respiratory syndrome, reduced egg production and variable rate of morbidity and mortality. The epidemiologic study of AIV in multiple poultry species was reinforced after human infection cases of H5N1 in Hongkong in 1997. However, systematical surveillance information for the evolution of H9N2 viruses in chicken flocks in northern and eastern China is limited, especially in the last few years, when the intensive farming accounts for more than 50 percent of the country's total chicken farming. In this study, seventeen H9N2 viruses isolated from northern and eastern China were analyzed phylogenetically and antigenically to reveal the genesis and evolution properties of H9N2 viruses in this region.
     The seventeen H9N2 viruses were collected in 1998-2008 during avian influenza (AI) outbreaks in Beijing, Tianjin, Hebei, Henan, Shandong, and Jiangsu provinces of northern and eastern China. To systematically track the genesis and evolution of H9N2 viruses in this region, whole genome sequences of these isolates were obtained and their phylogenetic properties were determined. Phylogenetic analysis revealed several newly emerged lineages of gene segments in addition to the A/chicken/Beijing/1/94 (BJ 94)-like and A/chicken/Shanghai/F/98(F 98)-like lineages, which are prevailing in northern and eastern China according to the previous reports. Reassortments among these gene segments generated five novel genotypes of H9N2 viruses (M, N,O, P and Q) that have not been reported before in China. The emerging genotypes of H9N2 viruses in this region indicate that H9N2 virus genes undergo active evolution, particularly their internal genes, which raises concern for their likely contribution to gene reassortment and production of AIVs with new properties. Our study provides valuable insight into the prevalence of H9N2 viruses in northern and eastern China and demonstrates the need of long-term monitoring of the evolution of H9N2 AIV.
     Hemagglutinin (HA) is the main antigen of AIV to induce neutralizing antibody in infected animals. HA is also the main determinants of virulence and host-specificity of AIV. In this section, Hyperimmune antisera against each of 12 H9N2 viruses were prepared. Antigenic analysis between these 12 H9N2 isolates was performed by cross HI test with the above panel of monofactorial sera. The test was repeated three times and the mean values were used for antigenic analysis. HA antigenic correlation between two certain viruses were calculated according to the formula R=√r1×r2. The cross HI test results of 12 selected viruses demonstrated that the rooster antisera panel successfully inhibitded each of the 12 isolates in HI test, although the titration varied when a certain serum was reacted with different isolates. Statistical analysis about the correlation of two certain HA antigens were performed and the results indicated that there is no significant antigenic difference between HA of the 12 viruses.The result also demonstrated that the point mutation of these HA gene havn't significantly influenced the antigenicity of HA proteins.
     Seventeen H9N2 isolates encode PB1-F2 protein of 5 different lengths. Molecular characterization of PB1-F2 gene of chicken H9N2 subtype avian influenza viruses (AIVs) in China was analyzed and the prevalence of the PB1-F2 genes of influenza A viruses (IAVs) prevailed in China was further investigated.337 PB1 genes of IAVs derived from avian (H5N1 and H9N2 subtypes), pig (H5N1, H9N2, H1N1 and H3N2 subtypes) and human beings (H5N1,H9N2, H1N1 and H3N2 subtypes) in China were downloaded from Genbank database and analyzed. The deduced sequences of PB1-F2 proteins have multifold lengths and the ratio of PB1-F2 genes encoding full-length PB1-F2 protein differed in the HA subtype and host origin of IAV isolates. Through this study, the molecular epidemiologic characterization of PB1-F2 gene of IAVs in China was illuminated, which can also works as the foundation of PB1-F2 gene function research in the infection process of IAVs.
     The HA proteins of fifteen H9N2 isolates contain 7 potential glycosylation sites, while the HA of CK SD B198 and CK BJ L105 have I at position 300 (C to T mutation at position 899 of their HA genes) and result in the loss of one potential glycosylation site. The four H9N2 isolates that belong to the G9-like lineage (CK ZB B1 08, CK HN L1 08, CK HN L208 and CK HN L308) possess full-length NA protein (469AA), while the NA of the Y280-like lineage contain deletion of three amino acids (62-64 AA) at the stalk region. An analysis of the viral amino acid sequence of M2 protein has revealed substitution of S3 IN in two isolates, which is the molecular characterization of amantadine resistance in AIVs.
