不同结合系统铝镁浇注料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先采用刚玉、电熔镁砂、α-氧化铝微粉、镁铝尖晶石等为原料,分别以纯铝酸钙水泥、硅微粉、ρ-氧化铝微粉、铝凝胶粉为结合剂制成铝镁浇注料,对比四种结合剂所制得浇注料的物理性能,以及对攀钢转炉钒钛渣和武钢转炉渣与铝镁浇注料抗渣性之间的关系进行研究。
     结果表明,四种结合系统中,铝凝胶粉结合铝镁浇注料具有优良的体积稳定性、较高的耐压强度和合适的高中低温强度比。不论是攀钢钒钛渣还是武钢渣,凝胶结合和ρ-氧化铝微粉结合浇注料抗渣性能都较好,其次是硅微粉结合的浇注料,水泥结合浇注料抗渣性能最差。试样的显微结构分析显示,铝凝胶粉结合和ρ-Al_2O_3微粉结合浇注料渣蚀后蚀变层中多形成MA、CA2、CA6等高熔点相和C2AS低熔点相,它们互相交错分布。相比之下,武钢渣侵蚀后的铝凝胶粉结合和ρ-Al_2O_3浇注料试样中形成的高熔点相数量多,而且结合相对致密。
     铝镁浇注料具有优异的抗渣性能和良好的抗热震性,其中镁铝尖晶石组分起着十分重要的作用。镁质结合剂主要由MgO、SiO_2组成,中位粒径小于10μm,。采用镁质结合剂取代上述结合剂,细小的MgO与Al_2O_3高温下原位反应生成的镁铝尖晶石,活性高,分布均匀,因此,铝镁浇注料抗渣性能和抗热震性更加优越。同时,由于镁质结合剂具有双峰结构,所以,可以防止镁铝尖晶石的生成速度过大引起的快速膨胀导致浇注料结构破坏。实验结果表明,镁质结合剂结合铝镁浇注料具有与ρ-Al_2O_3或铝凝胶粉同样的“自结合”的效果,不但强度大,而且抗渣性能好,特别是热震稳定性高。但是,镁质结合剂的加入量过高或过低,铝镁浇注料的性能都会降低。
     对比了分别以白刚玉、板状刚玉、棕刚玉为骨料、镁质结合剂结合的铝镁浇注料物理性能及其对攀钢钒钛渣的抗渣性,结果显示,三种刚玉骨料的铝镁浇注料,强度较高,抗渣性能良好,白刚玉、板状刚玉骨料的铝镁浇注料高温烧后线变化率为微膨胀,棕刚玉骨料的铝镁浇注料高温烧后收缩较大,白刚玉骨料的铝镁浇注料热震稳定性较板状刚玉、棕刚玉骨料的强。
     比较了镁质结合剂、铝凝胶粉、镁铝尖晶石微粉及镁质结合剂与凝胶粉复合结合剂制成的铝镁浇注料性能,其中镁铝尖晶石微粉及镁质结合剂与铝凝胶粉复合结合剂制成的铝镁浇注料性能不具优势,镁质结合剂的铝镁浇注料尽管常温抗折强度和耐压强度不及铝凝胶粉结合剂的铝镁浇注料,但是,中温、高温烧后强度大,抗热震性和抗渣性优于铝凝胶粉结合剂的铝镁浇注料。
In this artical, corundum, fused magnesia,α-alumina powder and Magnesia-Alumina spinel were used as raw material. And pure calcium alumina cement, silica powder,ρ-alumina powder and Alumina-gel powder were used as different bonder agents. On the basis, the physical properties of castable using different conjugation agent were compared, and the relationships between bonder agent and slag resistance of alumina-magnesia castable, the slags refer converter vanadium-titanium slag and converter slag.
     The results show that alumina-magnesia castable bonded by Alumina-gel powder have excellent volume stability, higher cold compressive strength and suitable strength ratio in high, medium and low temperature. And either the vanadium-titanium slag from PANZHIHUA IRON & STEEL (GROUP) CO. or the slag from WUHAN IRON & STEEL (GROUP) CO., the slag resistance of alumina-magnesia castable that combined with gel orρ-alumina powder is better, the second is bonded with silica powder, the worst is the castable combined with cement. The analysis of sample microstructure exhibit that high and low melting point phase were formed which staggered distribution of each other in the slag corrosion layer of the castable bonded by Alumina-gel powder orρ-alumina powder, such as MA, CA2, CA6 and C2AS etc. In contrast, the number of high melting point phase is more in the castable samples combined with Alumina-gel powder orρ-alumina powder eroded by the slag from WUHAN IRON & STEEL (GROUP) CO., and has a relatively dense combination.
