聚酯复合材料无卤协效阻燃研究及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸丁二醇酯(PBT)是聚酯家族中应用最为广泛的两种工程塑料。由于它们具有良好的尺寸稳定性和热稳定性,PET和PBT已广泛应用于纺织、汽车、电子电器等领域。然而,PET和PBT均是十分容易燃烧的聚合物,在它们的燃烧过程中还会产生大量的烟气以及较为严重的滴落现象。因此,为了扩大PET和PBT的应用范围,研究和发展阻燃型聚酯材料已显得非常重要。本文首先系统性综述了近几十年所开发出的无卤阻燃技术,探讨这些技术或阻燃体系在聚酯和玻纤增强聚酯中应用的可行性。其次,研究了现有阻燃剂或阻燃体系在聚酯和玻纤增强聚酯中的热解和阻燃机制。最后,针对聚酯和玻纤增强聚酯热解和燃烧的机理,合成出几种新型阻燃剂,并研究它们对聚酯和玻纤增强聚酯的阻燃作用。主要研究工作如下:
     1.首先比较研究了两种不同微胶囊化聚磷酸铵:硅凝胶包裹聚磷酸铵(MAPP(Si))和聚氨酯包裹聚磷酸铵(MAPP(PU))对PBT阻燃性能的影响。调控MAPP和三聚氰胺氰尿酸盐(MC)之间的比例关系,制备了几种无卤阻燃PBT复合材料,研究了其热分解行为和阻燃性能,探讨了其阻燃和热解机理。研究结果显示:MAPP(Si)和MAPP (PU)分别与三聚氰胺氰尿酸盐按相同比例复配,均能使得PBT材料获得优异的阻燃性能。其次,以有机改性蒙脱土(OMMT)为纳米添加剂,制备了PBT/IFR/OMMT纳米复合材料,研究了OMMT和IFR之间的协同阻燃作用。燃烧性能测试表明低含量的OMMT可以有效的提高材料的阻燃性能。在PBT/IFR/OMMT的炭层研究中首次在扫描电子显微镜(SEM)下观察到了微米结构的颗粒,这些颗粒的存在保护了PBT基体,使其在500℃的马弗炉中灼烧10分钟后仍有α相存在。
     2.以无机次磷酸铝(AHP)为主要阻燃添加剂,通过与三聚氰胺衍生物(MD)、聚碳酸酯(PC)进行复配,并调控其比例关系,组成新的阻燃体系,并成功应用于PBT和玻纤增强PBT中。微型燃烧量热仪(MCC)和热重-红外联用(TGA-FTIR)分析结果表明:AHP和三聚氰胺衍生物的复配使得PBT具有较低的火灾危险性。同时,总量为20wt%的复配阻燃剂可以使得PBT获得较高的极限氧指数,且能通过垂直燃烧V-O级别测试。对于阻燃玻纤增强PBT复合材料的研究结果表明:AHP,MC和PC所组成的阻燃体系可以使得0.8mm厚的玻纤增强PBT(GRPBT)样条通过垂直燃烧V-O级别测试,且材料的热释放速率得到了极大的降低。TGA和炭渣研究表明:PC的加入有效提高了材料的成炭量,并显著增强了材料的阻燃性能,降低了材料的火灾危险性。
     3.研究了纳米粘土(Clay)和AHP对GRPBT阻燃性能和力学性能的影响,分析了其阻燃作用机制。X射线衍射(XRD)和透射电子显微镜(TEM)分析结果表明:Clay主要以剥离结构存在于GRPBT中。TGA-FTIR分析结果表明:在材料热分解过程中,AHP与Clay的引入极大的抑制了酯类物质的释放。阻燃性能测试结果表明:AHP能够有效的提高GRPBT的阻燃性能,而Clay的引入进一步提高了GRPBT的阻燃性能,这是因为均匀分散在PBT基体中的Clay片层在GRPBT-AHP复合材料燃烧过程中起到了“微反应器”的作用。力学性能测试结果表明:单独添加Clay可以提高GRPBT的拉伸强度和模量,而单独添加AHP使得GRPBT的拉伸强度和模量急剧降低,Clay替代部分AHP恢复材料的拉伸强度和模量。
     4.采用氯化镧、氯化铈和次磷酸钠为原料,合成了次磷酸镧(LHP)和次磷酸铈(CHP)。通过SEM分析看出,两种次磷酸盐均为棒状结构,尺寸均为微米级;TGA结果显示两种次磷酸盐均有良好的热稳定性。以LHP和CHP为阻燃添加剂,设计制备了一系列阻燃型GRPBT复合材料。TGA结果表明低含量的LHP和CHP均提高了GRPBT的热稳定性,降低GRPBT的质量损失速率。燃烧性能测试表明LHP和CHP的加入大幅提高了GRPBT的阻燃性能。动态力学性能和拉伸性能测试表明LHP和CHP均增强了GRPBT的力学性能。调控LHP或CHP和MC之间的比例关系,设计制备了另一组阻燃型GRPBT复合材料。阻燃性能测试结果发现材料的氧指数和垂直燃烧测试级别得到进一步提高。
     5.比较研究了AHP和CHP对GRPET复合材料热解和阻燃性能的影响。TGA分析表明:AHP和CHP的引入均降低了GRPET的热稳定性,而CHP对GRPET热稳定性的影响较小。燃烧性能测试表明AHP和CHP的加入大幅提高了GRPET的阻燃性能,与CHP相比,AHP对GRPET阻燃性能的促进作用更为显著。调控AHP和MC之间的比例关系,设计制备了另一组无卤阻燃型GRPET复合材料。TGA分析表明二者的加入大幅降低了GRPET复合材料的热稳定性,但减少了PET基体在热分解过程所释放出的挥发性物质。阻燃性能测试结果表明AHP和MC产生了明显的协同阻燃效应,显著提高了GRPET复合材料的阻燃性能。
Represented by poly(ethylene terephthalate)(PET) and poly(1,4-butylene terephthalate)(PBT), partly aromatic polyesters are widely applied as engineering plastics in textile, high volume automotive, electrical, and other fields, owing to their good dimensional stability and thermal resistance. However, the development and application of polyesters are limited due to its flammability and serious dripping when subjected to elevated temperatures or combustion. Based on systematically reviewing previous studies on flame retardant techniques used in halogen-free flame retarded polymeric materials including polyesters, several flame retardant techniques or systems which are suitable for polyesters were firstly introduced into polyesters in this study. The thermal decomposition and flame retardancy mechanisms were then studied. Finally, novel compounds used as flame retardants in polyesters were synthesized, and the flame retardancy mechanisms were investigated. The following work was completed.
