薏苡对富营养化水体中氮磷的吸收去除效应及其影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化是当今世界面临的一个重要问题,而造成水体富营养化的主要原因就是水中的氮磷含量过高。许多研究已经表明利用一些大型植物富集氮、磷是治理、调节和抑制湖泊富营养化的有效途径之一。本论文研究了一种粮药兼用植物——薏苡对富营养化水体中氮磷吸收去除效果及其环境影响因子,为实际应用薏苡处理富营养化水体提供科学依据。取得的主要结果如下:
     1.薏苡对氮磷的吸收动力学特征与水稻存在显著差异。薏苡吸收铵态氮、硝态氮和磷的最大吸收速率分别为0.0298、0.0302、0.0.0043mmol·g~(-1)FW·hr~(-1),米氏常数分别为0.2080、0.6599、0.0308mmol·L~(-1);而水稻吸收铵态氮、硝态氮和磷的最大吸收速率分别为0.0266、0.0270、0.0023 mmol·g~(-1)FW·hr~(-1),米氏常数分别为0.3391、0.6051、0.0515 mmol·L~(-1),说明薏苡比水稻更能广泛适应在不同浓度氨氮、磷和较高浓度硝态氮的水体环境。
     2.利用室内模拟和野外大田试验研究了薏苡对富营养化水的净化效果。结果发现,在室内模拟条件下,经过30天的处理,薏苡对于水体中总氮的去除率能够达到84.59%,氨氮可以达到89.46%,硝态氮达到82.66%,对总磷、可溶性磷的去除率分别为66.36%和51.09%,COD_(Mn)的去除率为37.54%,pH也由8.25降到了7.51;大田试验结果表明,薏苡对二级污水中氮磷和COD_(Cr)的去除都有很好的效果。
     3.采用模拟试验研究了pH、温度和溶解氧对薏苡去除人工模拟富营养化水中氮磷的影响。一组试验在保持不同温度下即10℃、20℃、30℃进行;一组试验每两天调节一次水体pH,使其分别保持在4、5、6、7、8、9;第三组试验分别采用充气和不充气,以控制水中的溶解氧。结果发现,经过24天的处理,温度为30℃时对总氮的去除率达到了67.06%,氨氮的去除率达到68.74%,硝态氮达到了65.66%,总磷也达到了57.52%,都远远大于在10℃和20℃条件下对氮磷的去除率。在pH4和pH5条件下对总氮的去除率可达到77.75%和78.30%,总磷的去除率达到70.02%和73.52%,高于其他的pH条件。溶解氧对薏苡去除水体中氮磷的效果的影响小于温度和pH,但是充气条件下薏苡对水体中氮磷的去除率仍要比不充气的高。这些结果表明,较低pH、较高温度有和增加溶解氧浓度有利于薏苡对水体氮磷的去除,该植物可作为夏秋季富营养化水体修复的候选植物。
Water eutrophication is a serious environmental problem in the world.The major factors causing water eutrophication include load of nitrogen(N)and phosphors(P). Many researches have proved that using some large plants to remove nitrogen and phosphorus is an effective way to treat,adjust and control the eutrophication. Therefore,Coix Lachrymajobi.L,a kind of plant can be used as both food supplies and Chinese medicine,was selected to study the possibility to purify eutrophicated water,as well as the effects of environment factors such as pH,temperature and dissolved oxygen on its remove abilities of nitrogen and phosphorus from eutrophicated water.The results of this study,could provide scientific bases for controlling the lake eutrophication.The main results obtained can be summarized as follows:
     1.Obvious differences of the maximum rates of ammonium,nitrate and phosphorus uptake as well as the Km value of absorption between Coix and rice was observed.The maximum rate of ammonium,nitrate and phosphorus uptake by Coix were 0.0298,0.0302,0.0043rnmol·g~(-1)FW·hr~(-1),respectively;the Km value of the nutrient absorption of Coix were 0.2080,0.6599,0,0308mmoi·L~(-1).However,the maximum rate of ammonium,nitrate and phosphorus uptake by rice were 0.0266、0.0270、0.0023 mmol·g~(-1)FW·hr_(-1),respectively;the Km value of absorption of rice were0.3391、0.6051、0.0515 mmol·L~(-1).It indicated that Coix is more suitable for improve eutrophicated water with more widely range of NH_4~+ and phosphorus.