     Alumina-magnesia castable has excellent slag resistance and good thermal shock resistance, and mgnesia-alumina spinel plays a very important role as one of the components. Magnesia binder was the median particle size under 10μm and mainly composed of MgO and SiO_2. In the paper, magnesia binder was used instead of above mentioned to get more excellent slag resistance and thermal shock resistance for mgnesia-alumina spinel got in situ reaction by MgO and Al_2O_3 in high temperature. At the same time, for the bimodal particle size distribution of the magnesia binder, the rapid expansion of castable lead to structural damage caused by generate excessive speed was prevented. The results show that the magnesia combined castable have the same combined effect as bonded by Alumina-gel powder orρ-alumina powder, not only has great strength, but also has good slag resistance, and special the high thermal shock resistance. But the addition of magnesia binder is too much or too little, the performance of aluminum-magnesium casting material will be reduced.
     Compared the physical properties and the slag resistance to slag from PANZHIHUA IRON & STEEL (GROUP) CO. of the Alumina-magnesia castable combined by magnesia, and in the castable, white corundum, tabular alumina, or corundum were used for the aggregate respectively. The results show that the three different castable all have high strength, and good slag resistance. The line rate of change after high temperature of the castable made by white corundum or tabular aluminafiring has micro swell, while the castable made by corundum has greater contraction. Thermal shock resistance of alumina-magnesia castable made by white corundum is the best.
     The performances of castable combined by magnesite-alumina spinel powder or magnesia and Alumina-gel powder composite binder did not have advantages compared the other binders. Although the breaking strength and compressive strength at room temperature of the alumina-magnesia castable combined by magnesia is lower than the castable combined by Alumina-gel powder, the strength after sintering in medium and high temperature is greater, slag resistance and thermal shock resistance was better than that.
引文
[1]上海耐火材料厂技术组.上海地区连续铸钢用耐火材料的概况[J].耐火材料,1973,2.
    [2]上海一厂,上耐一厂衬砖联合实验小组.不烧膨胀性钢包衬砖实验[J].耐火材料,1978,3.
    [3]黄万章.扇形钢包衬砖[J].耐火材料,1978,3.
    [4]姚金甫,田守信.钢包粘渣与包衬耐火材料[J].耐火材料,2003,37(2):108~110.
    [5]李晓明,陈瑞金.高纯铝镁浇注料的研究[J].陶瓷工程,2000,34 (1):7~9.
    [6]顾华志,马金光.硅微粉对铝镁系浇注料相组成及性能的影响.耐火材料,1998,32(4):189~191.
    [7]姚金甫.国内外钢包的粘渣及其对策[J].钢铁,2002,37(2):66~69.
    [8]廖桂华,徐国辉.基质组成对铝镁质浇注料性能的影响[J].耐火材料,2003,37(4):217-220.
    [9]张文杰,汪厚植.结合剂对铝镁浇注料烧后膨胀行为的影响[J].耐火材料,1999,33(4):196~198.
    [10]顾华志,汪厚植.连铸钢包用高纯铝镁系浇注料的性能与损毁[J].钢铁研究,2002,(2 ):6~8.
    [11]陈路兵.炼钢系统用耐火材料的发展[J].华北地区连铸会议论文集,2000,25.
    [12]李晓明.微粉与新型耐火材料[M].北京:冶金工业出版社,1997.
    [13]王海川.铁水预处理脱硅对脱磷影响的实验研究[J].钢铁,2000,16(5):43~46.
    [14]卢一国译. FeO对SiC原料及不定形耐火材料的高温氧化作用[J].国外耐火材料,1995,20(5):18~22.
    [15] Junichiron Metal. Dveleopment of alumina-magnesia castable for steel ladle Proceedings of UNITECR’95[J]. Kyoto,Japan.1995:19~22.
    [16]马翔弘,刘玉英译.烧结过程中原生尖晶石的形成(膨胀与收缩) [J].国外耐火材料,1998,23(8):24~27.
    [17]崔学正译.铝镁质浇注料在钢包侧壁上的应用[J].国外耐火材料,1997, 22(10):21~24.
    [18]吴秋玲译.日本钢包用优质浇注料内衬[J].国外耐火材料,1998,23 (6):3~8.
    [19]韩行禄.不定形耐火材料[M].北京:冶金工业出版社,2004.