     2. Development of Real Time RT-PCR Assays for Neuraminidase Subtyping of Avian Influenza Virus
     In this study, nine pairs of neuramidinase (NA) subtype-specific primers were designed with Primer Hunter software and successfully used in real time RT-PCR with four primer-pool reactions to differentiate nine NA subtypes of AIV. The RRT-PCR assays are sensitive and can detect in vitro transcribed RNA of different NA subtypes ranging from 351 to 8000 copies per reaction, or 4-62fg of total RNA of AIV per reaction. The assays possess good specificity. There is no cross reaction between RNA of different NA subtypes in RRT-PCR with each subtype-specific primers. No ampliation were displayed when detect RNA of IBV, IBDV, NDV with the primer pools, either. This study validated the powerful function of Primer Hunter for the design of subtyping primers and also introduced a sensitive and specific method for NA subtyping in AIV epidemiological surveillance.
引文
[1]Alexander D J. A review of avian influenza in different bird species. [J]. Vet. Microbiology.2000,74:3-13.
    [2]甘孟侯主编.禽流感.[M].第二版,北京:北京农业大学出版社,2002,15-79.
    [3]Webster R G, Bean W J, Gorman 0 T, et al. Evolution and ecology of influenza A viruses. [J]. Microbiol Rev,1992,56:152-179.
    [4]Cox N J, Subbarao K. Global epidemiology of influenza:past and present. [J]. Annu Rev Med.2000,51:407-421.
    [5]Vahlenkamp T W,Harder T C. Influenza virus infections in mammals. [J]. Berl Munch Tierarztl Wochenschr.2006,119(3-4):123-131.
    [6]Perroncito, E. Epizoozia tifoide nei gallinacei. [J]. Ann. Acad. Agricoltura Torino 1878, 21:87-126.
    [7]Shope R E. Swine influenza, Ⅲ. Filtration experiments and etiology. [J]. J. Exp. Med. 1931,54:373-385.
    [8]Smith, W C, Andrewes H and Laidlaw P P. A virus obtained from influenza patients. [J]. Lancet.1993,1:66-68.
    [9]Schafer W. Sero-immunologic studies on incomplete forms of the virus of classical fowl plague. [J]. Arch. Exp. Vet. Med.1955,9:218-230.
    [10]Zambon M C. Epidemiology and pathogenesis of influenza.[J]. J Antimicrobial Chemotherapy,1999,44 Suppl B:3-9.
    [11]David J D, Earn J D and Simon A L. Ecology and evolution of the flu. [J]. Trends in Ecology and Evolution.2002,17(7):334-340.
    [12]Fouchier R A, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutininsubtype (H16) obtained from black-headed gulls.[J]. J Virol. 2005,79:2814-2822.
    [13]De Clercq E. Antiviral agents active against influenza A viruses. [J]. Nat Rev Drug Discov.2006,5(12):1015-1025.
    [14]Poon L L, Pritlove D C, Sharps J, et al. The RNA polymerase of influenza virus, bound to the 5' end of virion RNA, acts in cis to polyadenylate mRNA. [J]. J Virol. 1998,72 (10):8214-8219.
    [15]Pritlove, D C, Poon, L L, Devenish L J, et al. A hairpin loop at the 5'end of influenza A virus virion RNA is required for synthesis of poly(A)+mRNA in vitro. [J]. J Virol, 1999,73(3):2109-2114.
    [16]Honda A, Ueda K, Nagata K. et al..RNA polymerase of influenza virus:role of NP in RNA chain elongation. [J]. J Biochem.1988,104(6):1021-1026.
    [17]Honda A, Ueda K, Nagata K et al. Identification of the RNA polymerase-binding site on genome RNA of influenza virus. [J]. J Biochem.1987,102(5):1241-1249.
    [18]Marie A, Rameix W, Andru T, et al. Avian influenza A virus polymerase association with nucleoprotein, but not polymerase assembly, is impaired in human cells during the course of infection. [J]. J Virol.2009:1320-1331
    [19]Perez D R, Donis R O. Functional analysis of PA binding by influenza a virus PB1: effects on polymerase activity and viral infectivity. [J]. J Virol.2001,75(17):8127-8136.