     2.The effectiveness of Coix for purifying eutrophicated water was studied with simulation experiment and field experiment.The result from simulation experiment showed that the remove rate of total nitrogen,ammonium,nitrate,total phosphorus, dissolved phosphorus and COD_(Mn)by Coix can reach 84.59%,89.46%,82.66%, 66.36%,51.09%,37.54%respectively,and the pH level of the water decreased from 8.25 to 7.51.The result of constructed wetland experiment achieved the accordant result,and the remove rate of nitrogen,phosphorus and COD_(cr)from secondary effluent was also ideal.
     3.The removal abilities of nitrogen and phosphorus from eutrophicated water by Coix were studied under different pH,temperatures and dissolved oxygen.In one experiment Lachryma-jobi.L were grownunder 10℃,20℃,30℃,respectively,in another set of experiment the plants were treated with different pH of 4,5,6,7,8,and 9,in the last experiment the plants were grown in aerating water and normal water. From the temperature experiment we can see that the removal rates of total nitrogen, ammonium,nitrate and phosphorus were respectively 67.06%,68,74%,65.66%, 57.52%,which were much higher than those treated under 20℃and 10℃.The results from pH effect experiment showed that the removal rate of total nitrogen reached 77,75%and 78.30%and that of total phosphorus reached to 70.02%and 73.52%at pH 4 and 5.And the removal rates of nitrogen and phosphorus at other pH values were lower,Dissolved oxygen was not so efficiency as pH and temperature in affecting removing nitrogen and phosphorus.These results indicate that more efficient removal of N and P by Coix lacryma-job occurred at relative low pH,high temperature,and high dissoived oxygen.Therefore,this plant could be used for phytoremediation of eutrophic water at summer and autumn seasons.
引文
1. Aisling D O'Sullivan, Bredagh M Moran, Marinus L Otle. Accumulation and fate of contaminants (Zn, Pb, Fe and S) in substrates of wetlands constructed for treating mine wastewater [J]. Water, Air and Soil Pollution, 2004:345-364.
    2. Badami, S. Gupta, M.K., Suresh, B. Antioxidant activity of the ethanolic extract of Striga orobanchioides [J]. J. Erhnopharmacol, 2003, 85: 227-230.
    3. Brezonik D L, Fox J Leds. Water Quality Management through Biological Ways [J]. Gainesville: University Press of Florida, 1975: 85-96.
    4. Cacco G, Ferrari G, Saccommani M. Pattern of sulfate uptake during root elongation in maize: its cor—relation with productivity [J]. Physioi Plant1980, (48): 375-378.
    5. Cox AE, Camberato, J J, Smith BR. Phosphate availability and inorganic transformation in an alum sludge-affected soiI[J]. J. Environ. Qual, 1997.26, 1393-1398.
    6. Dunne EJ, Cullcton N, O'Donovan G et al. An integrated constructed wetland to treat contaminants and nutrients from dairy farmyard dirty water[J]. Ecological Engineering. 2005:221-234.
    7. Elmgren R. Understanding human impact on the Baltic ecosystem: changing views in recent decades[J]. Ambio, 2001, 30: 4-5.
    8. Gao C, Zhang TL. Environmental management options practiced in Europe to mitigate agricultural nutrient pollution of ground and surface water [J]. Rural Eco-environment, 1999, 15(2): 50-53.
    9. Guanling Song, Wenhua Hou, Qunhui Wang,et,al. Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza[J] Bioresource Technology,2006 ,97,1865 -1869.