     1. The effect of microencapsulated APP with silica gel shell (MAPP(Si)) and polyurethane shell (MAPP(PU)) in combination with MC on flame retardancy of PBT was firstly studied. The experimental results showed that both MAPP(Si) and MAPP(PU) significantly improved the flame retardancy of PBT in the presence of MC compared with APP. Based on the excellent fire retardancy of the intumescent flame retardant (IFR) system containing MAPP(PU) and MC, organo-modified montmorillonite (OMMT) was then introduced to the PBT/IFR system. The synergistic effect between OMMT and IFR was also found that the addition of OMMT further improved the flame retardancy of PBT/IFR composites. A mass of microcomposite structure particles formed in the heating or combustion process of PBT/IFR/OMMT nanocomposites were the first time to be found in the SEM images. It was a strong evidence to confirm the migration or accumulation of montmorillonite and carbonaceous-silicate materials during the heating or combustion process.
     2. A novel halogen-free flame retardant system was established, composed of aluminum hypophosphite (AHP) and melamine derivatives (MD) to develop halogen-free fire retarded PBT and GRPBT composites. For the PBT composites with the incorporation of AHP and melamine derivatives, the heat release capacity (HRC) which is an indicator of a material fire hazard from microscale combustion calorimeter (MCC) testing was significantly reduced. The intensities of a variety of combustible or toxic gases detected by Thermogravimetric analysis/Fourier transform infrared spectrometry (TGA-FTIR) technique were remarkably decreased. Moreover, a loading of20wt%flame retardant mixture fulfilled the PBT composites high limiting oxygen index (LOI) and V-0classification in Underwriters Laboratories94(UL-94) testing. The flame retarded GRPBT composite containing AHP, MD and PC can achieve a V-0classification in UL-94testing (the thickness of testing bar is0.8mm). In MCC and cone calorimeter testing, both of the two different PHRRs (peak of heat release rate) for GRPBT composites are significantly reduced by the incorporation of the novel system. Thermogravimetric analysis and residue characterization revealed that the addition of PC promotes the formation of char residues leading the reduction of mass loss rate, which results in the improvement of fire retardancy.
     3. Nanoclay and AHP were used to develop halogen-free fire retardant GRPBT composites with enhanced fire retarded performance. Exfoliated clay nanocomposites of flame retarded/GRPBT were fabricated through melt blending process. TGA-FTIR analysis showed that the incorporation of AHP and nanoclay remarkably reduced the release of esters decomposed from PBT. MCC results indicated that the HRC was reduced by51%. Moreover, significant improvements were obtained in LOI along with maintained UL-94ratings. Thermogravimetric analysis and residue characterization revealed the flame retardancy mechanism in which the well dispersed layered silicates in polymer matrix probably play an important role of "microreactor" during the combustion. In addition, the substitution of a certain fraction of AHP by nanoclay could recover the interface between glass fiber and polymer matrix leading to the improvement of tensile strength.
     4. Inspired by the flame retardant effects provided by AHP, another metal hypophosphite was taken into account to improve the fire retardancy performance of GRPs. Two kinds of rare earth metal hypophosphite, lanthanum (Ⅲ) hypophosphite and cerium (Ⅲ) hypophosphite, were successfully synthesized and characterized. Thermogravimetric analysis illustrated that both the incorporation of LHP and CHP could improve the thermal stability of GRPBT. TGA-FTIR analysis showed that all the volatilized products were reduced by the addition of LHP or CHP. For the composite containing20wt%of LHP or CHP, it could achieve a V-0classification with a high LOI (about28%). Additionally, both the PHRR and total heat release (THR) values of GRPBT composites were significantly reduced by the addition of LHP and CHP. The incorporation of the flame retardant mixture containing LHP or CHP with MC can further improve the flame retardancy of GRPBT.
     5. Comparative study on the thermal decomposition and combustion behavior of CHP and AHP in GRPET composites was completed. TGA results showed that both the introduction of CHP and AHP reduced the thermal stability of GRPET, and improved the char residues. LOI and UL-94testing indicated that both the addition of CHP and AHP could enhance the flame retardancy of GRPET. GRPET containing10wt%of AHP achieved V-0classification with a high LOI of30%, while only V-1classification was obtained for GRPET with10wt%of CHP. Cone calorimeter testing results showed that CHP and AHP can both reduce the PHRR and THR of GRPET, and GRPET/AHP showed lower THR. For the PET/GF composites with a low loading of the flame retardant mixture containing AHP and MC, the HRC value was reduced by47%, meanwhile, the intensities of a variety of combustible or toxic gases detected by TGA-FTIR technique were remarkably decreased. Thermal decomposition and residue analysis revealed that the flame retardancy of GRPET composites was enhanced by the condensed-phase action of AHP and the gas-phase dilution effect of MC.
引文
1. 李玉芳,伍小明.无卤阻燃剂的研究开发进展.塑料制造.2006,4:78-83.
    2. 杨云峰,张现军,胡国胜.无卤阻燃剂的研究现状.山西化工.2010,30:50-53.
    3. 李傲,梁基照.无卤阻燃剂的研究进展.上海塑料.2007,1:1-5.
    4. 梅锦岗,杨建军,吴庆云,张建安,吴明元.膨胀阻燃剂的研究与应用.绿色建筑.2011,4:60-62.
    5. 王军,蔡绪福.无卤膨胀型阻燃剂的研究进展.中国塑料.2011,25:7-13.
    6. 马雅琳,王标兵,胡国胜.阻燃剂及其阻燃机理的研究现状.材料导报.2006,20:392-395.
    7. Montaudo, G., Scamporrino, E., Vitalini, D. Intumescent flame retardants for polymers.2. The polypropylene-ammonium polyphosphate-polyurea system. Journal of Polymer Science Part A-Polymer Chemistry.1983,21:3361-3371.
    8. Bourbigot, S., Lebras, M., Delobel, R. Fire degradation of an intumescent flame-retardant polypropylene using the cone calorimeter. Journal of Fire Sciences.1995,13:3-22.