    [20]Elton D, Medcalf L, Bishop K, et al. Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding. [J]. J Virol.1999;73:7357-7367.
    [21]Albo C, Valencia A, Portela A. Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein. [J]. J Virol.1995, 69(6):3799-3806.
    [22]Noton S L, Medcalf E, Fisher D et al. Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. [J]. J Gen Virol.2007,88(8):2280-2290.
    [23]Zhu Q, Zarnitsyn VG, Ye L et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. [J]. Proc Natl Acad Sci U S A.2009, 106(19):7968-7973.
    [24]Pritlove D C, Fodor E, Seong B L, et al. In vitro transcription and polymerase binding studies of the termini of influenza A virus cRNA:evidence for a cRNA panhandle. [J]. J Gen Virol.1995,76 (9):2205-2213.
    [25]Vreede F T, Brownlee G G. Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. [J]. J Virol.2007,81(5):2196-2204.
    [26]De la Luna S, Martin J, Portela A, et al. Influenza virus naked RNA can be expressed upon transfection into cells co-expressing the three subunits of the polymerase and the nucleoprotein from simian virus 40 recombinant viruses. [J]. J Gen Virol.1993,74 (3):535-539.
    [27]Biswas S K, Boutz P L, Nayak D P. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. [J]. J Virol.1998,72(7):5493-5501.
    [28]Newcomb L L, Kuo R L, Ye Q, et al. Interaction of the influenza a virus nucleocapsid protein with the viral RNA polymerase potentiates unprimed viral RNA replication. [J]. J Virol.2009,83(1):29-36.
    [29]Chen W, Calvo P A, Malide D et al. A novel influenza A virus mitochondrial protein that induces cell death. [J]. Nat Med.2001,7(12):1306-1312.
    [30]Roland Z, Andi K, Annett E, et al. Prevalence of PB1-F2 of influenza A viruses. [J]. J Gen Virol.2007,88:536-546.
    [31]Webster R G, Bean W J, Gorman O T, et al. Evolution of influenza A viruses in wild birds. [J]. Microbiol Rev.1992,56(1):152-179.
    [32]Spackman E. A brief introduction to the avian influenza virus. [J]. Methods Mol Biol 2008,436:1-6.
    [33]Liu J, Xiao H, Lei F. Highly pathogenic H5N1 influenza virus infection in migratory birds. [J]. Science.2005,309(5738):1206.
    [34]Chen H, Li Y, Li Z, et al. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. [J]. J Virol,2006, 80:5976-5983.
    [35]Bean W J, Cox N J and Kendal. A P. Recombinations of human influenza A virus in Nature. [J]. Nature,1980,284:638-640.
    [36]Shortridge K F, Zhou N N, Guan Y, et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. [J]. Virology,1998,252:331-342.
    [37]Donatelli I, Campitelli L, Di T L, et al. Characterization of H5N2 influenza viruses from Italian poultry. [J]. J Gen Virol,2001,82:623-630.
    [38]H5N1 avian influenza in China. [J]. Science in China Series C:Life Sciences.2009, 52(5):419-427.
    [39]Xu X, Subbarao K, Cox N, et al. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus:similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. [J]. Virology,1999,261:15-19.
    [40]张建林,于康震,陈化兰等.禽流感病毒分离株A/Goose/Guangdong/1/96(H5N1)全基因克隆及序列分析.[J].中国预防兽医学报,2000,22(3):232-236.
    [41]Chen H, Li Y, Li Z, et al. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. [J]. J Virol,2006, 80:5976-5983.
    [42]Brown I H. The epidemiology and evolution of influenza viruses in pigs. [J]. Vet Microbiol.2000,74:29-46.
    [43]Landolt G A, Karasin A I, Phillips L, et al. Comparison of the pathogenesis of two genetically different H3N2 influenza A viruses in pigs, [J]. J Clin Microbiol.2003,141: 1936-1941.
    [44]Taubenberger J K, Morens D M.1918 Influenza:the mother of all pandemics. [J]. Emerg Infect Dis.2006,12(1):15-22.