    10. Hamlin, RL., Mills, H.A., Randle, W.M. Growth and nutrition of pansy as influenced by N-form ratio and temperature [J]. Journal of Plant Nutrition, 1999, 22( 10): 1637-1650.
    11. Healy MG, Rodgers M. Mulqueen J, Treatment of dairy wastewater using constructed wetlands and intermittent sand filters [J]. Bioresource Technology, 2007, 98(12): 2268-2281
    12. Huang, XL., Shenker, M., Water-soluble and solid-state speciation of phosphorus in stabilized sewage sludge[J]. J. Environ.Qual, 2004, 33, 1895-1903.
    13. JacobyJM . Gibbons HL, Stoops KB. Response of a shallow polymictic lake to buffered alum treatment[J]. Lake Reservoir Manage. 1994, 10(2): 103-111.
    14. Jansson M, Anderson R, Berggren H, et al. Wetlands and lakes as nitrogen traps[J]. Ambio, 1994,23(6):320-325.
    15. Jokinen, R. Effects of phosphorous precipitatio chemicals on characteristics and agricultural value of municipal sewage sludges, Part 2. Effect of sewage sludge on yield, element content and uptake by spring barley (Hordeum vulgare L.[J]. ActaAgric. Scand. 1990.40,131-140.
    16. Jung S. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought [J]. Plant Sci, 2004, 166:459-466.
    17. Korner S, Das S K, Veensta S. et al. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemnagibba[J]. Aquatic Botany, 2001, 71(1 ): 71-78.
    18. Lars Hein Cost-efficient eutrophication control in a shallow lake ecosystem subject to two steady states, Ecological Economics, 2006,59 : 429-439.
    19. Larsson C M, Ingemarsson B. In : Wary J L , Kinghorn J R ( Eds). Molecular and Genetic Aspects of Nitrate Assimilation[M]. New York: Oxford University Press, 1989.
    20. Li Wen. Friedrich Recknagel. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats preliminary results from growth chamber experiment[J]. Agriculture, Ecosystems and Environment, 2002, 90:9-15.
    21. Miao Li, Yue-Jin Wu, Zeng-Liang Yu. Nitrogen removal from eutrophic water by floating-bed grown water spinach (Ipomoea aquatica Forsk) with ion implantation [J]. Water research, 2007,41 3152-3158.
    22. Muscutt AD, Harris G L, Bailey S W, et al. Buffer zones to improve water quality :a review of their potential use in U K agriculture [J] . Agriculture, Ecosystems and Environmental, 1993, 45(1):59-77.
    23. Pala A., O. Bolukbas. Evaluation of kinetic parameters for biological CNP removal from a municipal wastewater through batch tests [.)]. Process Biochemistry, 2005, 40, 629-635.
    24. Riis T., Sand-Jensen K. Historical changes in species composition and richness accompanying perturbation and eutrophication of Danish lowland streams over 100 years[J]. Freshwater Biology , 2001,46(2), 269-280.
    25.Sara Gerke,Lawrence A Bake Ying Xu.Nitrogen transformations in a wetland receiving lagoon effluent seouential model and implications or water reuse[J].Water research,2001,35(16):3857-3866.
    26.Scheffer M.,Carpenter S.,Foley,JA,Folkes C.et al..Catastrophic shifts in ecosystems[J].Nature,2001,413,591-596.
    27.Seidel K.Macrophytes and water purification.Biological control of pollution[M].Philadelphia:Pennsylvania University Press,1976.
    28.Shapiro j,Lamarra V,Lynch M.Biomanipulation:all ecosystem approach to lake restoration.
    29.Shen ZL.A nitrogen budget of Changjiang River catchment[J].Ambio,2003,32(1):65-69.
    30.Shunroku Nakamura." Design with Nature" in nature-oriented river works in Japan[R].Int.WS for Eco—hydraulics & Eco-rivers Engineering,Taiwan,2003.
    31.Smith V.H.,Tilman,G.D.,Nekola,J.C.Eutrophication:impacts of excess nutrient inputs on freshwater,marine,and terrestrial ecosystem[J].Environ Pollut,1999,100(1-3),179-196.