    9. Schartel, B., Braun, U., Schwarz, U., Reinemann, S. Fire retardancy of polypropylene/flax blends. Polymer.2003,44:6241-6250.
    10. Liu, Y., Feng, Z. Q., Wang, Q. The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11. Polymer Composites 2009,30, 221-225.
    11. Lu, H. D., Wilkie, C. A. Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polymer Degradation and Stability.2010,95:2388-2395.
    12. Bras, M. L., Bugajny, M., Lefebvre, J., Bourbigot, S. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polymer International.2000,49:1115-1124,
    13. Hu, X. P., Li, Y. L., Wang, Y. Z. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromolecular Materials and Engineering.2004, 289:208-212.
    14. Li, B., Xu, M. J. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation and Stability. 2006,91:1380-1386.
    15. Jun, W., Yi, L., Cai, X. F. Effect of a novel charring agent on thermal degradation and flame retardancy of acrylonitrile-butadiene-styrene. Journal of Thermal Analysis and Calorimetry. 2011,103:767-772.
    16. Liu, Y., Wang, D. Y., Wang, J. S., Song, Y. P., Wang, Y. Z. A novel intumescent flame-retardant LDPE system and its thermo-oxidative degradation and flame-retardant mechanisms. Polymers for Advanced Technologies.2008,19:1566-1575.
    17. Ke, C. H., Li, J., Fang, K. Y., Zhu, Q. L., Zhu, J., Yan, Q., Wang, Y. Z. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polymer Degradation and Stability.2010, 95:763-770.
    18. Ma, H. Y., Tong, L. F., Xu, Z. B., Fang, Z. P., Jin, Y. M., Lu, F. Z. A novel intumescent flame retardant:synthesis and application in ABS copolymer. Polymer Degradation and Stability. 2007,92:720-726.
    19. Song, P. A., Fang, Z. P., Tong, L. F., Xu, Z. B. Synthesis of a novel oligomeric intumescent flame retardant and its application in polypropylene. Polymer Engineering and Science.2009, 49:1326-1331.
    20. Zhan, J., Song, L., Nie, S. B., Hu, Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability. 2009,94:291-296.
    21. Li, L. K., Wei, P., Li, J., Jow, J., Su, K. Synthesis and characterization of a novel flame retardant and its application in polycarbonate. Journal of Fire Sciences.2010,28:523-538.
    22. Cinausero, N., Azema, N., Lopez-Cuesta, J. M., Cochez, M., Ferriol, M. Synergistic effect between hydrophobic oxide nanoparticles and ammonium polyphosphate on fire properties of poly(methyl methacrylate) and polystyrene. Polymer Degradation and Stability.2011,96: 1445-1454.
    23. Jiao, C. M., Chen, X. L. Influence of fumed silica on the flame-retardant properties of ethylene vinyl acetate/aluminum hydroxide composites. Journal of Applied Polymer Science.2011,120: 1285-1289.
    24. Li, J., Wei, P., Li, L. K., Qian, Y., Wang, C., Huang, N. H. Synergistic effect of mesoporous silica SBA-15 on intumescent flame-retardant polypropylene. Fire and Materials.2011,35: 83-91.
    25. Chen, Y. J., Zhan, J., Zhang, P., Nie, S. B., Lu, H. D., Song, L., Hu, Y. Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent. Industrial & Engineering Chemistry Research.2010,49:8200-8208.
    26. Fu, M. Z., Qu, B. J. Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polymer Degradation and Stability.2004,85:633-639.
    27. Ren, Q. A., Zhang, Y., Li, J. A., Li, J. C. Synergistic effect of vermiculite on the intumescent flame retardance of polypropylene. Journal of Applied Polymer Science.2011,120:1225-1233.
    28. Kong, Q. H., Hu, Y., Song, L., Yi, C. W. Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites. Polymers for Advanced Technologies.2009,20:404-409.
    29. Ma, H. Y., Tong, L. F., Xu, Z. B., Fang, Z. P. Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites. Applied Clay Science.2008,42:238-245.
    30. Liu, Y., Wang, J. S., Deng, C. L., Wang, D. Y., Song, Y. P., Wang, Y. Z. The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems. Polymers for Advanced Technologies.2010,21:789-796.
    31. Dogan, M., Bayramli, E. Synergistic effect of boron containing substances on flame retardancy and thermal stability of clay containing intumescent polypropylene nanoclay composites. Polymers for Advanced Technologies.2011,22:1628-1632.
    32. Ning, Y., Guo, S. Y. Frame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC. Journal of Applied Polymer Science.2000,77: 3119-3127.
    33. Chen, X. L., Yu, J., Qin, J., Luo, Z., Hu, S. C., He, M. Combustion behaviour and synergistic effect of zinc borate and microencapsulated red phosphorus with magnesium hydroxide in flame-retarded polypropylene composites. Polymers & Polymer Composites.2011,19: 491-496.
    34. Chen, X. L., Yu, J., Qin, J., Luo, Z., Hu, S. C., Zhou, Z. W., Guo, S. Y., Lu, S. J. Kinetics of thermo-oxidative degradation of zinc borate/microcapsulated red phosphorus with magnesium hydroxide in flame retarded polypropylene composites. Journal of Polymer Research.2009,16: 745-753.
    35. Dogan, M., Yilmaz, A., Bayramli, E. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites. Polymer Degradation and Stability.2010,95:2584-2588.
    36. Kaynak, C., Isitman, N. A. Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high-impact polystyrene containing brominated epoxy and antimony oxide. Polymer Degradation and Stability.2011,96:798-807.
    37. Scharf, D., Nalepa, R., Heflin, R., Wusu, T. Studies on flame-retardant intumescent char.1. Fire Safety Journal.1992,19:103-117.
    38. Ren, Q., Wan, C. Y., Zhang, Y., Li, J. An investigation into synergistic effects of rare earth oxides on intumescent flame retardancy of polypropylene/poly (octylene-co-ethylene) blends. Polymers for Advanced Technologies.2011,22:1414-1421.
    39. Wu, J., Hu, Y., Song, L., Kang, W. J. Synergistic effect of lanthanum oxide on intumescent flame-retardant polypropylene-based formulations. Journal of Fire Sciences.2008,26:399-414.
