IL-4/STAT6、HIPK2对IgA肾病人腭扁桃体低糖基化IgA1表达的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     IgA肾病是世界范围内最常见的原发性肾小球疾病,大约20%的患者在20年内会进展至终末期肾功能衰竭,是导致尿毒症最常见原因,然而其发病机制尚不明确。IgA肾病以IgAl/低糖基化IgA1沉积于肾小球系膜区及毛细血管袢为病理特征,以血尿蛋白尿、高血压及肾功能损害为主要临床表现。IgAl与IgA2的主要区别点在与IgAl存在铰链区。在IgAl铰链区,β1,3半乳糖转移酶(C1GALT1)在其特异性分子伴侣COSMC的辅助下,通过UDP-半乳糖载体将半乳糖转移至IgA1的β1,3位乙酰半乳糖胺残基上,完成IgA1的糖基化修饰。近年的研究证实低糖基化IgA1是IgA肾病的关键致病因子。IgA肾病外周血B淋巴细胞β1,3半乳糖转移酶及分子伴侣活性COSMC明显下降,并且与IgAl病理损伤严重程度呈正相关,但是其活性下降的具体机制尚未阐明。
     有学者认为外界环境因素的刺激,而非基因遗传因素,导致IgA肾病IgA1铰链区异常糖基化。脂多糖能抑制C1GALT1及COSMC活性;体外实验证实Th2细胞因子IL-4能下调C1GALT1及COSMC的表达,影响IgAl铰链区糖基化;IL-4及其下游转录因子STAT6,能够调节Th2细胞分化,促进炎症反应的发生。然而目前尚未有研究涉及IL-4/STAT6信号通路与IgA肾病IgA1及其糖基化之间的关系。
     同源异型结构域相互作用蛋白激酶-2(homeodomain-interactiing protein kinase-2HIPK2)是丝/苏氨酸激酶,包括HIPK1、HIPK2与HIPK3。HIPK2通过相互作用蛋白对靶点进行磷酸化修饰,调控相关蛋白酶的活性及基因转录表达。有学者在对IL-4刺激STAT6-/-与STAT6+/+小鼠B细胞基因表达研究中,发现HIPK2表达尤为活跃,提示HIPK2在IL-4(JAK/STAT6)信号通路中具有重要作用。在IL-4诱导JAK/STAT6信号通路中,HIPK2表达明显升高,提示HIPK2可能参与IL-4介导JAK/STAT6信号通路中相关蛋白酶的磷酸化修饰及转录表达调控。已证实,IL-4介导C1GALT1的活性及分子伴侣COSMC表达调控,这让我们思考,HIPK2是否通过调控C1GALT1的活性及分子伴侣COSMC表达,参与IL-4(JAK/STAT6)信号通路介导IgA肾病腭扁桃体淋巴细胞低糖基化IgA1形成的作用机制。
     我们知道IgA肾病患者在黏膜组织,特别是上呼吸道和肠道黏膜感染后常出现阵发性肉眼血尿。许多回顾性或前瞻性临床对照研究证实:IgA肾病患者摘除腭扁桃体后尿检正常率、肾功能稳定率和肾脏生存率均高于对照组;循环中lgA水平明显下降。目前很多学者认为IgA肾病的发生与黏膜组织对外来抗原免疫应答紊乱有关。我们前期的研究证实,革兰氏阳性菌的代表甲型溶血性链球菌是慢性扁桃体炎最常见的致病菌,而脂多糖是革兰氏阴性菌细胞壁的主要抗原成分,本课题中我们采用灭活的甲型溶血性链球菌和脂多糖作为干预手段,模拟扁桃体感染,观察腭扁桃体单个核细胞IL-4/STAT6、HIPK2表达的变化,分析其与IgA1及其糖基化之间的关系(学术思想见下图),为IgA肾病的防治提供新的理论依据和治疗靶点。
     第一章IL-4/STAT6、HIPK2、C1GALT1及COSMC在腭扁桃体中的表达及其与IgA1糖基化的相关性研究
     目的:检测腭扁桃体IL-4、STAT6、HIPK2、(31,3半乳糖苷转移酶(C1GALT1)及分子伴侣COSMC的表达,分析IL-4/STAT6、HIPK2与IgA1及其铰链区糖基化之间的关系。
     方法:收集经临床和肾脏病理确诊为IgA肾病患者腭扁桃体22例做为观察组(IgAN组),慢性扁桃体炎非肾炎患者腭扁桃体24例作为对照组(CT组)。免疫组织化学检测腭扁桃体组织IL-4、STAT6、HIPK2的表达水平;免疫荧光检测C1GALT1及COSMC;密度梯度离心法分离腭扁桃体单个核细胞,采用RT-PCR和Western blot技术分别检测IL-4、STAT6、HIPK2、C1GALT1及COSMC mRNA和蛋白表达;ELISA检测培养液上清中IgA1含量,蚕豆凝集素(VVL)亲和ELISA法测定VVL与IgA1结合力,间接检测IgA1铰链区糖基化水平。
     结果:
     1.免疫组化结果显示与CT组比较,IgAN组IL-4/STAT6、 HIPK2在网状上皮及淋巴小结生发中心分布明显增加;免疫荧光提示IgAN组C1GALT1及COSMC在腭扁桃体组织中表达较CT组减少;
     2.RT-PCR及Western blot结果均提示IgAN组IL-4/STAT6、 HIPK2表达较CT组明显升高,C1GALT1、COSMC表达较CT组下降;
     3.IgAN组腭扁桃体单个核细胞培养上清IgA1含量较CT组明显升高;VVL-ELISA结果提示IgAN组IgA1与蚕豆凝集素结合力明显高于CT组,说明IgAN组腭扁桃体单个核细胞分泌的IgA1存在明显的低糖基化;
     4.相关性分析提示IgAN腭扁桃体单个核细胞HIPK2mRN表达与eGFR呈负相关,与蛋白尿、IgA1及VVL-ELISA OD值呈正相关。
     结论:IL-4/STAT6信号通路在IgAN患者腭扁桃体中处于激活状态;HIPK2在IgAN腭扁桃体单个核细胞中高表达,HIPK2与IgAN主要临床指标、IgA1及其糖基化水平关系密切,提示HIPK2是IgAN的重要致病因子。
     第二章脂多糖、甲型溶血性链球菌对腭扁桃体Th1.Th2及Th1/Th2的影响
     目的:研究IgAN腭扁桃体Th1/Th2极化是否存在异常;观察脂多糖、甲型溶血性链球菌刺激对腭扁桃体Th1、Th2及Th1/Th2的影响。
     方法:将IgAN和CT患者腭扁桃体单个核细胞各分成三组,第一组为空白对照组;第二组加入脂多糖LPS(浓度为10ug/ml);第三组加入灭活的甲型溶血性链球菌HS(浓度为1×108cfu/ml).培养72小时后加入PMA/Ionomycin mixture及BFA/Monensin mixture作为淋巴细胞刺激剂孵育6小时,CD3+CD8-设门,流式细胞术检测IL-4、IFN-γ含量,Thl为CD3+/CD8-/IFN-γ+细胞,Th2为CD3+/CD8-/IL-4+细胞。
     结果:
     1.IgAN组Th1:5.73±2.14%;Th2:1.24±0.55%;Th1/Th2:4.62±2.12。C组Th1:4.71±1.98%;Th2:0.37±O.22%;Th1/Th2:12.73±5.78。
     2.LPS刺激后IgAN组Thl:13.30±4.15%;Th2:1.20±0.78; Th1/Th2:11.08±4.33。CT组Th1:7.39±3.78%;Th2:0.58±0.33%; Th1/Th2:12.74±5.01.