    [20]唐赣.ρ-Al2O3微粉在高纯铝镁浇注料中的应用[J].江西冶金,2003,23 (3):17~19.
    [21] Mun-Kyu Cho, Gi-Gonong, Seok-Keun Lee, et al.Corrosion of spinel clinker by CaO-A12O3-SiO2 ladle slag[J].Journal of the European CeramicSociety , 2002, 22:1783~1790.
    [22] Nagai,B, Matsumoto.O, Isoe.T, et al. Wear mechanism of castable for Steel ladle by slag[J]. Taikabutsu,1990,42(8):15~20.
    [23] Konayashi.M, Kataoka.K, Sakamoto.Y, et al.Improvement of alumina-magnesia castable for steel ladle wall[J]. Taikabutsu, 1997,49(2):74~80.
    [24] Takano.I, Shikano, Furusato.I.Takita I, et al.Effect of spinel raw material on corrosion resistance for steel ladle catable[J]. Taikabutsu,1991,43 (4):187~192.
    [25] Nagasoe.A, Tsurumoto.S, Kitamura.A.Refractory char-acteristics of spinels with various MgO contents[J].Taikabutsu, 1991,43(l):2~10.
    [26] Lee.W.E, Zhang.S. Melt corrosion of oxide and oxide-caron refractories[J]. International Materials eviews,1999,44 (3):77~104.
    [27] Chan.C.F, Ko.Y.C. Efect of CaO content on the hot strength of alumina-spinel Castales in the temperature range of 1000~1500℃[ J]. Am.Ceram.Soc,1998,81 (11):2957~2960.
    [28] Korgul.P, Wilson.D.R, Lee.W.E. Microstructure alanalysis of corroded alumina-spinel castable refractories[J]. Eur.Ceram.Soc., 1997,17:77~84.
    [29] Phillips.B, Somiya.S, Muan.A . Melting relations of magnesium oxide-iron oxide Mixtures in air[J]. Am.Ceram.Soc., 1961,44(5):169.
    [30] Sandhage.K, Yurek.G.J. Direct and indirect dis-solution of sapphire in calcia- magnesia-alumina-silicamelts, dissolutionkinetics[J]. Am.Ceram.Soc.,1990, 73(12):3633~3642.
    [31] S.Kienow,Refractory materials[J]. Inter ceram, 1979, 28:3~4.
    [32]陶新霞,钢包用铝-尖晶石浇注料的研制[J],耐火材料,1994,(6):315~318.
    [33]Y.Takakura, T.Yamamura, Y.Hamazaki, et al. Thermal characterstics of alumina-magnesia castable[J]. Taikabutsu,1996 (48):488~489.
    [34] JISRefractories. The Technical Association To Refractories[J]. Japan,1997, 372~385.
    [35] Y.H.Ko, Y.C.Ko. Simulated service test of torpedo ladle brick[J]. Am.Ceram.Soc. 1983,11 (62):1010~1012.
    [36] C.F.Chan, Y.C.Ko. Efect of CaO content on the hot strength of alumina-spinel Castables in the temperature range of 1000 to 1500℃[ J]. EurCeramSoc, 1998 (81):2957~2960.
    [37] Y.C.Ko, C.F.Chan. Efect of spinel content on hot strength of alumina-spinel castables in the temperature range of 1000 to 1500℃[ J]. Eur.Ceram.Soc, 1999(19):2633~2639.
    [38]洛耐院.刚玉及刚玉-尖晶石浇注料实验报告[J]. 1994,5-47.
    [39]李友胜.骨料对Al2O3-尖晶石钢包浇注料性能的影响[J].耐火材料,1998,4.
    [40]雷中兴.骨料对铝镁质浇注料性能的影响[J].耐火材料,2000,4.
    [41]新民译.铝尖晶石和铝镁浇注料块在钢包衬上的应用[J].国外耐火材料, 2003,28(5):11~14.
    [42]纪玉玲.添加氧化镁或尖晶石对氧化铝系浇注料的影响[J].国外耐火材料,1995(8):51-53.
    [43]马新旺.大型连铸钢包用铝镁浇注料的开发与应用[J].耐火材料,1998,1.
    [44]永进敏,张利华.钢包用浇注料的损毁机理[J].国外耐火材料,1991,16(6):22-26.
    [45]赵惠忠,钢包渣线浇注料基质组成及其抗渣性[J].耐火材料,1998,5.
    [46]今饭田.铝-镁不定形技术在钢包侧壁上的应用[J].国外耐火材料,1997,4.