    40. Li, Y. T., Li, B., Dai, J. F., Jia, H., Gao, S. L. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system. Polymer Degradation and Stability.2008, 93:9-16.
    41. Hu, S., Zheng, H.,Shen, S. Y., Han, H. C., Jing, H., Li, S. Synergistic effects of zinc oxide on intumescent flame-retarded polypropylene composites. Advanced Materials Research.2011, 178:279-284.
    42. Liu, Q. Q., Song, L., Lu, H. D., Hu, Y., Wang, Z. Z., Zhou, S. Study on combustion property and synergistic effect of intumescent flame retardant styrene butadiene rubber with metallic oxides. Polymers for Advanced Technologies.2009,20:1091-1095.
    43. Wu, N.,Yang, R. J., Hao, J. W., Liu, G. S. Synergistic effect of metal oxides on intumescent flame-retardant PP systems. Acta Polymerica Sinica.2011,178:279-284.
    44. Lin, M., Li, B., Li, Q. F., Li, S., Zhang, S. Q. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. Journal of Applied Polymer Science.2011,121:1951-1960.
    45. Wang, X. L., Song, Y., Bao, J. C. Synergistic effects of nano-Mn0.4Zn0.6Fe2O4 on intumescent flame-retarded polypropylene. Journal of Vinyl & Additive Technology.2008,14: 120-125.
    46. Yang, D. D., Hu, Y., Song, L., Nie, S. B., He, S. Q., Cai, Y. B. Catalyzing carbonization function of a-ZrP based intumescent fire retardant polypropylene nanocomposites. Polymer Degradation and Stability.2008,93:2014-2018.
    47. Liu, X. Q., Wang, D. Y., Wang, X. L., Chen, L., Wang, Y. Z. Synthesis of organo-modified alpha-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polymer Degradation and Stability.2011,96:771-777.
    48. Shan, X. Y., Zhang, P., Song, L., Hu, Y., Lo, S. M. Compound of nickel phosphate with Ni(OH)(PO(4))(2-) layers and synergistic application with intumescent flame retardants in thermoplastic polyurethane elastomer. Industrial & Engineering Chemistry Research.2011,50: 7201-729-09.
    49. Nie, S. B., Hu, Y., Song, L., He, S. Q., Yang, D. D. Study on a novel and efficient flame retardant synergist-nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene. Polymer for Advanced Technologies.2008,19:489-495.
    50. Qiao, Z. H., Tai, Q. L., Song, L., Hu, Y., Lv, P., Jie, G. X., Huang, W., Fu, Y., Zhang, D. Q. Synergistic effects of cerium phosphate and intumescent flame retardant on EPDM/PP composites. Polymers for Advanced Technologies.2011,22:2602-2608.
    51. Qiao, Z. H., Yang, W., Song, L., Hu, Y., Kong, F. Q., Li, J., Yan, H. Z., Huang, W. Synergistic effects of cerium(IV) phosphate with intumescent flame retardant in styrene butadiene rubber. Plastics Rubber and Composites.2011,40:413-419.
    52. Zhang, P., Song, L., Lu, H. D., Hu, Y., Xing, W. Y., Ni, J. X., Wang, J. Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system. Polymer Degradation and Stability.2009, 94:201-207.
    53. Xie, F., Wang, Y. Z., Yang, B., Liu, Y. A Novel Intumescent flame-retardant polyethylene system. Macromolecular Materials and Engineering.2006,291:247-253.
    54. Wang, D. L., Liu, Y., Wang, D. Y., Zhao, C. X., Mou, Y. R., Wang, Y. Z. A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol. Polymer Degradation and Stability.2007,92:1555-1564.
    55. Song, P. A., Fang, Z. P., Tong, L. F., Jin, Y. M., Lu, F. Z. Effects of metal chelates on a novel oligomeric intumescent flame retardant system for polypropylene Journal of Analytical and Applied Pyrolysis.2008,82:286-291.
    56. Giraud, S., Bourbigot, S., Rochery, M., Vroman, I., Tighzert, L., Delobel, R. Microencapsulation of phosphate:application to flame retarded coated cotton. Polymer Degradation and Stability.2002,77:285-297.
    57. Girauda, S., Bourbigot, S., Rochery, M., Vroman, I., Tighzert, L., Delobel, R., Poutch, F. Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polymer Degradation and Stability.2005,88:106-113.
    58. Saihi, D., Vroman, I., Giraud, S., Bourbigot, S. Microencapsulation of ammonium phosphate with a polyurethane shell part Ⅰ:Coacervation technique. Reactive and Functional Polymers: 2005,64:127-138.
    59. Saihi, D., Vroman, I., Giraud, S., Bourbigot, S. Microencapsulation of ammonium phosphate with a polyurethane shell. Part Ⅱ. Interfacial polymerization technique. Reactive and Functional Polymers.2006,66:1118-1125.
    60. Takahashi, M., Taguchi, Y., Tanaka, M. Microencapsulation of hydrophilic solid powder as a fire retardant by the method of in situ gelation in droplets using a non-aqueous solvent as the continuous phase. Polymers & Polymer Composites.2009,17:83-90.
    61. Takahashi, M., Taguchi, Y., Tanaka, M. Microencapsulation of hydrophilic solid powder as a flame retardant with epoxy resin by using interfacial reaction method Polymers for Advanced Technologies.2010,21:224-228.
    62. Takahashi, T., Taguchi, Y., Tanaka, M. Microencapsulation of hydrophilic solid powder as fire retardant agent with epoxy resin by droplet coalescence method. Journal of Applied Polymer Science.2008,110:1671-1676.
    63. Wu, K., Wang, Z. Z., Liang, H. J. Microencapsulation of ammonium polyphosphate: Preparation, characterization, and its flame retardance in polypropylene. Polymer Composites. 2008,29:854-860.
    64. Wu, K., Song, L., Wang, Z. Z., Hu, Y. Microencapsulation of ammonium polyphosphate with PVA-melamine-formaldehyde resin and its flame retardance in polypropylene. Polymers for Advanced Technologies.2008,12:1914-1921.
    65. Wu, K., Song, L., Wang, Z. Z., Hu, Y., Kandare, E., Kandola, B. K. Preparation and characterization of core/Shell-like intumescent flame retardant and its application in polypropylene. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry.2009, 46:837-846.