     3.予以HS刺激后IgAN组Th1:7.03±3.14%;Th2:8.11±3.98%Th1/Th2:0.87±0.25。CT组Th1:3.52±2.55%;Th2:0.77±0.41%; Th1/Th2:4.57±1.92.
     4.采用Pearson相关分析及直线回归,发现IgAN组Th1/Th2匕值与蛋白尿呈负相关,r=-0.785。
     结论:IgAN腭扁桃体中Th2细胞免疫占优势地位,并且与蛋白尿等临床指标的严重程度呈正相关;LPS、HS能促使Th1/Th2极化失衡,其中LPS促进Thl分化为主,HS促进Th2分化更明显。
     第三章白介素-4、脂多糖、甲型溶血性链球菌对腭扁桃体单个核细胞STAT6、HIPK2、C1GALT1/COSMC、IgAl及其糖基化的影响
     目的:采用IL-4、LPS、HS作为干预刺激,探讨IL-4/STAT6信号通路、HIPK2与低糖基化IgA1表达的关系。
     方法:腭扁桃体单个核细胞培养体系中,分别加入用IL-4(浓度为10ng/ml)、LPS (终浓度为10ug/ml)、灭活的HS(浓度为1×108cfu/ml)刺激72小时,RT-PCR, Western blot技术,分别测定STAT6、HIPK2、C1GALT1、COSMC mRNA和蛋白表达,ELISA技术测定培养液上清中IgA1及其糖基化水平的变化。
     结果:
     1.IL-4、LPS、HS均能上调IgAN组STAT6、HIPK2mRNA和蛋白表达,IL-4、HS较LPS上调作用更为明显;同时IL-4、LPS、HS均能下调C1GALT1及COSMC mRNA和蛋白表达,HS较IL-4、LPS下调作用更明显。
     2.CT组在接受IL-4、LPS、HS刺激后,STAT6、HIPK2mRNA和蛋白表达上调,但升高程度较IgAN组低;C1GALT1、COSMC mRNA和蛋白表达较空白对照组无明显变化。
     3.IgAN组及CT组腭扁桃体单个核细胞IgA1分泌较空白对照组明显增加,其中IL-4、HS较LPS刺激单个核细胞分泌IgA1效果更为明显;蚕豆凝集素亲和ELISA测定IgA1半乳糖基水平,IgAN刺激组较空白对照组VVL-ELISAOD值明显增加,HS刺激对OD值影响较IL-4、LPS大;IL-4、LPS、HS刺激后,CT组VVL-ELISA检测所得OD值无明显变化。
     结论:IL-4、LPS、HS能激活IgA肾病腭扁桃体IL-4/STAT6信号通路,促进HIPK2表达,从而下调C1GALT1/COSMC活性,导致IgA1分泌增多,IgA1糖基化水平下降。
     第四章沉默HIPK2基因对IgAl及其糖基化的影响
     目的:HIPK2在IgA肾病腭扁桃体中高表达,且与低糖基化IgAl分泌关系密切。我们拟采用HIPK2-siRNA沉默HIPK2基因表达,观察其对腭扁桃体细胞IgAl及糖基化的影响。
     方法:分离腭扁桃体单个核细胞,转染HIPK2-siRNA, Annexin V-FITC法检测转染后细胞凋亡率;RT-PCR、Western blot分别检测HIPK2-siRNA转染后,C1GALT1及COSMC mRNA和蛋白表达;ELISA测定培养液上清中IgAl及其糖基化水平的变化。
     结果:
     1.HIPK2-siRNA转染单个核细胞后24小时,流式细胞术测得早期凋亡率百分比为(13.801±4.371)%,晚期凋亡率为(10.204±3.441)%;细胞凋亡率较对空白照组明显升高。
     2.转染HIPK2-siRNA后,IgAN组C1GALT1、COSMC mRNA和蛋白水平明显升高,CT组C1GALT1、COSMC mRNA和蛋白表达无明显变化
     3.转染72小时后检测腭扁桃体单个核细胞培养上清中IgA1及其糖基化水平:IgAN组腭扁桃体单个核细胞IgA1分泌较空白对照组明显减少;CT组IgA1含量无明显变化;VVL-ELISA测定IgA1糖基化水平,IgAN转染组较空白对照组OD值明显降低,CT组转染后OD值无明显变化。
     结论:IgA肾病腭扁桃体单个核细胞HIPK2基因沉默后,C1GALT1及COSMC表达增多,IgAl分泌减少,铰链区糖基化水平增高,提示HIPK2是IgA肾病异常糖基化IgA1表达的关键致病因子,沉默HIPK2基因可以减少低糖基化IgA1的产生。
Background:
     IgA nephropathy (IgAN) is recognized as the most common immune complex related to the cause of glomerulonephritis worldwide. Approximately20%of patients progress to end-stage renal disease within20years. However, the pathogenesis and mechanisms of IgAN remain to be elucidated. The disease is characterized by the predominant deposition of IgA1in the mesangial area of glomeruli. IgAl differs from IgA2, particularly at the hinge region; IgA1contains an extended polyproline peptide bearing multiple serine and threonine residues and distinctive O-glycans. Considerable evidence has revealed that abnormalities of IgA1O-glycosylation may be one of the key pathogeneses of IgAN over the past10years. The IgAl O-glycans are based on a core N-acetyl galactosamine (GalNAc) usually extended with galactose (Gal) under the effect of a j31,3Gal transferase (C1GALT1) working with its chaperone Cosmc (core I β3-Gal-T-specific molecular chaperone). β1,3-galacto-syltransferase (β1,3GT) synthesis activity was remarkably lower in peripheral B lymphocyte of IgAN patients when compared with that of controls, and the Cosmc mRNA expression level in IgAN patients was significantly decreased and correlated with IgA glycosylation abnormality degree as well as clinical manifestations. Yet, no study has been carried out to clarify the underlying basis of the expression suppression.
     Although the pathogenesis of this disease is unclear, some researchers suggested that it might not be genetic disorders but external suppression that causes the low COSMC and C1GALT1C1mRNA expression in IgAN. LPS could significantly inhibit COSMC and C1GALT1C1expression. Recent work using a surface IgA1-positive human B lymphoma cell line has shown that the T-helper2cytokine interleukin-4may play a key role in controlling O-glycosylation of the IgAl hinge region. Interleukin-4stimulation significantly decreased the mRNA levels of both and Cosmc. In parallel, C1GALT1C1activity was reduced and the synthesized IgAl O-glycoforms were poorly galactosylated. Moreover, IgAN patients with severe renal dysfunction are more likely to hyperproduce Th2cytokine and synthesize more IL-4compared to patients with mild disease. These findings suggest that Th2polarity in systemic immune response may induce dysregulation of systemic tolerance, followed by glomerular IgA deposition and injury. The T cell-derived cytokines IL-4specifically activate STAT6, which plays important roles in Th2differentiation and inflammation. Yet, no study has been carried out to clarify the underlying relationship between the expression suppression of C1GALT1and COSMC with IL-4/STAT6signaling in IgA nephropathy.