    32.Sun G,Grayk R,Biddlstone A J,el,al.Effect of effluent recirculation on the performance of a reed bed system treating agricultural wastewater[J].Process Biochemistry.2003,39:351-357.
    33.Van der Veeren,R.J.H.M.,2002.Economic analyses of nutrient abatement policies in the Rhine basin[J].Free University Amsterdam,the Netherlands.272.
    34.Vander Does,Joop,et al.Lake restoration with and without dredging of phosphorus-enriched upper sediment layers[J],Hydrobiologia,1992,233:197-210.
    35.Yufang Yanga,Yuhei Inamoria,Hitoshi Ojima.Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics[J].Water Research,2005,39:4859-4868.
    36.包先明,陈开宁,范成新.浮叶植物重建对富营养化湖泊氮磷营养水平的影响[J].生态环境,2005,14(6):807-811.
    37.蔡景波,丁学锋,彭红云,等.环境因子及沉水植物对底泥磷释放的影响研究[J].水土保持学报,2007,21(2):151-154.
    38.陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护.2002,21(2):179-182.
    39.陈英龙主编.环境学[M].北京:中国环境科学出版社,2001:117-120.
    40.崔秀丽.白洋淀水体富营养化污染源调查[J].环境科学,1995,增刊,17-18.
    41.杜勤,赵保全,朱家义.水体富营养化控制手段及防治实例[J].工业水处理.2005.25(9):20-22.
    42.高光.伊乐藻、轮叶黑藻净化养鱼污水效果试验[J].湖泊科学,1996 8(2):184-188.
    43.高吉喜,叶春,杜娟,等.水生植物对面源污水净化效率研究[J].中国环境科学,1997,17(3):247-251.
    44.高原.沿海海.气界面的化学物质交换[J].地球科学进展,1997,12(6):553-563.
    45.耿亮,陆光华,万蕾.应用生物修复技术治理城市污染水体[J].江苏环境科技.2005 18(1):50-52.
    46.龚成文,陈效杰.薏苡综合开发利用前景浅析[J],甘肃农业科技,1998,3:7-8.
    47.郭培章,宋群.中外水体富营养化治理案例研究[J].北京,中国计划出版社 2003,336.
    48.郭沛涌,朱荫湄,宋祥甫,等.浮床黑麦草去除富营养化水体总氮的试验研究[J].华中科技大学学报(城市科学版).2007 24(2):33-35 40.
    49.国家环境保护总局.水利废水监测分析方法·第四版[M].北京:中国环境科学出版社,2002.
    50.何本茂,韦蔓新.北海湾水体自净能力的探讨.海洋环境科学,2004,23(1):16-18.
    51.何池全,赵魁义,叶居新.石葛蒲净化富营养化水体的研究[J].南昌大学学报(理科版),1999,23(1):73-76.
    52.黄蕾,翟建平,王传瑜,聂荣,袁东海.4种水生植物在冬季脱氮除磷效果的试验研究[J].农业环境科学学报,2005,24(2):366-370.
    53.黄亚,傅以钢,赵建夫.富营养化水体水生植物修复机理的研究进展[J].农业环境科学学报 2005,24(增刊):379-383.
    54.蒋廷惠,郑绍建,石锦芹,等.植物吸收养分动力学研究中的几个问题[J].植物营养与肥料学报,1995,1(2):11-17.
    55.蒋鑫焱,翟建平,黄蕾等.不同水生植物富集氮磷能力的试验研究.环境保护科学,2006,32(6):13-16.
    56.金相灿,屠清瑛主编.湖泊富营养化调查规范[M].第二版,中国环境科学出版社,1990.
    57.井艳文,胡秀琳,许志兰,等.利用生物浮床技术进行水体修复研究与示范[J].水利科学研究,2003(6):18-19.
    58.黎华寿,聂呈荣,方文杰,等.浮床栽培植物生长特性的研究[J].华南农业大学学报(自然科学版),2003 24(2):12-15.