    66. Ni, J. X., Tai, Q. L., Lu, H. D., Hu, Y., Song, L. Microencapsulated ammonium polyphosphate with polyurethane shell:preparation, characterization, and its flame retardance in polyurethane. Polymers for Advanced Technologies.2010,21:392-400.
    67. Ni, J. X., Chen, L. J., Zhao, K. M., Hu, Y., Song, L. Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites. Polymers for Advanced Technologies.2011,22:1824-1831.
    68. Gilman, J. W., Jackson, C. L., Morgan, A. B., Harris, R. Flammability properties of polymer-layered-silicate nanocomposites:polypropylene and polystyrene nanocomposites. Chemistry of Materials.2000,12:1866-1873.
    69. Kashiwagi, T., Harris, R. H., Zhang, X., Briber, R. M., Cipriano, B. H., Raghavan, S. R., Awad, W. H., Shields, J. R. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer. 2004,45:881-891.
    70. Manzi-Nshuti, C., Wilkie, C. A. Ferrocene and ferrocenium modified clays and their styrene and EVA composites. Polymer Degradation and Stability.2007,92:1803-1812.
    71. Kong, Q. H., Lv, R. B., Zhang, S. J. Flame retardant and the degradation mechanism of high impact polystyrene/Fe-montmorillonite nanocomposites. Journal of Polymer Research.2008, 15:453-458.
    72. Hao, X. Y., Gai, G. S., Liu, J. P., Yang, Y. F., Zhang, Y. H., Nan, C. W. Flame retardancy and antidripping effect of OMT/PA nanocomposites. Materials Chemistry and Physics.2006,96: 34-41.
    73. Li, S. M., Yuan, H., Yu, T., Yuan, W. Z., Ren, J. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polymers for Advanced Technologies.2009,20:1114-1120.
    74. Fang, K. Y., Li, J. A., Ke, C. H., Hu, Q. L., Tao, K., Zhu, J., Yan, Q. Intumescent flame retardation of melamine-modified montmorillonite on polyamide 6:enhancement of condense phase and flame retardance. Polymer Engineering and Science.2011,51:377-385.
    75. Chen, W., Qu, B. J. Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation. Chemistry of Materials.2003, 15:3208-3213.
    76. Zhang, G. B., Ding, P., Zhang, M., Qu, B. J. Synergistic effects of layered double hydroxide with hyperfine magnesium hydroxide in halogen-free flame retardant EVA/HFMH/LDH nanocomposites. Polymer Degradation and Stability.2007,92:1715-1720.
    77. Wang, Z. Y, Han, E. H., Ke, W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Progress in Organic Coatings.2005,53:29-31.
    78. Manzi-Nshuti C, Wang D Y, Hossenlopp J M, Wilkie C A. Aluminum-containing layered double hydroxides:the thermal, mechanical, and fire properties of (nano)composites of poly(methyl methacrylate). Journal of Materials Chemistry.2008,18:3091-3102.
    79. Xu, Z. P., Saha, S. K., Braterman, P. S., D'Souza, N. The effect of Zn, Al layered double hydroxide on thermal decomposition of poly(vinyl chloride). Polymer Degradation and Stability. 2006,91:3237-3244.
    80. Wang, D. Y, Leuteritz, A., Wang, Y Z., Wagenknecht, U., Heinrich, G. Preparation and burning behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation and Stability.2010,95:2474-2480.
    81. Guo, S. Z., Zhang, C., Peng, H. D., Wang, W. Z., Liu, T. X. Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization. Composites Science and Technology.2011,71:791-796.
    82. Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W, Douglas, J. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromolecular Rapid Communications.2002,23:761-765.
    83. Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Grotha, K., Harris, R., Butlera, K., Shields, J., Kharchenko, S., Douglas, J. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer.2004,45:4227-4239.
    84. Kashiwagi, T., Du, F. M., Douglas, J. F., Winey, K. I., Harris, R. H., Shields, J. R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials.2005,4: 928-933.
    85. Peeterbroeck, S., Laoutid, F., Taulemesse, J. M., Monteverde, T., Lopez-Cuesta, J. M., Nagy, J. B., Alexandre, M., Dubois, P. Mechanical properties and flame-retardant behavior of ethylene vinyl acetate/high-density polyethylene coated carbon nanotube nanocomposites. Advanced Functional Materials.2007,17:2787-2791.
    86. Ma, H. Y., Tong, L. F., Xu, Z. B., Fang, Z. P. Functionalizing carbon nanotubes by grafting on intumescent flame retardant:nanocomposite synthesis, morphology, rheology, and flammability. Advanced Functional Materials.2008,18:414-421.
    87. Bourbigot, S., Turf, T., Bellayer, S., Duquesne, S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polymer Degradation and Stability.2009,94: 1230-1237.
    88. Song, L., He, Q. L., Hu, Y., Chen, H., Liu, L. Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polymer Degradation and Stability.2008,93:627-639.
    89. Lu, H. D., Wilkie, C. A., Ding, M., Song, L. Thermal properties and flammability performance of poly (vinyl alcohol)/alpha-zirconium phosphate nanocomposites. Polymer Degradation and Stability.2011,96:885-891.
    90. Lu, H. D., Wilkie, C. A. The influence of alpha-zirconium phosphate on fire performance of EVA and PS composites. Polymers for Advanced Technologies.2011,22:1123-1130.
    91. Huang, G. B., Gao, J. R., Wang, X., Liang, H. D., Ge, C. H. How can graphene reduce the flammability of polymer nanocomposites? Materials Letters.2012,66:187-189.
    92. Guo, Y. Q., Bao, C. L., Song, L., Yuan, B. H., Hu, Y. In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Industrial & Engineering Chemistry Research.2011,50:7772-7783.
    93. Aufmuth, W., Levchik, S. V., Levchik, G. F., Klatt, M. Poly(butylene terephthalate) fire retarded by 1,4-diisobutylene-2,3,5,6-tetraxydroxy-1,4-diphosphine oxide. I. Combustion and thermal decomposition. Fire and Materials.1999,23:1-6.
    94. Levchik,. G. F., Grigoriev, Y. V., Balabanovich, A. I., Levchik, S. V., Klatt, M. Phosphorus-nitrogen containing fire retardants for poly(butylene terephthalate). Polymer International.2000,49:1095-1100.