     More recently, high-throughput sequencing of chromatin immunoprecipitated DNA has identified genes bound by STAT6. One study compared genes bound by STAT6in wild-type and Stat6-/-Th2cells and found that some of the STAT6-bound regions coincided with various permissive epigenetic marks, and the corresponding genes include IL-4and home-odomain-interacting protein kinase2(HIPK2). IL-4induced STAT6-dependent expression of a selection of genes identified by GeneChip analysis, including HIPK2was confirmed by Northern blot. STAT6deficiency clearly inhibited the IL-4-induced up-regulation of HIPK2which is most likely a primary target gene of STAT6. HIPK2is a nuclear serine-threonine kinase participating in transcriptional regulation and growth control.While O-glycans of IgAl are synthesized in a step-wise manner, beginning with attachment of GalNAc to Ser or Thr catalyzed by a member of the UDP-GalNAc-transferase enzyme family. We hypothesized and experimentally validated that HIPK2, a previously unrecognized kinase in the context of IgA nephropathy, contributes to increased synthesis of aberrantly galactosylated IgAl.
     We know that many IgAN patients show episodic macrohematuria, which coincides with mucosal infection especially in the upper respiratory tract or gastrointestinal tract. Two groups have reported tonsillectomy to be an effective treatment in retrospective and prospective studies. The results of immunization studies in IgAN patients support the notion that mucosal immunization with neoantigen results in impaired mucosal and systemic IgA responses but normal IgG and IgM responses. There is a growing body of evidence to suggest that impaired mucosal IgA response may result in impaired elimination of mucosal antigens. In our previous study, we identified that a-hemolytic streptococcus (HS) was the most common Gram-positive bacteria isolated from tonsils of patients with IgAN or chronic tonsillitis. Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria, so we used both HS and LPS to stimulate the tonsil mononuclear cells (TMCs) to imitate mucosal infection in IgAN.
     Chapter I. The expression of IL-4/STAT6, HIPK2, C1GALT1, COSMC and its relationship with IgAl secretion and O-Glycosylation in tonsil from patients with IgA nephropathy
     Obejective:To detect the expression levels of IL-4, STAT6, C1GALT1C1, COSMC, HIPK2in tonsil components and mononuclear cells, and analyze the correlation between IL-4/STAT6pathway and HIPK2with aberrantly glycosylated IgA1in IgA nephropathy.
     Methods:Tonsillar tissue specimens were obtained from22patients with IgA nephropathy (IgAN) who had been diagnosed based on immunofluorescent and light microscopic findings from percutaneous renal biopsy. The tonsils from24patients with chronic tonsillitis (CT) lacking renal diseases, were used as controls. Immunofluorescence and immunohistochemical stains were performed to detect the expression of IL-4, STAT6, HIPK2, C1GALT1C1, COSMC in tonsil components; Mononuclear cells were separated by density-gradient centrifugation using Lymphocyte Separation Medium, and the expression of IL-4, STAT6, C1GALT1C1, Cosmc, HIPK2in tonsil mononuclear cells (TMCs) were tested by RT-PCR and Western-blot. IgAl content in the supernatant was measured in duplicate using ELISA. The levels of IgAl O-glycosylation were determined by Vicia villosa (VV) lectin-binding assay.
     Results:
     1. The expression of IL-4, STAT6and HIPK2were significantly higher compared to CT group. They localized in all tonsil components (including germinal center and tonsillar crypt epithelium) of IgAN patients, but the expression of C1GALT1and COSMC decreased significantly in patients with IgAN in comparison with those of CT.
     2. The mRNA and protein amount of IL-4, STAT6and HIPK2in the tonsil derived from IgAN patients was significantly higher than that of CT patients. While the expression of C1GALT1and COSMC decreased significantly in patients with IgAN
     3. The concentration of IgA1in supernatants from cells cultured was higher than control cells. The OD value of VV lectin binding ELISA was significantly higher than that of CT patients.
     4. The level of HIPK2mRNA expression significantly negatively correlated with renal function as expressed by eGFR, and also significantly positively correlated with daily proteinuria, IgAl concentration and its VVL-binding ELISA OD value.
     Conclusion:IL-4/STAT6signaling pathway and HIPK2was highly activated in IgAN group; the baseline levels of O-glycosylation of patients with IgAN were significantly lower than CT group. It seems that HIPK2plays a key role in in IgAl secretion and O-Glycosylation.
     Chapter Ⅱ. Effects of LPS and HS stimulation on TH1, TH2and TH1/TH2ratio in tonsillar lymphocyte
     Objective:To detect Th1/Th2polarization in palatine tonsil of IgA nephropathy; observe the effects of LPS and HS stimulation on TH1, TH2and TH1/TH2ratio in tonsillar lymphocyte
     Methods:Tonsillar lymphocyte were cultured with or without LPS (lOug/ml) or HS (1*108/ml) for72hours. PMA/Ionomycin mixture and BFA/Monensin mixture were added as lymphocyte stimulating agent before Flow cytometry test.The determination of CD4+cells was inferred by differential gatering in a flow cytometer, considering CD3+CD8-T cells. Cell populations were defined as follows, TH1: CD3-positive, CD8-negative, IFN-y-positive and IL-4-negative; TH2: CD3-positive, CD8-negative, IFN-y-negative and IL-4-positive.
     Results:
     1. Flow cytometry analyses showed percentage of TH1population in IgAN group vs CT group were5.73±2.14%vs4.71±1.98%without stimulation,1.24±0.55%vs0.37±0.22%, in the TH2population. The mean±SD Th1:Th2ratio for the IgAN group without situmlation was4.62±2.12, and in CT group was12.73±5.78.
     2. Percentage of TH1population in IgAN group vs. CT group were13.30±4.15%vs7.39±3.78%after LPS stimulation,1.20±0.78%vs0.58±0.33%, in the TH2population. The mean±SD values for LPS stimulation group were11.08±4.33vs12.74±5.01. The value in CT group was significantly higher than that in IgAN group without or with stimulation.
     3. Percentage of TH1population in IgAN group vs CT group were7.03±3.14%vs3.52±2.55%after HS stimulation,8.11±3.98%vs0.77±0.41%, in the TH2population. The mean±SD values for HS stimulation group in IgAN group vs CT group were0.87±0.25vs4.57±1.92.
     4. The values of the Th1:Th2ratio varied widely among the patients in IgAN group, and we selected those patients who had undergone proteinuria. The Th1:Th2ratio significantly negatively correlated with proteinuria.
     Conclusion:The value of Thl/Th2in CT group was significantly higher than that in IgAN group without or with stimulation. We hypothesized that a polarization toward TH2response at the stimulated lymphocyte level may lead to immune abnormalities in IgAN. THO cells are differentially mobilized during contact sensitization and by adjuvants such as LPS that induce T helper typel (Th1) responses, or HS that induces T helper type2(Th2) responses.
     Chapter Ⅲ. Effects of IL-4, LPS and HS on STAT6, HIPK2, C1GALT1and COSMC expression, IgAl secretion and O-Glycosylation
     Objective:To detect the Effects of IL-4, LPS and HS on IL-4/STAT6, HIPK2, C1GALT1and COSMC expression, IgAl secretion and O-Glycosylation.