    59.李捍东,王庆生.优势复合菌群用于城市生活污水净化新技术的研究[J].环境科学,2000,13(5):14-16.
    60.李杰,钟成华,邓春光,人工湿地研究进展[J].安徽农业科学.2007,35(6):1778-1780.
    61.李睿华,管运涛,何苗,等.河岸芦苇、茭白和香蒲植物带处理受污染河水中试研究[J].环境科学,2006,27(3):493-497.
    62.李少英,曾述柏,于令第.环境污染与监测[M].哈尔滨工程学院出版社,1993.
    63.李文朝.富营养水体中常绿水生植被组建及净化效果研究[J].中国环境科学,1997,17(1):53-57.
    64.李正魁,濮培民,胡维平等.固定化细菌技术及其在物理生态工程中的应用—固定化氮循环细菌对水生生态系统的恢复[J].江苏农业学报,2001,17(4):248-252.
    65.刘春常,夏汉平,等.人工湿地处理生活污水研究[J].生态环境,2005,14(4):536-539.
    66.刘春光,金相灿,孙凌,等.水体pH和曝气方式对藻类生长的影响[J].环境污染与防治,2006,28(3):161-163.
    67.刘春兰,周宜君,周恒彦,等.薏苡内酯的提取及分离纯化条件的研究[J].中央民族大学学报(自然科学版),2003,12(4):311-314.
    68.刘建康,谢平.揭开武汉东湖蓝藻水华消失之迷长江流域资源与环境[M],1999,8(3):312-319.
    69.刘士哲,林东教,等.利用漂浮植物修复系统栽培风车草、彩叶草和茱莉净化富营养化污水的研究[J].应用生态学报,2004,15(12)2337-2341.
    70.刘淑媛,任久民,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究[J].北京大学学报(自然科学版),1997,35(4):518-522.
    71.娄云.富营养化浅水湖泊治理方法初探[J].吉林水利,2005,9:34-37.
    72.卢进登,帅方敏,赵丽娅,康群,李兆华.人工生物浮床技术治理富营养化水体的植物遴选[J].湖北大学学报(自然科学版)2005,27(4):402-404.
    73.马立珊,骆永明,吴龙华,等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤.2000,(2):99-101.
    74.聂志丹,年跃刚,金相灿,等.3种类型人工湿地处理富营养化水体中试比较研究[J].2007,28(8):1675-1680.
    75.濮培民,王国祥,胡春华,胡维平,范成新。底泥疏浚能控制湖泊富营养化吗?[J].湖泊科学.2000 12(9):269-279.
    76.钱大富,马静颖.水体富营养化及其防治技术研究进展[J].青海大学学报(自然科学版),2002,20(1):27-29.
    77.秦伯强,高光,胡维平,等.陈非洲浅水湖泊生态系统恢复的理论与实践思考[J].湖泊科学,2005 17(1):9-16.
    78.沈亦龙.太湖五里湖清淤效果初步分析[J].水利水电工程设计.2005,24(2):23-26.
    79.石岩,张喜勤,付春艳,等.浮游动物对净化湖泊富营养化的初步探讨[J].东北水利水电,1998,(3):31-33.
    80.舒金华黄文钰,高锡芸等.1998.发达国家禁用(限用)含磷洗农粉的措施[J].湖泊科学,1998,10(1):90-96.
    81.宋海亮,吕锡武.利用植物控制水体富营养化的研究与实践[J].安全与环境工程,2004,11(3):35-39.
    82.宋祥甫等.浮床水稻对富营养化水体中氮磷的去除效果及规律研究[J].环境科学学报,1998,18(5):489-494.
    83.宋志文,王仁卿,席俊秀.人工湿地对氮、磷的去除效率与动态特征[J].生态学杂志,2005,24(6):648-651.
    84.唐志坚,张平,左社强,查吕应,植物修复技术在地表水处理中的应用[J].中国给水排水,2003 19(7):27-29.