    95. Levchik, S. V., Bright, D. A., Alessio, G. R., Dashevsky, S. Synergistic action between aryl phosphates and phenolic resin in PBT. Polymer Degradation and Stability.2002,77:267-272.
    96. Balabanovich, A. I., Engelmann, J. Fire retardant and charring effect of poly(sulfonyldiphenylene phenylphosphonate) in poly(butylene terephthalate). Polymer Degradation and Stability.2003,79:85-92.
    97. Balabanovich, A. I, Balabanovich, A. M., Engelmann, J. Intumescence in poly(butylene terephthalate):the effect of 2-methyl-1,2-oxaphospholan-5-one 2-oxide and ammonium polyphosphate. Polymer International.2003,52:1309-1314.
    98. Balabanovich, A. I. The effect of melamine on the combustion and thermal decomposition behaviour of poly(butylene terephthalate). Polymer Degradation and Stability.2004,84: 451-458.
    99. Gao, F., Tong, L. F., Fang, Z. P. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polymer Degradation and Stability.2006,91:1295-1299.
    100. Gallo, E., Braun, U., Schartel, B., Russo, P., Acierno, D. Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polymer Degradation and Stability.2009,94:1245-1253.
    101. Braun, U., Schartel, B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate). Macromolecular Materials and Engineering.2008,293:206-217.
    102. Asrar, J., Berger, P., Hurlbut, J. Synthesis and characterization of a fire-retardant polyester: copolymers of ethylene terephthalate and 2-carboxyethyl(phenylphosphinic) acid. Journal of Polymer Science, Part A:Polymer Chemistry.1999,37:3119-3128.
    103. Sato, M., Endo, S., Araki, Y, Matsuoka, G., Gyobu, S., Takeuchi, H. The flame-retardant polyester fiber:Improvement of hydrolysis resistance. Journal of Applied Polymer Science. 2000,78:1134-1138.
    104. Wang, L. S., Wang, X. L., Yan, G. L. Synthesis, characterisation and flame retardance behaviour of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide. Polymer Degradation and Stability.2000,69:127-130.
    105. Wang, D. Y, Wang, Y. Z., Wang, J. S., Chen, D. Q., Zhou, Q., Yang, B., Li, W. Y. Thermal oxidative degradation behaviours of flame-retardant copolyesters containing phosphorous linked pendent group/montmorillonite nanocomposites. Polymer Degradation and Stability. 2005,87:171-176.
    106. Wang, D. Y., Liu, X. Q., Wang, J. S., Wang, Y. Z., Stec, A. A., Hull, R. Preparation and characterisation of a novel fire retardant PET/a-zirconium phosphate nanocomposite. Polymer Degradation and Stability.2009,94:544-549.
    107. Ban, D. M., Wang, Y Z., Yang, B., Zhao, G. M. A novel non-dripping oligomeric flame retardant for polyethylene terephthalate. European Polymer Journal.2004,40:1909-1913.
    108. Wang, Y L., Wang, Y Z., Ban, D. M., Yang, B., Zhao, G. M. A novel phosphorus-containing polymer as a highly effective flame retardant. Macromolecular Materials and Engineering.2004, 289:703-707.
    109. Chen, D. Q., Wang, Y. Z., Hu, X. P., Wang, D. Y., Qu, M. H., Yang, B. Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polymer Degradation and Stability.2005,88:349-356.
    110. Deng, Y., Wang, Y. Z., Ban, D. M., Liu, X. H., Zhou, Q. Burning behavior and pyrolysis products of flame-retardant PET containing sulfur-containing aryl polyphosphonate. Journal of Analytical and Applied Pyrolysis.2006,76:198-202.
    111. Zhao, C. S., Huang, F. L., Xiong, W. C., Wang, Y. Z. A novel halogen-free flame retardant for glass-fiber-reinforced poly(ethylene terephthalate). Polymer Degradation and Stability.2008,93: 1188-1193.
    1. Levchik SV, Weil ED. Flame retardancy of thermoplastic polyesters-a review of the recent literature. Polymer International.2005,54:11-35.
    2. Levchik SV, Weil ED. A review on thermal decomposition and combustion of thermoplastic polyesters. Polymers for Advanced Technologies.2004,15:691-700.
    3. Chiu SH, Wang WK. Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer.1998,39:1951-1955.
    4. Bras ML, Bugajny M, Lefebvre JM, Bourbigot S. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polymer International.2000,49:1115-1124.
    5. Zhu WM, Weil ED, Mukhopadhyay S. Intumescent flame-retardant system of phosphates and 5,5,5',5',5",5"-hexamethyltris (1,3,2-dioxaphosphorinanemethan)amine 2,2',2"- trioxide for polyolefins. Journal of Applied Polymer Science.1996,62:2267-2280.
    6. Xie RC, Qu BJ. Expandable graphite systems for halogen-free flame-retarding of polyolefins. I. Flammability characterization and synergistic effect. Journal of Applied Polymer Science.2001,80: 1181-1189.
    7. Balabanovich Al, Balabanovich AM, Engelmann J. Intumescence in poly(butylene terephthalate): the effect of 2-methyl-1,2-oxaphospholan-5-one 2-oxide and ammonium polyphosphate. Polymer International.2003,52:1309-1314.
    8. Xiao JF, Hu Y, Yang L, Cai YB, Song L, Chen ZY, Fan WC. Fire retardant synergism between melamine and triphenyl phosphate in poly(butylene terephthalate). Polymer Degradation and Stability.2006,91:2093-2100.
    9. Wu K, Hu Y, Song L, Lu HD, Wang ZZ. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Industrial and Engineering Chemistry Research.2009,48:3150-3157.
    10. Arshady R. Preparation of microspheres and microcapsules by interfacial polycondensation techniques. Journal of Microencapsulation.1989,6:13-28.
    11. Arshady R. Microspheres and microcapsules, a survey of manufacturing techniques:Part III: Solvent evaporation. Polymer Engineering and Science.1990,30:915-924.
    12. Wu K, Song L, Wang ZZ, Hu Y. Microencapsulation of ammonium polyphosphate with PVA-melamine-formaldehyde resin and its flame retardance in polypropylene. Polymers for Advanced Technologies.2008,19:1914-1921.
    13. Chang SQ, Xie TX, Yang GS. Effects of interfacial modification on the thermal, mechanical, and fire properties of high-impact polystyrene/microencapsulated red phosphorous. Journal of Applied Polymer Science.2008,110:2139-2144.