     Methods:Tonsillar lymphocyte were cultured with or without10ng/mL of recombinant human IL-4or HS (1*108/ml) or LPS (10ug/ml) for72hours. The expression of STAT6, HIPK2, C1GALT1and COSMC were examined by RT-PCR and Western blot. IgAl content in the supernatant was measured in duplicate using ELISA. The levels of IgA1O-glycosylation were determined by Vicia villosa (VV) lectin-binding assay
     Results:
     1. The levels of mRNA and protein encoding IL-4, STAT6and HIPK2in cells coincubated with IL-4, LPS, HS were significantly higher than that in control without stimulation after72h in IgAN group. Whereas the levels of mRNA and protein encoding C1GALT1and COSMC was significantly lower compared to that without stimulation in IgAN group. The C1GALT1and COSMC mRNA and protein expression from cells cultured with HS was significantly lower than cells cultured with IL-4or LPS in IgAN group (P<0.05). Moreover, the C1GALT1and COSMC expression of TMCs in IgAN patients after stimulation was significantly lower than that in CT patients.
     2. The levels of mRNA and protein encoding IL-4, STAT6and HIPK2in cells coincubated with IL-4, LPS, HS were significantly higher than that in control in CT group. While no significantly difference could be seen in C1GALT1and COSMC expression of CT group among different stimulations compared to control group.
     3. The IgAl production of TMCs stimulated with IL-4, LPS or HS was significantly higher compared to that without stimulation in both groups. Mean IgAl levels of supernatants were remarkable higher after IL-4or HS stimulation compared with cells cultured with LPS. As expected, VV lectin binding to IgAl derived from cells stimulated by HS, IL-4and LPS was significantly higher than that from unstimulated cells in IgAN group. No significant increase in lectin binding was observed for IgA stimulated with IL-4, LPS or HS relative to the unstimulated cultures in CT group.
     Conclusion:IL-4/STAT6signaling pathway in tonsil of IgA nephropathy can be activated by IL-4, LPS and HS, which can together promoting the production of HIPK2, and downregulation the expression of C1GALT1and COSMC. All the above lead to the production of Under-O-glycosylation IgAl
     Chapter IV. The effect of silencing HIPK2gene expression in IgAl secretion and O-Glycosylation
     Objective:HIPK2was highly activated in tonsil of IgAN group, and it has a close relationship with IgAl secretion and O-Glycosylation. In this chapter, we silenced the gene expression of HIPK2to observe the influence in IgAl secretion and O-Glycosylation by HIPK2-siRNA.
     Methods:To assess the percentage of apoptotic and viable cell fractions after transfection of HIPK2siRNA, a human Annexin V-FITC/PI staining kit was used. The expression of C1GALT1C1and COSMC in tonsil mononuclear cells (TMCs) were tested by RT-PCR and Western-blot. IgAl content and the levels of O-glycosylation in the supernatant were measured in duplicate using ELISA.
     Results:
     1. We detected the apoptosis of mononuclear cells after24hours since transfection of HIPK2siRNA. The early stage of apoptosis is (13.801±4.371)%, while the late stage of apoptosis is (10.204±3.441)%. The apoptosis of mononuclear cells increased after HIPK2-siRNA transfection.
     2. Our results showed that the expression of C1GALT1and COSMC protein and mRNA was increased significantly in IgAN-HIPK2siRNA-treated group.While in CT group the expression of C1GALT1and COSMC protein and mRNA remains stable after transfection of HIPK2siRNA.
     3. IgAl protein detected by ELISA decreased after HIPK2-siRNA transfection, while in CT group, IgAl level maintain stable. In IgAN-HIPK2siRNA-treated group, VV lectin binding to IgAl was significantly lower than that from normal controls. While in CT group the OD level of VV lectin binding ELISA remains stable.
     Conclusion:HIPK2-siRNA negatively regulates IL-4/STAT6pathway-induced IgA secretion. Importantly, HIPK2-siRNA attenuates the aberrant glycosylation of IgAl secretion. Thus, these results suggest that HIPK2is indispensable for IgA production and may play a key role in IgA glycosylation.
引文
[1]Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW:Signaling throughthe JAK/STAT pathway, recent advances and future challenges. Gene 2002,285(1-2):1-24.
    [2]Shuai K, Liu B:Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003,3(11):900-911.
    [3]Gonzalez-Alvaro I, Ortiz AM, Dominguez-Jimenez C, Aragon-Bodi A, Diaz Sanchez B, Sanchez-Madrid F:Inhibition of tumour necrosis factor and IL-17 production by leflunomide involves the JAK/STAT pathway. Ann Rheum Dis 2009,68(10):1644-1650.
    [4]O'Neill LA:Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov 2006,5(7):549-563.
    [5]Ouyang W, Lohning M, Gao Z, Assenmacher M, Ranganath S, Radbruch A, Murphy KM:Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000,12(1):27-37.
    [6]Lee HJ, Takemoto N, Kurata H, Kamogawa Y, Miyatake S, O'Garra A, Arai N: GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 2000,192(1):105-115.
    [7]Jiang H, Harris MB, Rothman P:IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 2000,105(6 Pt 1):1063-1070.
    [8]Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE:The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 1999, 17:701-738.
    [9]Wurster AL, Tanaka T, Grusby MJ:The biology of Stat4 and Stat6. Oncogene 2000,19(21):2577-2584.
    [10]Valentijn RM, Radl J, Haaijman JJ, Vermeer BJ, Weening JJ, Kauffmann RH, Daha MR, van Es LA:Circulating and mesangial secretory component-binding IgA-1 in primary IgA nephropathy. Kidney Int 1984,26(5):760-766.
    [11]Valentijn RM, Kauffmann RH, de la Riviere GB, Daha MR, Van EL:Presence of circulating macromolecular IgA in patients with hematuria due to primary IgA nephropathy. Am J Med 1983,74(3):375-381.
    [12]Chintalacharuvu SR, Emancipator SN:The glycosylation of IgA produced by murine B cells is altered by Th2 cytokines. J Immunol 1997,159(5):2327-2333.
    [13]Yamada K, Kobayashi N, Ikeda T, Suzuki Y, Tsuge T, Horikoshi S, Emancipator SN, Tomino Y:Down-regulation of core 1 betal,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 2010,25(12):3890-3897.
    [14]Schroder AJ, Pavlidis P, Arimura A, Capece D, Rothman PB:Cutting edge: STAT6 serves as a positive and negative regulator of gene expression in IL-4-stimulated B lymphocytes. J Immunol 2002,168(3):996-1000.
    [15]Jin Y, Ratnam K, Chuang PY, Fan Y, Zhong Y, Dai Y, Mazloom AR, Chen EY, D'Agati V, Xiong H et al: A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med 2012,18(4):580-588.
    [16]Liu H, Peng Y, Liu Y, Yuan S, Liu F, Yang D, Chen X, He L, Fu M, Shao J et al: Renal biopsy findings of patients presenting with isolated hematuria:disease associations. Am J Nephrol 2012,36(4):377-385.
    [17]Allen AC, Topham PS, Harper SJ, Feehally J:Leucocyte beta 1,3 galactosyltransferase activity in IgA nephropathy. Nephrol Dial Transplant 1997,12(4):701-706.
    [18]Novak J, Tomana M, Kilian M, Coward L, Kulhavy R, Barnes S, Mestecky J: Heterogeneity of O-glycosylation in the hinge region of human IgAl. Mol Immunol 2000,37(17):1047-1056.