    85.王超,张文明,王沛芳,等.黄花水龙对富营养化水体中氮磷去除效果的研究[J].环境科学,2007 28(5):975-981.
    86.王国祥,成小英,濮培民.湖泊藻型富营养化控制—技术、理论及应用[J].湖泊科学,2002,14(3):273-282.
    87.王国祥,濮培民,张圣照,等.冬季水生高等植物对富营养化湖水的净化作用[J].中国环境科学,1999,19(2):106-109.
    88.王国祥,濮培民,张圣照,等.人工复合生态系统对太湖局部水域水质的净化作用[J].中国环境科学,1998,6(2):15-19.
    89.王国祥,濮培民,张圣照,胡春华,胡维平.冬季水生高等植物对富营养化湖水的净化作用[J].中国环境科学,1999,19(2):106-109.
    90.王西俜.薏苡仁酒酿的开发研究[J].食品科学.1987.(12):50-52.
    91.王旭明,匡静.水芹菜对污水净化的研究[J].农业环境保护,1999,18(1):34-35.
    92.吴传茂,吴周和,石勇.从必需氨基酸看发芽薏苡饮料的营养价值[J].氨基酸和生物资源, 1998,20(3)58-59.
    93.吴平凡,李泉生,吴永红,贾翀.稻草秸秆基人工浮床支撑材料的研究[J].科技资讯,2007,10:120-121.
    94.吴群河,曾学云,黄钥.河流底泥中DO和有机质对三氮释放的影响[J].环境科学研究,2005,18(5):34-39.
    95.夏汉平.垃圾污水的植物毒性与植物净化效果之研究[J].植物生态学报,1999,23(4):289-301
    96.谢有奎,俞栋,高殿森,等.体富营养化危害、成因及防治[J].后勤工程学院学报,2004.3:27-29.37.
    97.熊代群,杜晓明,唐文浩,等.海河天津段与河口海域水体氮素分布特征及其与溶解氧的关系环境科学研究[J],2005,18(3):1-5.
    98.熊集兵,常会庆,伺振立,等.低温条件下满江红对地表水氮磷的去除效应研究[J].水土保持学报,2007,21(6):96-98.
    99.徐和胜,付融冰,褚衍洋.芦苇人工湿地对农村生活污水磷素的去除及途径[J].生态环境,2007,16(5):1372-1375.
    100.徐梓辉,周世文,等.薏苡多糖的分离提取及其降血糖作用的研究[J].第三军医大学学报,2000,(6):578-581.
    101.杨文龙.湖水藻类生长的控制技术.云南环境科学[J],1999,18(2):34-36.
    102.余勤,邝炎华,根系养分吸收动力学研究及应用[J].华南农业大学学报,1997,18(2):108-113.
    103.袁东海,高士祥,任全进.几种挺水植物净化生活污水总氮和总磷效果的研究.水土保持学报,2004,18(4):77-80 92.
    104.张村侠,朱世东.浮床栽培绿叶蔬菜对富营养化水体的净化效果[J].安徽农业科学.2007,35(14):4193-4194 4196.
    105.张鸿,陈光荣,吴振斌,等.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范人学学报(自然科学版),1999,33(4):575-578.
    106.张荣社,李广贺,周琪,等.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005,26(4):83-86.
    107.赵建,朱伟,赵联芳.人工湿地对城市污染河水的净化效果及机理[J].湖泊科学,2007,19(1).32-38.
    108.赵杨景,陈震.氮、磷、钾营养元素对薏苡干物质累积和养分含量的影响[J].中国中药杂志,1992,17(7):400-403.
    109.中国医学科学院药用植物资源开发研究所主编.中国药用植物栽培学[M],北京:农业出版社.1991,984-992.
    110.中华人民共和国水利部.中国水资源公报(2004).北京:中国水力水电出版社,2005.
    111.朱济清.薏苡作为花菇原料的利用技术与效益的探讨[M],福建林业科技,2005,32(3):206-207,215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700