    14. Ni JX, Tai QL, Lu HD, Hu Y, Song L. Microencapsulated ammonium polyphosphate with polyurethane shell:preparation, characterization, and its flame retardance in polyurethane. Polymers for Advanced Technologies.2010,21:392-400.
    15. Ni JX, Chen LJ, Zhao KM, Hu Y, Song L. Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites. Polymers for Advanced Technologies.2011,22:1824-1831.
    16. Ni JX, Song L, Hu Y, Zhang P, Xing WY. Preparation and characterization of microencapsulated ammonium polyphosphate with polyurethane shell by in situ polymerization and its flame retardance in polyurethane. Polymers for Advanced Technologies.2009,20:999-1005.
    17. Bugajny M, Bourbigot S. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polymer International.1999,48:264-270.
    18. Bras ML, Bourbigot S, Revel B. Comprehensive study of the degradation of an intumescent EVA-based material during combustion. Journal of Materials Science.1999,34:5777-5782.
    19. Zhu SW, Shi WF. Thermal degradation of a new flame retardant phosphate methacrylate polymer. Polymer Degradation and Stability.2003,80:217-222.
    20. Montaudo G, Puglisi C, Samperi F. Primary thermal degradation mechanisms of PET and PBT. Polymer Degradation and Stability.1993,42:13-28.
    21. Vijayakumar CT, Fink JK. Pyrolysis studies of aromatic polyesters. Thermochimica Acta.1982,59: 51-61.
    22. Gallo E, Braun U, Schartel B, Russo P, Acierno D. Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polymer Degradation and Stability.2009,94:1245-1253.
    23. Isitman NA, Gunduz HO, Kaynak C. Nanoclay synergy in flame retarded/glass fibre reinforced polyamide 6. Polymer Degradation and Stability.2009,94:2241-2250.
    24. Morgan AB. Flame retarded polymer layered silicate nanocomposites:a review of commercial and open literature systems. Polymers for Advanced Technologies.2006,17:206-217.
    25. Hu Y, Wang S, Ling Z, Zhuang Y, Chen ZY, Fan WC. Preparation and Combustion Properties of Flame Retardant Nylon 6/Montmorillonite Nanocomposite. Macromolecular Materials and Engineering.2003,288:272-276.
    26. Lewin M, Zhang J, Pearce E, Gilman J. Flammability of polyamide 6 using the sulfamate system and organo-layered silicate. Polymers for Advanced Technologies.2007,18:737-745.
    27. Zhang J, Lewin M, Pearce E, Zammarano M, Gilman JW. Flame retarding polyamide 6 with melamine cyanurate and layered silicates. Polymers for Advanced Technologies.2008,19: 928-936.
    28. Balabanovich AI. The effect of melamine on the combustion and thermal decomposition behaviour of poly(butylene terephthalate). Polymer Degradation and Stability.2004,84:451-458.
    29. Gilman JW, Harris RH, Shields JR, Kashiwagi T, Morgan AB. A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite:layered silicate reinforced carbonaceous char. Polymers for Advanced Technologies.2006,17:263-271.
    30. Sonobe N, Kyotani T, Tomita A. Carbonization of polyacrylonitrile in a two-dimensional space between montmorillonite lamellae. Carbon.1988,26:573-578.
    31. Tang Y, Lewin M. New aspects of migration and flame retardancy in polymer nanocomposites. Polymer Degradation and Stability.2008,93:1986-1995.
    32. Yokouchi M, Sakakibara Y, Chatani Y, Tadoboro H, Tanaka T, Yoda K. Structures of 2 crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules.1976,9:266-273.
    33. Li RKY, Tjong SC, Xie XL. The structure and physical properties of in situ composites based on semiflexible thermotropic liquid crystalline copolyesteramide and poly(butylene terephthalate). J. Polym. Sci. Part B:Polym. Phys.2000,38:403-414.
    34. Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer.2004,45:881-891.
    1. Levchik SV, Weil ED. Flame retardancy of thermoplastic polyesters-a review of the recent literature. Polymer International.2005,54:11-35.
    2. Levchik SV, Weil ED. A review on thermal decomposition and combustion of thermoplastic polyesters. Polymers for Advanced Technologies.2004,15:691-700.
    3. Klatt M, Heitz T, Gareiss B. Flame-proof thermoplastic moulding materials. U.S. Patent 6,306,941 (2001).
    4. Yanagimoto A, Kumazawa S, Takakuwa Y. Melamine cyanurate as flame retardant agent. U.S. Patent 4,180,496 (1979).
    5. Kasowski RV. Condensed melamine phosphates. U.S. Patent 6,268,494 (2001).
    6. Xiao JF, Hu Y, Yang L, Cai YB, Song L, Chen ZY, Fan WC. Fire retardant synergism between melamine and triphenyl phosphate in poly(butylene terephthalate). Polymer Degradation and Stability.2006,91:2093-2100.
    7.Gao F, Tong LF, Fang ZP. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polymer Degradation and Stability.2006,91:1295-1299.
    8. Levchik SV, Bright DA, Alessio, GR, Dashevsky S. Synergistic action between aryl phosphates and phenolic resin in PBT. Polymer Degradation and Stability.2002,77:267-272.
    9. Bornemann H, Sander W. Reactions of methyl(phenyl)silylene with CO and PH3-the formation of acid-base complexes. Journal of Organometallic Chemistry.2002,641:156-164.
    10. Bugajny M, Bourbigot S. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polymer International.1999,48:264-270.
    11. Bras ML, Bourbigot S, Revel B. Comprehensive study of the degradation of an intumescent EVA-based material during combustion. Journal of Materials Science.1999,34:5777-5782.
    12. Chen YH, Wang Q. Preparation, properties and characterizations of halogenfree nitrogen-phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polymer Degradation and Stability.2006,91:2003-2013.
    13. Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polymer Degradation and Stability.2006,91; 3103-3109.
    1. Gilman JW. Flammability and thermal stability studies of polymer layered silicate (clay) nanocomposites. Applied Clay Science.1999,15:31-49.
    2. Jang BN, Wilkie CA. The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites. Polymer.2005,46:3264-3274.
    3. Bornemann H, Sander W. Reactions of methyl(phenyl)silylene with CO and PH3-the formation of acid-base complexes. Journal of Organometallic Chemistry.2002,641:156-164.