    [19]Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA:The glycosylation and structure of human serum IgAl, Fab, and Fc regions and the role of N-glycosylation on Fc alpha receptor interactions. J Biol Chem 1998,273(4):2260-2272.
    [20]Allen AC, Bailey EM, Brenchley PE, Buck KS, Barratt J, Feehally J: Mesangial IgAl in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int 2001,60(3):969-973.
    [21]Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, Shinzato T, Kobayashi Y, Maeda K:Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int 2001,59(3):1077-1085.
    [22]Inoue T, Sugiyama H, Kikumoto Y, Fukuoka N, Maeshima Y, Hattori H, Fukushima K, Nishizaki K, Hiki Y, Makino H:Downregulation of the betal,3-galactosyltransferase gene in tonsillar B lymphocytes and aberrant lectin bindings to tonsillar IgA as a pathogenesis of IgA nephropathy. Contrib Nephrol 2007,157:120-124.
    [23]Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG et al: The pathophysiology of IgA nephropathy. JAm Soc Nephrol 2011,22(10):1795-1803.
    [24]Chatila TA:Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol Med 2004,10(10):493-499.
    [25]Jaruga B, Hong F, Sun R, Radaeva S, Gao B:Crucial role of IL-4/STAT6 in T cell-mediated hepatitis:up-regulating eotaxins and IL-5 and recruiting leukocytes. J Immunol 2003,171(6):3233-3244.
    [26]Shirakawa I, Deichmann KA, Izuhara I, Mao I, Adra CN, Hopkin JM:Atopy and asthma:genetic variants of IL-4 and IL-13 signalling. Immunol Today 2000,21(2):60-64.
    [27]王桂兰,鲁继荣,张翠梅,骆国青:IL-4RA基因转染对哮喘模型气道STAT6的干预作用.中国免疫学杂志 2008,24(8):744-747.
    [28]Calzado MA, Renner F, Roscic A, Schmitz ML:HIPK2:a versatile switchboard regulating the transcription machinery and cell death. Cell Cycle 200756(2):139-143.
    [29]D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G et al: Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 2002,4(1):11-19.
    [30]Lee W, Swarup S, Chen J, Ishitani T, Verheyen EM:Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of beta-catenin/Arm and stimulation of target gene expression. Development 2009, 136(2):241-251.
    [31]Lee W, Andrews BC, Faust M, Walldorf U, Verheyen EM:Hipk is an essential protein that promotes Notch signal transduction in the Drosophila eye by inhibition of the global co-repressor Groucho. Dev Biol 2009,325(1):263-272.
    [32]Zhang J, Pho V, Bonasera SJ, Holtzman J, Tang AT, Hellmuth J, Tang S, Janak PH, Tecott LH, Huang EJ:Essential function of HIPK2 in TGFbeta-dependent survival of midbrain dopamine neurons. Nat Neurosci 2007,10(1):77-86.
    [33]Wills-Karp M:Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 1999,17:255-281.
    [34]Aoki Y, Tsuneki I, Sasaki M, Watanabe M, Sato T, Aida H, Tanaka K:Analysis of TH1 and TH2 cells by intracellular cytokine detection with flow cytometry in patients with ovarian cancer. Gynecol Obstet Invest 2000,50(3):207-211.
    [35]Neurath MF, Finotto S, Glimcher LH:The role of Thl/Th2 polarization in mucosal immunity. Nat Med 2002,8(6):567-573.
    [36]Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR et al: Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med 2001,193(11):1247-1260.
    [37]Matsuoka K, Inoue N, Sato T, Okamoto S, Hisamatsu T, Kishi Y, Sakuraba A, Hitotsumatsu O, Ogata H, Koganei K et al: T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Thl mediated immunopathology in Crohn's disease. Gut 2004,53(9):1303-1308.
    [38]刘建华,何威逊:儿童原发性肾病综合征与Th1/Th2细胞失衡.中华肾脏病杂志 2002,18(2):100-102.
    [39]Tsuruga K, Oki E, Aizawa-Yashiro T, Yoshida H, Imaizumi T, Tanaka H: Potential Th1Th2 predominance in children with newly diagnosed IgA nephropathy. Acta Paediatr 2010,99(10):1584-1586.
    [40]Ebihara I, Hirayama K, Yamamoto S, Muro K, Yamagata K, Koyama A:Th2 predominance at the single-cell level in patients with IgA nephropathy. Nephrol Dial Transplant 2001,16(9):1783-1789.
    [41]李坚梅,谭融通,黄莉:Th1/Th2平衡关系与IgA肾病临床、病理表现的相关性分析.内科2012,7(3):216-220.
    [42]Lim CS, Zheng S, Kim YS, Ahn C, Han JS, Kim S, Lee JS, Chae DW, Koo JR, Chun RW et al: Thl/Th2 predominance and proinflammatory cytokines determine the clinicopathological severity of IgA nephropathy. Nephrol Dial Transplant 2001,16(2):269-275.
    [43]Pitcher C, Honing S, Fingerhut A, Bowers K, Marsh M:Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding require activation of the CD4 endocytosis signal by serine phosphorylation. Mol Biol Cell 1999,10(3):677-691.
    [44]Kelly K, Shortman K, Scollay R:The surface phenotype of activated T lymphocytes. Immunol Cell Biol 1988,66 (Pt 4):297-306.
    [45]Maloy KJ, Powrie F:Regulatory T cells in the control of immune pathology. Nat Immunol 2001,2(9)-.816-822.
    [46]Podolsky DK:Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair:the best offense is a good defense. Am J Physiol 1999,277(3 Pt1):G495-499.
    [47]Blumberg RS, Saubermann LJ, Strober W:Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol 1999, 11(6):648-656.
    [48]Weiner HL:Oral tolerance:immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 2001,3(11):947-954.
    [49]Akbari O, DeKruyff RH, Umetsu DT:Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001,2(8):725-731.
    [50]Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M:Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp Med 2000,192(3):405-412.
    [51]Fuss IJ, Marth T, Neurath MF, Pearlstein GR, Jain A, Strober W:Anti-interleukin 12 treatment regulates apoptosis of Thl T cells in experimental colitis in mice. Gastroenterology 1999,117(5):1078-1088.
    [52]Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL: Lipopolysaccharide-activated B cells down-regulate Thl immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 2001, 167(2):1081-1089.
    [53]Redecke V, Hacker H, Datta SK, Fermin A, Pitha PM, Broide DH, Raz E: Cutting edge:activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004,172(5):2739-2743.
    [54]连莉,徐建华,王芬,徐胜前,刘爽,陈珊宇:类风湿关节炎患者外周血Th0/Th1/Th2细胞亚群失衡的研究.中国药物与临床2006,6(11):818-821.
    [55]王勇,连莉,徐建华:系统性红斑狼疮患者、和细胞水平检测.安徽医科大学学报 2006,41(3):321-323.
    [56]Egido J:Chemokines, chemokine receptors and renal disease. Kidney Int 1999, 56(1):347-348.
    [57]唐梅,董吉祥,冯萍:IgA肾病患者的Th细胞亚群紊乱及其意义.江苏医药2005,31(5):332-334.
    [58]Suzuki H, Suzuki Y, Aizawa M, Yamanaka T, Kihara M, Pang H, Horikoshi S, Tomino Y:Thl polarization in murine IgA nephropathy directed by bone marrow-derived cells. Kidney Int 2007,72(3):319-327.