    [45]Belshe R B. The origins of pandemic influenza--lessons from the 1918 virus. [J]. N Engl J Med.2005,353(21):2209-2211.
    [46]Kawaoka Y, Krauss S, Webster R G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. [J]. J Virol.1989,63(11):4603-4608.
    [47]Kilbourne E D. Influenza pandemics of the 20th century. [J]. Emerg Infect Dis. 2006,12(1):9-14.
    [48]张建林,于康震,陈化兰等.禽流感病毒分离株A/Gaose/Guangdong/1/96(HSN 1)全基因克隆及序列分析.[J].中国预防兽医学报,2000,22(3):232-235.
    [49]Claas E, Osterhaus A, Van B, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. [J]. Lancet.1998,351, 472-477.
    [50]Subbarao K, Klimov A, Katz J. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. [J]. Science.1998,279(5349):393-396.
    [51]Xu X, Subbarao, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus:similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. [J]. Virology.1999,261(1):15-19.
    [52]Suarez D L, Perdue M L, Cox N, et al. Comparisons of highly virulent H5N1 influenza A viruses isolated from humans and chickens from Hong Kong. [J]. J Virol. 1998,72(8):6678-6688.
    [53]Shortridge K F, Peiris J S, Guan Y. The next influenza pandemic:lessons from Hong Kong. [J]. J Appl Microbiol.2003:94
    [54]Tam J S. Influenza A (H5N1) in Hong Kong:an overview. [J]. Vaccine.2002,20 (Suppl 2):S77-81.
    [55]Lipatov A S, Govorkova E A, Webby R J. Influenza Emergence and Control. [J]. J Virol.2004,78(17):8951-8959.
    [56]Chen H, Deng G, Li Z. The evolution of H5N1 influenza viruses in ducks in southern China. [J].Proc Natl Acad Sci U S A.2004,101(28):10452-10457.
    [57]Li Z J, Chen H L, Jiao P R, et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. [J]. J. Virol.2005,79:12058-12064.
    [58]Guan Y, Peiris J S, Lipatov A S, et al.2002. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. [J]. Proc Natl Acad Sci U S A. 99:8950-8955.
    [59]Katharine M. Sturm R, Trevor E, et al. Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 are highly pathogenic to ducks.[J]. J Virol.2004,78(9):4892-4901.
    [60]Wuethrich B. Infectious disease-An avian flu jumps to people. [J]. Science.2003,299: 1504.
    [61]Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W, et al. Human disease from influenza A(H5N1) Thailand,2004. [J]. Emerg Infect Dis.2005,11:201-209.
    [62]Tran T H, Nguyen T L,Nguyen T D, et al. Avian influenza A (H5N1) in 10 patients in Vietnam. [J]. N Engl J Med.2004,350:1179-1188.
    [63]Koopmans M and Osterhaus A D. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. [J]. Proc Natl Acad Sci U S A.2004,101:1356-1361
    [64]Koopmans M, Wilbrink B, Conyn M, et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. [J]. Lancet.2004,363:587-593.
    [65]Pasick J, Handel K, Robinson J et al. Intersegmental recombination between the haemagglutininand matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. [J]. J. Gen. Virol.2005,86:727-731.
    [66]Guo X, Liao M and Xin C. Sequence of HA gene of avian influenza A/Chicken/Guangdong/SS/1994 (H9N2) virus. [J]. Avian Dis.2003,47(3 Suppl):1118-1121.
    [67]Guo Y J, Krauss S, Senne D A et al. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia.[J]. Virology.2000, 267(2):279-288.
    [68]Chin P S, Hoffmann E, Webby R et al. Molecular evolution of H6 influenza viruses from poultry in Southeastern China:prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. [J]. J Virol.2002,76(2):507-516.
    [69]Hoffmann E, Leneva I, Krauss S et al. Characterization of the influenza A virus gene pool in avian species in southern China:was H6N1 a derivative or a precursor of H5N1? [J]. J Virol.2000,74(14):6309-6315.
    [70]Guo Y J. Influenza activity in China:1998-1999. [J]. Vaccine.2002, Suppl 2:S28-35.