    4. Lyon RE, Walters RN, Stoliarov SI. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering and Science.2007,47:1501-1510.
    5. Chen YH, Wang Q. Preparation, properties and characterizations of halogenfree nitrogen-phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polymer Degradation and Stability.2006,91:2003-2013.
    6. Wang ZY, Feng ZQ, Liu Y, Wang Q. Flame retarding glass fibers reinforced polyamide 6 by melamine polyphosphate/polyurethane-encapsulated solid acid. Journal of Applied Polymer Science. 2007,105:3317-3122.
    7. Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polymer Degradation and Stability.2006,91: 3103-3109.
    8. Tang Y, Lewin M. New aspects of migration and flame retardancy in polymer nanocomposites. Polymer Degradation and Stability.2008,93:1986-1995.
    9. Zhao ZF, Gou JH, Bietto S, Ibeh C, Hui D. Fire retardancy of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites. Composites Science and Technology.2009,69:2081-2087.
    10. Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer.2004,45:881-891.
    11. Isitman NA, Gunduz HO, Kaynak C. Nanoclay synergy in flame retarded/glass fibre reinforced polyamide 6. Polymer Degradation and Stability.2009,94:2241-2150.
    12. Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, Rafailovich MH. Compatibilizing bulk polymer blends by using organoclays. Macromolecules.2006,39:4793-4801.
    1. Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fiber-reinforced poly(1,4-butylene terephthalate). Macromolecular Materials and Engineering.2008,293:206-217.
    2. Costanzi S, Leonardi M. Polyester compositions flame retarded with halogen-free additives.2010, U.S. Patent 7,700,680.
    3. Seddon JA, Jackson ARW, Kresinski RA, Platt AWG. Complexes of the lanthanide metals (La-Nd, Sm-Lu) with hypophosphite and phosphite ligands:crystal structures of [Ce(H2PO2)3(H2O)], [Dy(H2PO2)3] and [Pr(H2PO2)(HPO3)(H2O)]H2O. Journal of the Chemical Society, Dalton Transactions.1999,13:2189-2196.
    4. Noisong P, Danvirutai C, Srithanratana T, Boonchom B. Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Science.2008,10:1598-1604.
    5. Yoshida Y, Inoue K, Kyritsakas N, Kurmoo M. Syntheses, structures and magnetic properties of zig-zag chains of transition metals. Inorganica Chimica Acta.2009,362:1428.
    6. Bornemann H, Sander W. Reactions of methyl(phenyl)silylene with CO and PH3-the formation of acid-base complexes. Journal of Organometallic Chemistry.2002,641:156-164.
    7. Chen YH, Wang Q. Preparation, properties and characterizations of halogenfree nitrogen-phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polymer Degradation and Stability.2006,91:2003-2013.
    8. Wang ZY, Feng ZQ, Liu Y, Wang Q. Flame retarding glass fibers reinforced polyamide 6 by melamine polyphosphate/polyurethane-encapsulated solid acid. Journal of Applied Polymer Science. 2007,105:3317-3122.
    9. Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polymer Degradation and Stability.2006,91: 3103-3109.
    10.过梅丽.世界先进的动态机械热分析仪(DMTA)及其应用.现代科学仪器.1996,1:55-58.
    11.吕明哲,李普旺,黄茂芳,高天明.用动态机械热分析仪分析橡胶的低温动态力学性能.中国测试技术.2007,33:27-29.
    12. Lyon RE, Walters RN, Stoliarov SI. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering and Science.2007,47:1501-1510.
    1. Chen YH, Wang Q. Preparation, properties and characterizations of halogenfree nitrogen-phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polymer Degradation and Stability.2006,91:2003-2013.
    2. Wang ZY, Feng ZQ, Liu Y, Wang Q. Flame retarding glass fibers reinforced polyamide 6 by melamine polyphosphate/polyurethane-encapsulated solid acid. Journal of Applied Polymer Science. 2007,105:3317-3122.
    3. Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polymer Degradation and Stability.2006,91: 3103-3109.
    4. Seddon JA, Jackson ARW, Kresinski RA, Platt AWG. Complexes of the lanthanide metals (La-Nd, Sm-Lu) with hypophosphite and phosphite ligands:crystal structures of [Ce(H2PO2)3(H2O)], [Dy(H2PO2)3] and [Pr(H2PO2)(HPO3)(H2O)]H2O. Journal of the Chemical Society, Dalton Transactions.1999,13:2189-2196.
    5. Lyon RE, Walters RN, Stoliarov SI. Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering and Science.2007,47:1501-1510.
    6. Bornemann H, Sander W. Reactions of methyl(phenyl)silylene with CO and PH3-the formation of acid-base complexes. Journal of Organometallic Chemistry.2002,641:156-164.
    7. Braun U, Schartel B. Effect of red phosphorus and melamine polyphosphate on the fire behavior of HIPS. Journal of Fire Science.2005,23:5-30.
    8. Bounekhel B, McNeill IC. Thermal degradation studies of terephthalate polyesters:2. Poly(ether-esters). Polymer Degradation and Stability.1995,49:347-352.
    9. Buxbaum LH. The degradation of poly(ethylene terephthalate). Angewandte Chemie International Edition.1968,7:182-190.
    10. Pohl HA. The thermal degradation of polyesters. Journal of the American Chemical Society.1951, 73:5660-5661.
    11. Adams R. Pyrolysis mass spectrometry of terephthalate polyesters using negative ionization. Journal of Polymer Science, Part A:Polymer Chemistry.1982,20:119-129.
    12. Braun U, Schartel B, Fichera MA, Jager C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polymer Degradation and Stability.2007,92:1528-1545.
    13. Stoch L, Sroda M. Infrared spectroscopy in the investigation of oxide glasses structure. Journal of Molecular Structure.1999,511-512:77-84.
    14. Bugajny M, Bourbigot S. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam. Polymer International.1999,48:264-270.
    15. Nyquist RA. Infrared spectra of organo-phosphorus compounds:new correlations. Applied Spectroscopy.1957,11:161-164.
    16. Hsiue GH, Shiao SJ, Wei HF, Kuo WJ, Sha YA. Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications. Journal of Applied Polymer Science.2001,79:342-349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700