    [59]Masutani K, Miyake K, Nakashima H, Hirano T, Kubo M, Hirakawa M, Tsuruya K, Fukuda K, Kanai H, Otsuka T et al: Impact of interferon-gamma and interleukin-4 gene polymorphisms on development and progression of IgA nephropathy in Japanese patients. Am J Kidney Dis 2003,41(2):371-379.
    [60]Siwiec J, Zaborowski T, Jankowska O, Wojas-Krawczyk K, Krawczyk P, Milanowski J:[Evaluation of Th1/Th2 lymphocyte balance and lipopolysaccharide receptor expression in asthma patients]. Pneumonol Alergol Pol 2009,77(2):123-130.
    [61]Sen D, Forrest L, Kepler TB, Parker I, Cahalan MD:Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Thl-and Th2-polarizing adjuvants. Proc Natl Acad Sci USA 2010,107(18):8334-8339.
    [62]McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, Freeman GJ, Umetsu DT, DeKruyff RH:Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2001,2(12):1109-1116.
    [63]Asnagli H, Murphy KM:Stability and commitment in T helper cell development. Curr Opin Immunol 2001,13(2):242-247.
    [64]Ho IC, Hodge MR, Rooney JW, Glimcher LH:The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 1996, 85(7):973-983.
    [65]Kurata H, Lee HJ, O'Garra A, Arai N:Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Thl cells. Immunity 1999, 11(6):677-688.
    [66]Ranger AM, Hodge MR, Gravallese EM, Oukka M, Davidson L, Alt FW, de la Brousse FC, Hoey T, Grusby M, Glimcher LH:Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 1998,8(1):125-134.
    [67]Lee GR, Fields PE, Flavell RA:Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 2001, 14(4):447-459.
    [68]黄红东,彭佑铭,刘虹,杨新明,刘伏友:扁桃体灭活菌株对IgA肾病扁桃体CD4+CD25+细胞和J链产生的影响.肾脏病与透析肾移植杂志 2007,16(3):215-300.
    [69]Suzuki Y, Tomino Y:The mucosa-bone-marrow axis in IgA nephropathy. Contrib Nephrol 2007,157:70-79.
    [70]Wu G, Peng YM, Liu FY, Xu D, Liu C:The role of memory B cell in tonsil and peripheral blood in the clinical progression of IgA nephropathy. Hum Immunol 2013.
    [71]Nicholls KM, Fairley KF, Dowling JP, Kincaid-Smith P:The clinical course of mesangial IgA associated nephropathy in adults. Q J Med 1984,53(210):227-250.
    [72]Feehally J, Beattie TJ, Brenchley PE, Coupes BM, Mallick NP, Postlethwaite RJ:Sequential study of the IgA system in relapsing IgA nephropathy. Kidney Int 1986,30(6):924-931.
    [73]Liu H, Peng Y, Liu F, Xiao W, Zhang Y, Li W:Expression of IgA class switching gene in tonsillar mononuclear cells in patients with IgA nephropathy. Inflamm Res 2011,60(9):869-878.
    [74]Xie LS, Qin W, Fan JM, Huang J, Xie XS, Li Z:The role of C1GALT1C1 in lipopolysaccharide-induced IgA1 aberrant O-glycosylation in IgA nephropathy. Clin Invest Med 2010,33(1):E5-13.
    [75]Qin W, Zhong X, Fan JM, Zhang YJ, Liu XR, Ma XY:External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dial Transplant 2008,23(5):1608-1614.
    [76]Horie A, Hiki Y, Odani H, Yasuda Y, Takahashi M, Kato M, Iwase H, Kobayashi Y, Nakashima I, Maeda K:IgAl molecules produced by tonsillar lymphocytes are under-O-glycosylated in IgA nephropathy. Am J Kidney Dis 2003,42(3):486-496.
    [77]Hiki Y, Horie A, Yasuda Y, Iwase H, Sugiyama S:IgA nephropathy and tonsils--an approach from the structure of IgAl produced by tonsillar lymphocytes. Acta Otolaryngol Suppl 2004(555):28-31.
    [78]Shiraishi S, Tomoda K, Matsumoto A, Kyomoto R, Yamashita T:Investigation of the local provocation test to PPP and IgA nephritis. Acta Otolaryngol Suppl 1996,523:178-181.
    [79]Yamabe H, Osawa H, Inuma H, Kaizuka M, Tamura N, Tsunoda S, Fujita Y, Shirato K, Onodera K:Deterioration of urinary findings after tonsil stimulation in patients with IgA nephropathy. Acta Otolaryngol Suppl 1996,523:169-171.
    [80]涂曦文,刘虹,彭佑铭,杨新明,刘伏友:IgA肾病及非肾炎患者腭扁桃体摘 除前后尿和血清IgA1水平比较.中华肾脏病杂志2010,26(5):384-385.
    [81]黄红东,刘虹,彭佑铭,杨新明,刘伏友:.IgA肾病患者扁桃体摘除术后突发血尿明显加重2例.医学临床研究 2006,11(23):1858-1859.
    [82]Huang H, Peng Y, Liu H, Yang X, Liu F:Decreased CD4+CD25+cells and increased dimeric IgA-producing cells in tonsils in IgA nephropathy. JNephrol 2010,23(2):202-209.
    [83]刘虹,彭佑铭,刘伏友,肖薇薇,李卫卫,张俞,刘洋:IgA肾病患者腭扁桃体单个核细胞IgA类别转换基因表达变化.中华肾脏病杂志 2012,28(2):83-88.
    [84]Tang Y, Peng Y, Yang S, Liu H, Wu G, Liu F:Effect of tonsillar mononuclear cell supernatants in patients with IgA nephropathy on renal tubular epithelial cells. Inflamm Res 2013,62(1):45-52.
    [85]Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, Sun LD, Sim KS, Li Y, Foo JN et al: A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 2012,44(2):178-182.
    [86]Benson M, Strannegard IL, Wennergren G, Strannegard O:Increase of the soluble IL-4 receptor (IL-4sR) and positive correlation between IL-4sR and IgE in nasal fluids from school children with allergic rhinitis. Allergy Asthma Proc 2000,21(2):89-95.
    [87]Fitch PS, Brown V, Schock BC, Ennis M, Shields MD:Interleukin-4 and interleukin-4 soluble receptor alpha levels in bronchoalveolar lavage from children with asthma. Ann Allergy Asthma Immunol 2003,90(4):429-433.
    [88]芦怡舟,刘志红,陈朝红,郑春霞,张明超,黎磊石:肾小管上皮细胞白细胞介素13和白细胞介素4受体的表达及其在肾小管损伤中的作用.肾脏病与透析肾移植杂志 2009,18(1):27-34.
    [89]Dauphinee SM, Karsan A:Lipopolysaccharide signaling in endothelial cells. Lab Invest 2006,86(1):9-22.
    [90]Li GS, Nie GJ, Zhang H, Lv JC, Shen Y, Wang HY:Do the mutations of C1GALT1C1 gene play important roles in the genetic susceptibility to Chinese IgA nephropathy? BMC Med Genet 2009,10:101.
    [91]Loganathan A, Arumainathan UD, Raman R:Comparative study of bacteriology in recurrent tonsillitis among children and adults. Singapore Med J 2006,47(4):271-275.