    [71]Lin Y P, Shaw M, Gregory V et al. Avian-to-human transmission of H9N2 subtype influenza A viruses:relationship between H9N2 and H5N1 human isolates. [J]. Proc Natl Acad Sci U S A.2000,97(17):9654-9658.
    [72]Guan Y, Shortridge K F, Krauss S et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. [J]. J Virol.2000, 74(20):9372-9380.
    [73]Butt K M, Smith G J, Chen H, et al. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. [J]. J Clin Microbiol.2005,43(11):5760-5767.
    [74]Xu K M, Li K S, Smith G J et al. Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China,2000 to 2005. [J]. J Virol.2007, 81(6):2635-2645.
    [75]Choi Y K, Ozaki H, Webby R J et al. Continuing evolution of H9N2 influenza viruses in Southeastern China. [J]. J Virol.2004,78(16):8609-8614.
    [76]Lu J H, Liu X F, Shao W X, etc. Phylogenetic analysis of eight genes of H9N2 subtype influenza virus:a mainland China strain possessing early isolates' genes that have been circulating. [J]. Virus Genes.2005,31(2):163-169.
    [77]Lamb R A, Choppin P W. The gene structure and replication of influenza virus. [J]. Annu Rev Biochem.1983,52:467-506.
    [78]Krystal M, Li R, Lyles D, Pavlakis G, et al. Expression of the three influenza virus polymerase proteins in a single cell allows growth complementation of viral mutants. [J]. Proc Natl Acad Sci U S A.1986,83(8):2709-2713.
    [79]Obenauer J C, Denson J, Mehta P K, et al. Large-scale sequence analysis of avian influenza isolates. [J]. Science.2006,311(5767):1576-1580.
    [80]Rott R. Genetic determinants for infectivity and pathogenicity of influenza viruses. [J]. Philos Trans R Soc Lond B Biol Sci.1980,288(1029):393-399.
    [81]Matrosovich M, Zhou N, Kawaoka Y, et al. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. [J]. J Virol.1999,73(2):1146-1155.
    [82]Suarez D L, Senne D A, Banks J, et al. Recombination resulting in virulence shift in avian influenza outbreak, Chile. [J]. Emerg Infect Dis.2004,10(4):693-699.
    [83]John P,Katherine H, John R et al. Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. [J]. J Gen Virol.2005,86:727-731.
    [84]Wang H, Jiang C. Avian influenza H5N1:an update on molecular pathogenesis. [J]. Sci China C Life Sci.2009,52(5):459-463.
    [85]Lycett S J, Ward M J, Lewis F I, et al. Detection of mammalian virulence determinants in highly pathogenic avian influenza H5N1 viruses:multivariate analysis of published data. [J]. J Virol.2009,83(19):9901-9910.
    [86]Suzuki Y S. biology of influenza:molecular mechanism of host range variation of influenza viruses. [J]. Biol Pharm Bull,2005,28:399-408.
    [87]Rogers G N, Paulson J C. Receptor determinants of human and animal influenza virus isolates:differences in receptor specificity of the H3 hemagglutinin based on species of origin. [J]. Virology.1983,127:361-373.
    [88]Ito T, Couceiro J N, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. [J]. J Virol.1998,72:7367-7373.
    [89]Cyranoski D. Bird flu spreads among Java's pigs. [J]. Nature.2005,435:390-391.
    [90]Ma W J. The pig as a mixing vessel for influenza viruses:Human and veterinary implications. [J]. J Mol Genet Med.2009,3:158-166.
    [91]Nicholls J M, Chan R W, Russell R J, et al. Evolving complexities of influenza virus and its receptors. [J]. Trends Microbiol.2008,16:149-157.
    [92]Guo Y, Rumschlag B E, Wang J, et al. Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza. [J]. J Virol.2009,6:39.
    [93]Klenk H D and Garten W. Host cell proteases controlling virus pathogenicity. [J]. Trends Microbiol.1994,2:39-43.
    [94]Stieneke-Groeber, A., M. Vey, H. Angliker et al. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. [J]. EMBO J. 1992,11:2407-2414.
    [95]Kobasa D, Takada A, Shinya K, et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. [J]. Nature.2004,431:703-707.