    [47]徐庆斌.日本铸钢钢包现状[J].国外耐火材料,2000,25(2):3-9.
    [48]崔学正.铝-镁质浇注料在钢包侧壁上的应用[J].国外耐火材料,1997,22(10):21-24.
    [49]城野腾文.スピネル化反应アルミナ粒度ヮ.影响[J].耐火物,1996,1.
    [50]赵惠忠.活性氧化铝微粉对RH浸渍管浇注料性能的影[J].耐火材料,2003,4
    [51]庞善洋.铝镁质浇注料在高温作业钢包中的应用[J].国外耐火材料,1996,21(2):39-42.
    [52]周宁生,张三华,崔天虹,等.矾土基高铝-尖晶石质钢包浇注料的特性研究[J].耐火材料,1996,30(4):207-211.
    [53]顾华志,汪厚植,张文杰,等.矾土-尖晶石浇注料相平衡与材料组成及性能的关系[J].耐火材料,1998,32(1):21-24.
    [54]胡书禾,周宁生,张三华. AlON对Al2O3–MgO钢包浇注料抗渣性的影响[J].耐火材料,2003,37(5):249-255.
    [55]王庆贤.氧化铝水泥品种及添加剂对配乳酸铝的铝镁浇注料性能的影响[J].国外耐火材料, 1998,23(3):57-61.
    [56]李存弼.铝-尖晶石浇注料基质矿物组成的变化[J].国外耐火材料,1997,7.
    [57]川崎钢铁公司水岛厂.钢包用不定型耐火材料技术的进步[J].国外耐火材料,1999,1.
    [58]雷中兴.硅微粉对铝-尖晶石浇注料的影响[J].国外耐火材料,2000(1).
    [59]浅野贞,吴运光.钢包用刚玉尖晶石质浇注料抗渣蚀机理[J].国外耐火材料,1992,17(2):11-16.
    [60]崔学正译.尖晶石砂的组成对铝尖晶石浇注料诸特性的影响[J].国外耐火材料, 1993,18(5):61~65.
    [61]贺智勇,洪彦若,李林,等.氧化锆对刚玉-尖晶石浇注料热震稳定性的影响[J].耐火材料,2004,38(2):73-75.
    [62]森淳一郎.(日)公开特许公报(A)平4-160068.
    [63]山村隆.钢包用尖晶石质浇注料的开发[J].国外耐火材料,1991,5.
    [64]宋元伟.水泥加入量对氧化铝-尖晶石质自流浇注料强度的影响[J].耐火材料,1998,5.
    [65]新民译.铝尖晶石和铝镁浇注料块在钢包衬上的应用[J].国外耐火材料,2003,28(5):11-14.
    [66]田守信.水泥含量对高纯铝尖晶石自流浇注料性能的影响[J].耐火材料,2003,5.
    [67]吴秋玲.日本钢包用优质浇注料内衬[J].国外耐火材料,1998,23(6):3-8.
    [68]梁新裕.盛钢桶耐火材料技术的进步[J].国外耐火材料,1998,23(2):3-7.
    [69]韩行禄.不定形耐火材料[M].北京:冶金工业出版社.1994.
    [70]李晓明,黄德信. Si微粉的低温结合机理[J].耐火材料,1994,28(2):83~86.
    [71]李再耕,贺金舟.低水泥、超低水泥和无水泥耐火浇注料的凝结硬化机理[J].耐火材料,1991,25(2):67~71.
    [72]韩行禄.不定形耐火材料[M].北京:冶金工业出版社,2003.
    [73]吴秋玲.无水泥Al2O3-MgO浇注料的渣蚀机理[J].国外耐火材料,1998,23(5):38-43.
    [74]赵玉喜,于燕文.水合氧化铝结合剂对无水泥高铝耐火浇注料蠕变性能的影响[J].国外耐火材料,1999,24(3):48-53.
    [75]王黔平.无水泥浇注料性能的改进[J].国外耐火材料,1998,23(3):27-29.
    [76]王思维,曹枫.溶胶一凝胶结合浇注料的实验室研究[J].安徽工业大学学报,2006,23(1):9-11.
    [77]旁家贵,黄荣臻.催化裂化装置衬里技术的现状和展望[J].石油化工设备技术,2006,27(4):7-8.
    [78]吕春燕,汪厚植,顾华志,等.硅铝凝胶粉结合SiAlON增强A12O3-SiC-C浇注料[J].耐火材料,2005,39(3):188-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700