    [92]Suzuki S, Nakatomi Y, Sato H, Tsukada H, Arakawa M:Haemophilus parainfluenzae antigen and antibody in renal biopsy samples and serum of patients with IgA nephropathy. Lancet 1994,343(8888):12-16.
    [93]刘莎,彭佑铭,刘虹,黄红东,许向青,刘伏友:IgA肾病与慢性扁桃体炎患者腭扁桃体病理形态学对比研究.中华肾脏病杂志 2007,23(11):705-707.
    [94]Endo Y:IgA nephropathy--human disease and animal model. Ren Fail 1997, 19(3):347-371.
    [95]Pestka JJ:Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal immune response with systemic repercussions. Toxicol Lett 2003,140-141:287-295.
    [96]Li S, Ouyang YL, Dong W, Pestka JJ:Superinduction of IL-2 gene expression by vomitoxin (deoxynivalenol) involves increased mRNA stability. Toxicol Appl Pharmacol 1997,147(2):331-342.
    [97]Forsell JH, Witt MF, Tai JH, Jensen R, Pestka JJ:Effects of 8-week exposure of the B6C3F1 mouse to dietary deoxynivalenol (vomitoxin) and zearalenone. Food Chem Toxicol 1986,24(3):213-219.
    [98]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC:Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998,391(6669):806-811.
    [99]Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y:Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 1998,273(40):25875-25879.
    [100]Pierantoni GM, Bulfone A, Pentimalli F, Fedele M, Iuliano R, Santoro M, Chiariotti L, Ballabio A, Fusco A:The homeodomain-interacting protein kinase 2 gene is expressed late in embryogenesis and preferentially in retina, muscle, and neural tissues. Biochem Biophys Res Commun 2002,290(3):942-947.
    [101]Puca R, Nardinocchi L, Givol D, D'Orazi G:Regulation of p53 activity by HIPK2:molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 2010,29(31):4378-4387.
    [102]Nardinocchi L, Puca R, Givol D, D'Orazi G:Counteracting MDM2-induced HIPK2 downregulation restores HIPK2/p53 apoptotic signaling in cancer cells. FEBS Lett 2010,584(19):4253-4258.
    [103]任勇亚,杜丽坚:HIPK2对肝癌细胞HepG2生物学表型的调控机制研究. 军事医学科学院院刊2008,32(1):19-22.
    [104]邢海燕,张新伟,田征,唐克晶,秘营昌,王敏:急性白血病患者同源结构域相互作用蛋白激酶2的表达及其临床意义.中国病理生理杂志 2006,22(12).
    [105]Hofmann TG, Stollberg N, Schmitz ML, Will H:HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 2003,63(23):8271-8277.
    [106]Rubtsov YP, Rudensky AY:TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 2007,7(6):443-453.
    [107]Pardali E, Xie XQ, Tsapogas P, Itoh S, Arvanitidis K, Heldin CH, ten Dijke P, Grundstrom T, Sideras P:Smad and AML proteins synergistically confer transforming growth factor betal responsiveness to human germ-line IgA genes. JBiol Chem 2000,275(5):3552-3560.
    [108]Park SR, Lee JH, Kim PH:Smad3 and Smad4 mediate transforming growth factor-betal-induced IgA expression in murine B lymphocytes. Eur JImmunol 2001,31(6):1706-1715.
    [109]Shi MJ, Stavnezer J:CBF alpha3 (AML2) is induced by TGF-betal to bind and activate the mouse germline Ig alpha promoter. J Immunol 1998, 161(12):6751-6760.
    [110]Wu W, Jiang XY, Zhang QL, Mo Y,Sun LZ, Chen SM:Expression and significance of TGF-betal/Smad signaling pathway in children with IgA nephropathy. World J Pediatr 2009,5(3):211-215.
    [111]Pirulli D, Crovella S, Ulivi S, Zadro C, Bertok S, Rendine S, Scolari F, Foramitti M, Ravani P, Roccatello D et al: Genetic variant of C1GalTl contributes to the susceptibility to IgA nephropathy. J Nephrol 2009, 22(1):152-159.
    [112]Li GS, Zhang H, Lv JC, Shen Y, Wang HY:Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int 2007, 71(5):448-453.
    [113]Di Stefano V, Blandino G, Sacchi A, Soddu S, D'Orazi G:HIPK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function. Oncogene 2004,23(30):5185-5192.
    [114]Engelhardt OG, Boutell C, Orr A, Ullrich E, Haller O, Everett RD:The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML. Exp Cell Res 2003,283(1):36-50.
    [115]Isono K, Nemoto K, Li Y, Takada Y, Suzuki R, Katsuki M, Nakagawara A, Koseki H:Overlapping roles for homeodomain-interacting protein kinases hipkl and hipk2 in the mediation of cell growth in response to morphogenetic and genotoxic signals. Mol Cell Biol 2006,26(7):2758-2771.
    [1]Li LS, Liu ZH:Epidemiologic data of renal diseases from a single unit in China:analysis based on 13,519 renal biopsies. Kidney Int 2004,66(3):920-923.
    [2]Clevers H:Wnt/beta-catenin signaling in development and disease. Cell 2006, 127(3):469-480.
    [3]MacDonald BT, Tamai K, He X:Wnt/beta-catenin signaling:components, mechanisms, and diseases. Developmental cell 2009,17(1):9-26.
    [4]Manning BD, Cantley LC:AKT/PKB signaling:navigating downstream. Cell 2007,129(7):1261-1274.
    [5]Franke TF:PI3K/Akt:getting it right matters. Oncogene 2008,27(50):6473-6488.
    [6]Cox SN, Sallustio F, Serino G, Pontrelli P, Verrienti R, Pesce F, Torres DD, Ancona N, Stifanelli P, Zaza G et al: Altered modulation of WNT-beta-catenin and PI3K/Akt pathways in IgA nephropathy. Kidney Int 2010,78(4):396-407.
    [7]Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA:Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 2000,77(1):65-75.
    [8]Kohno M, Pouyssegur J:Targeting the ERK signaling pathway in cancer therapy. Ann Med 2006,38(3):200-211.
    [9]Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA: EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 2011,8(1):84-95.
    [10]Tamouza H, Chemouny JM, Raskova Kafkova L, Berthelot L, Flamant M, Demion M, Mesnard L, Paubelle E, Walker F, Julian BA et al: The IgAl immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int 2012,82(12):1284-1296.
    [11]Nardelli B, Belvedere O, Roschke V, Moore PA, Olsen HS, Migone TS, Sosnovtseva S, Carrell JA, Feng P, Giri JG et al: Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 2001,97(1):198-204.
    [12]Scapini P, Nardelli B, Nadali G, Calzetti F, Pizzolo G, Montecucco C, Cassatella MA:G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 2003,197(3):297-302.
    [13]Huard B, Arlettaz L, Ambrose C, Kindler V, Mauri D, Roosnek E, Tschopp J, Schneider P, French LE:BAFF production by antigen-presenting cells provides T cell co-stimulation. Int Immunol 2004,16(3):467-475.
    [14]Hase H, Kanno Y, Kojima M, Hasegawa K, Sakurai D, Kojima H, Tsuchiya N, Tokunaga K, Masawa N, Azuma M et al: BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood 2004,103(6):2257-2265.
    [15]Craxton A, Magaletti D, Ryan EJ, Clark EA:Macrophage-and dendritic cell--dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 2003,101(11):4464-4471.