    [96]Pappas C, Aguilar P V, Basler C F, et al. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. [J]. Proc Natl Acad Sci USA.2008,105:3064-3069.
    [97]Olga S, Jutta V, Siegfried W, et al. Acquisition of a Polybasic Hemagglutinin Cleavage Site by a Low-Pathogenic Avian Influenza Virus Is Not Sufficient for Immediate Transformation into a Highly Pathogenic Strain. [J]. J Virol.2009,83(11):5864-5868.
    [98]Baum L G, Paulson J C. The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. [J]. Virology.1991,180:10-15.
    [99]Kobasa D, Kodihalli S, Luo M et al. Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase. [J]. J Virol.1999,73:6743-6751.
    [100]Baigent S J, and McCauley J W. Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. [J]. Virus Res.2001,79:177-185.
    [101]Banks J, Speidel E S, Moore E, et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. [J]. Arch Virol.2001,146:963-973.
    [102]Blok J, Air G M. Variation in the membrane-insertion and "stalk"sequences in eight subtypes of influenza type A virus neuraminidase.[J]. Biochemistry.1982,21:4001-4007.
    [103]Els M C, Air G M, Murti K G, et al. An 18-amino acid deletion in an influenza neuraminidase. [J]. Virology.1985,142:241-247.
    [104]Matrosovich M, Zhou N, Kawaoka Y, et al. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. [J]. J Virol.1999,73:1146-1155.
    [105]Li K S, Guan Y, Wang J, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. [J]. Nature.2004,430:209-213.
    [106]Labadie K, Dos Santos A E, Rameix W M A, et al. Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. [J]. Virology.2007,362:271-282.
    [107]Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. [J]. Science.2001,293:1840-1842.
    [108]Shinya K, Hamm S, Hatta M, et al. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. [J]. Virology.2004,320,258-266.
    [109]Fornek J L, Gillim R L, Santos C. A single amino acid substitution in a polymerase 1 protein of an H5N1 influenza virus is associated with systemic infection and impaired T cell activation in mice. [J]. J Virol.2009,83(21):11102-11115.
    [110]Qiyun Z..Huanliang Y,Weiye C, et al. A Naturally Occurring Deletion in Its NS Gene Contributes to the Attenuation of an H5N1 Swine Influenza Virus in Chickens. [J]. J Virol.2008, 82:220-228
    [111]Fernandez-Sesma A, Marukian S, Ebersole B J et al. Influenza virus evades innate and adaptive immunity via the NS1 protein. [J]. J Virol.2006,80:6295-6304
    [112]Seo S E, Hoffmann E Webster R G. Lethal H5N1 influenza viruses escape host antiviral cytokine responses.[J]. Nat. Med,2002,8(9):950-954.
    [113]Xing Z, Cardona C J, Adams S, et al. Differential regulation of antiviral and proinflammatory cytokines and suppression of Fas-mediated apoptosis by NS1 of H9N2 avian influenza virus in chicken macrophages. [J]. J Gen Virol.2009,90(5):1109-1118.
    [114]Li Z J, Jiang Y P, Jiao P R, et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses.[J]. J Virol.2006,80(22):11115-11123.
    [115]Gibbs J S, D. Malide F. Hornung, et al.2003, The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. [J]. J. Virol.77:7214-7224.
    [116]Yamada H, Chounan R, Higashi Y et al.Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. [J]. FEBS Lett.2004, 578:331-336.
    [117]Chanturiya A N, Basanez G, Schubert U, et al. PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. [J]. J Virol.2004,78:6304-6312.
    [118]Coleman J R. The PB1-F2 protein of influenza A virus:increasing pathogenicity by disrupting alveolar macrophages.[J]. J Virol.2007,4:9.
    [119]Conenello G M, Zamarin D, Perrone L A, et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. [J]. PLoS Pathogens.2007,3(10):1414-1421.
    [120]Obenauer J C. Large-scale sequence analysis of avian influenza isolates. [J]. Science. 2006,311(5767):1576-1580
    [121]Xu K M, Smith G J D, Bahl J, etc. The Genesis and Evolution of H9N2 Influenza Viruses in Poultry from Southern China,2000 to 2005. [J]. J Virol.2007,81(6): 10389-10401.
    [122]Zhang PH, Tang YH, Liu, X.W. et al.2009. A Novel Genotype H9N2 Influenza Virus Possessing Human H5N1 Internal Genomes Has Been Circulating in Poultry in Eastern China since 1998. [J]. J. Virol 83:8428-8438
    [123]Zhang P H, Tang Y H, Liu XW, et al. Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China duringa 5 year period (1998-2002). [J]. J Gen Virol.2008,89,3102-3112.
    [124]Ge F F, Zhou J P, Liu J, et al. Genetic Evolution of H9 Subtype Influenza Viruses from Live Poultry Markets in Shanghai, China. [J]. Journal of Clinical Microbiology.2009, 47(10):3294-3300.
    [125]Li CJ, Yu K Z, Tian G B, et al. Evolution of H9N2 influenza viruses from domestic poultry in mainland China. [J]. Virology.2005,340:70-83.
    [126]Nayak B, Kumar S, DiNapoli J M et al. Contributions of the Avian Influenza Virus HA, NA and M2 Surface Proteins to the Induction of Neutralizing Antibodies and Protective Immunity.[J]. J Virol.2010,84(5):2408-2420.
    [127]王泽霖,刘岩,李建丽等.H9N2亚型禽流感病毒抗原性变异的研究.[J].中国兽医学报.2007,27(3):351-354.
    [128]殷震,刘景华.动物病毒学(第2版).[M].北京:科学出版社,1997:11.
    [129]杨汉春.动物免疫学(第2版)[M].中国农业大学出版社,1996:146-147.
    [130]谢芝勋,谢志勤,庞耀珊等.应用三重聚合酶链反应同时检测鉴别鸡3种病毒性呼吸道传染病的研究.[J].中国兽医科技.2001,31(1):
    [131]张秀美.禽病防治完全手册[M].中国农业出版社,2005:52-54.
    [132]Huang Y Y, Hu B X, Wen X T, et al. Evolution analysis of the matrix (M) protein genes of 17 H9N2 chicken influenza viruses isolated in northern China during 1998-2008. [J]. Virus Genes.2009,38,398-403.
    [133]Wang S, Shi W M, Mweene A, et al. Genetic Analysis of the Nonstructural (NS) Genes of H9N2 Chicken Influenza Viruses Isolated in China during 1998-2002. [J]. Virus Genes.2005,31(3):329-335.
    [134]Liu H Q, Liu X F, Cheng J, etc. Phylogenetic analysis of the Hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001. [J]. Avian Disease.2003,47:116-127.
    [135]Liu J H, Okazaki K, Shi W M, et al.Phylogenetic analysis of neuraminidase gene of H9N2 influenzaviruses prevalent in chickens in China during 1995-2002. [J]. Virus Genes. 2003,27:197-202.
    [136]Obenauer JC, Denson J, Mehta PK, et al. Large-scale sequence analysis of avian influenza isolates. [J]. Science.2006,311:1576-1580.
    [137]Jackson D, Hossain M J, Hickman D, et al. A new influenza virus virulence determinant:the NS1 protein four C-terminal residues modulate pathogenicity. [J]. Proc Natl Acad Sci USA.2008,105:4381-4386.
    [138]陈杭薇,李雪辉.流感病毒A非结构蛋白功能的研究进展.[J].病毒学报,2008,6:23-25.
    [139]Seo S H, Hoffmann E and Webster R G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat. Med.2002,8:950-954.
    [140]Huang Y Y, Hu B X, Wen X T et al. Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China. Virus Res.2010, Epub ahead of print
    [141]. Yamada H, Chounan R, Higashi Y et al. Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Letters,2004, 578 (3):331-336.
    [142]. Claas E C, Osterhaus A D, van Beek R et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. The Lancet,1998,351(9101):472-477.
    [143]. Lin Y P, Shaw M, Gregory V et al. Avian-to-human transmission of H9N2 subtype influenza A viruses:relationship between H9N2 and H5N1 human isolates. Proceedings of the National Academy of Sciences,2000,97 (17):9654-9658.
    [144]. Chen G W, Yang C C, Tsao K C et al. Influenza A virus PB1-F2 gene in recent Taiwanese isolates. Emerging Infectious Diseases Journal,2004,10(4):630-636.
    [145]. Webster R G..[J]. Influenza:an emerging disease.1998,4(3):436-441.
    [146]Fereidouni S R, Aghakhan M, Werner O, et al.2005. Isolation and identification of avian influenza viruses from migratory birds in Iran. [J]. Vet Rec.157:526.
    [147]Fouchier R A, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. [J]. J. Virol.2005, 79:2814-2822.
    [148]Causey D and Edwards S V. Ecology of Avian Influenza Virus in Birds. [J]. The Journal of Infectious Diseases.2008; 197:S29-33.
    [149]Claas E C J and Jong J C D. Human influenza virus A/HongKong/156/97 (H5N1) infection. [J]. Vaccine.1998,16(9-10):977-978.
    [150]Lin Y P, Shaw M, Gregory V, et al. Avian-to-human transmission of H9N2 subtype influenza A viruses:relationship between H9N2 and H5N1 human isolates. [J]. Proc Natl Acad Sci USA.2000,97:9654-9658.
    [151]Ogata T, Yamazaki Y, Okabe N, et al. Human H5N2 avian influenza infection in Japan and the factors associated with high H5N2-neutralizing antibody titer. [J]. J Epidemiol.2008,18(4):160-166.
    [152]Campitelli L, Martino A D, Spagnolo D, et al. Molecular analysis of avian H7 influenza viruses circulating in Eurasia in 1999-2005:detection of multiple reassortant virus genotypes. [J]. J Gen Virol.2008,89:48-59.
    [153]Xu K M, Smith G J D, Bathl J, Duan L, et al. The Genesis and Evolution of H9N2 Influenza Viruses in Poultry from Southern China,2000 to 2005. [J]. J. Virol.2007,81: 10389-10401.
    [154]Senne D A, Suarez D L, Stallnecht D E, et al. Ecology and epidemiology of avian influenza in North and South America. [J]. Dev. Biol. (Basel).2006,124:37-44.
    [155]Aymard H M, Coleman M T, Dowdle W R, et al. Influenza virus neuraminidase and neuraminidase-inhibition test procedures. Bulletin, World Health Organization.1973, 48:199-202.
    [156]Pedersen J C. Neuraminidase-inhibition assay for the identification of influenza A virus neuraminidase subtype or neuraminidase antibody specificity. [J]. Methods in Molecular Biology.2008,436:67-75.
    [157]Wee T O, Abdul R O, Aini I, et al. Development of a multiplex real-time PCR assay using SYBR Green 1 chemistry for simultaneous detection and subtyping of H9N2 influenza virus type A. [J]. J Viro Methods.2007,144:57-64.
    [158]Wei H L, Bai G R, Mweene A S, et al. Rapid detection of avian influenza virus A and subtype H5N1 by single step multiplex reverse transcription-polymerase chain reaction. [J]. Virus Genes.2006,32(3):261-267.
    [159]Alvarez A C, Brunck M E G,, Boyd V, et al. A broad spectrum, one-step reverse transcription PCR amplification of the neuraminidase gene from multiple subtypes of influenza A virus. [J]. J Virol.2008,5:77.
    [160]Gall A, Hoffmann B, Harder T, et al. Rapid and Highly Sensitive Neuraminidase subtyping of avian influenza viruses by use of a diagnostic DNA microarray. [J]. J Clin Micro.2009,47(9):2985-2988.
    [161]Qiu B F, Liu W J, Peng D X, et al. A reverse transcription-PCR for subtyping of the neuraminidase of avian influenza viruses. [J]. J Virol Methods 155:193-198.
    [162]Fereidouni S R, Starick E, Grund C, et al. Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses. [J]. Vet Micro.2009,135:253-260.
    [163]Tsukamoto K, Ashizawa T, Nakanishi K, et al. Use of reverse transcriptase PCR to subtype N1 to N9 neuraminidase genes of avian influenza viruses. [J]. J Clin Microb.2009, 47(7):2301-2303.
    [164]Duitama J, Kumar D M, Hemphil E, et al. PrimerHunter. a primer design tool for PCR-based virus subtype identification.[J]. Nucleic acids research.2009,37(8):2483-2492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700