    [16]Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A: DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002,3(9):822-829.
    [17]Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, Ambrose C, Lawton P, Bixler S, Acha-Orbea H et al: BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999, 189(11):1747-1756.
    [18]Ng LG, Sutherland AP, Newton R, Qian F, Cachero TG, Scott ML, Thompson JS, Wheway J, Chtanova T, Groom J et al: B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol 2004,173(2):807-817.
    [19]Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, Hession C, Schneider P, Sizing ID, Mullen C et al: BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 2001,293(5537):2108-2111.
    [20]Kalled SL, Ambrose C, Hsu YM:The biochemistry and biology of BAFF, APRIL and their receptors. Curr Dir Autoimmun 2005,8:206-242.
    [21]Rahman ZS, Manser T:B cells expressing Bcl-2 and a signaling-impaired BAFF-specific receptor fail to mature and are deficient in the formation of lymphoid follicles and germinal centers. J Immunol 2004,173(10):6179-6188.
    [22]Goto T, Bandoh N, Yoshizaki T, Takahara M, Nonaka S, Harabuchi Y: [Therapeutic effects and prognostic factors in tonsillectomy patients with IgA nephropathy]. Nihon Jibiinkoka Gakkai Kaiho 2007,110(2):53-59.
    [23]Goto T, Bandoh N, Yoshizaki T, Nozawa H, Takahara M, Ueda S, Hayashi T, Harabuchi Y:Increase in B-cell-activation factor (BAFF) and IFN-gamma productions by tonsillar mononuclear cells stimulated with deoxycytidyl-deoxyguanosine oligodeoxynucleotides (CpG-ODN) in patients with IgA nephropathy. Clin Immunol 2008,126(3):260-269.
    [24]Buchanan R, Popowych Y, Dagenais C, Arsic N, Mutwiri GK, Potter AA, Babiuk LA, Griebel PJ, Wilson HL:Interferon-gamma and B-cell Activating Factor (BAFF) promote bovine B cell activation independent of TLR9 and T-cell signaling. Vet Immunol Immunopathol 2012,145(1-2):453-463.
    [25]Xu W, Santini PA, Matthews AJ, Chiu A, Plebani A, He B, Chen K, Cerutti A: Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. J Immunol 2008,181(1):276-287.
    [26]He B, Qiao X, Cerutti A:CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 2004,173(7):4479-4491.
    [27]Groom JR, Fletcher CA, Walters SN, Grey ST, Watt SV, Sweet MJ, Smyth MJ, Mackay CR, Mackay F:BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 2007,204(8):1959-1971.
    [28]Good KL, Avery DT, Tangye SG:Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol 2009,182(2):890-901.
    [29]Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B, Fabien N, Cochat P, Pouteil-Noble C, Trolliet P et al: Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol 2009, 10(7):778-785.
    [30]Ettinger R, Sims GP, Robbins R, Withers D, Fischer RT, Grammer AC, Kuchen S, Lipsky PE:IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol 2007,178(5):2872-2882.
    [31]Menegatti E, Nardacchione A, Alpa M, Agnes C, Rossi D, Chiara M, Modena V, Sena LM, Roccatello D:Polymorphism of the uteroglobin gene in systemic lupus erythematosus and IgA nephropathy. Lab Invest 2002,82(5):543-546.
    [32]Mac-Moune Lai F, Li EK, Tang NL, Li PK, Lui SF, Lai KN:IgA nephropathy: a rare lesion in systemic lupus erythematosus. Mod Pathol 1995,8(1):5-10.
    [33]Bartel DP, Chen CZ:Micromanagers of gene expression:the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004,5(5):396-400.
    [34]Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA et al: Requirement of bic/microRNA-155 for normal immune function. Science 2007, 316(5824):608-611.
    [35]Serino G, Sallustio F, Cox SN, Pesce F, Schena FP:Abnormal miR-148b expression promotes aberrant glycosylation of IgA 1 in IgA nephropathy. J Am Soc Nephrol 2012,23(5):814-824.
    [36]Chandrasekaran K, Karolina DS, Sepramaniam S, Armugam A, Wintour EM, Bertram JF, Jeyaseelan K:Role of microRNAs in kidney homeostasis and disease. Kidney Int 2012,81(7):617-627.
    [37]Kidd P:Th1/Th2 balance:the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 2003,8(3):223-246.
    [38]Kim RJ, Kim HA, Park JB, Park SR, Jeon SH, Seo GY, Seo DW, Seo SR, Chun GT, Kim NS et al: IL-4-induced AID expression and its relevance to IgA class switch recombination. Biochemical and biophysical research communications 2007,361(2):398-403.
    [39]Liu H, Peng Y, Liu F, Xiao W, Zhang Y, Li W:Expression of IgA class switching gene in tonsillar mononuclear cells in patients with IgA nephropathy. Inflamm Res 2011,60(9):869-878.
    [40]Qiu FM, Li ZP, Huang J:[Research progress of gammadelta T cell-based immunotherapy]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2010,39(4):424-429.
    [411程军,吕国才:IgA肾病患者外周血γδT细胞表达TGF-β1功能的研究.中华微生物学和免疫学杂志 2006,26:3.
    [42]程军,吕国才,于健宁:雷公藤多甙对IgA肾病患者外周血γδ T细胞及其分泌TGF-β1功能的影响.中国中医药科技 2007,7(14):3.
    [43]Toyabe S, Harada W, Uchiyama M:Oligoclonally expanding gammadelta T lymphocytes induce IgA switching in IgA nephropathy. Clin Exp Immunol 2001,124(1):110-117.
    [44]Ling EM, Smith T, Nguyen XD, Pridgeon C, Dallman M, Arbery J, Carr VA, Robinson DS:Relation of CD4+CD25+ regulatory T-ce 11 suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 2004,363(9409):608-615.
    [45]Hori S, Nomura T, Sakaguchi S:Control of regulatory T cell development by the transcription factor Foxp3. Science 2003,299(5609):1057-1061.
    [46]Huang H, Peng Y, Liu H, Yang X, Liu F:Decreased CD4+CD25+ cells and increased dimeric IgA-producing cells in tonsils in IgA nephropathy. JNephrol 2010,23(2):202-209.
    [47]Uhlig HH, Coombes J, Mottet C, Izcue A, Thompson C, Fanger A, Tannapfel A, Fontenot JD, Ramsdell F, Powrie F:Characterization of Foxp3+CD4+ CD25+and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol 2006,177(9):5852-5860.
    [48]Mottet C, Uhlig HH, Powrie F:Cutting edge:cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 2003,170(8):3939-3943.
    [49]Dong C:Differentiation and function of pro-inflammatory Th17 cells. Microbes Infect 2009, 11(5):584-588.
    [50]Raza A, Yousaf W, Giannella R, Shata MT:Th17 cells:interactions with predisposing factors in the immunopathogenesis of inflammatory bowel disease. Expert Rev Clin Immunol 2012,8(2):161-168.
    [51]Shen H, Goodall JC, Hill Gaston JS:Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 2009,60(6):1647-1656.
    [52]Fouser LA, Wright JF, Dunussi-Joannopoulos K, Collins M:Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev 2008,226:87-102.
    [53]Matsumoto K, Kanmatsuse K:Interleukin-17 stimulates the release of pro-inflammatory cytokines by blood monocytes in patients with IgA nephropathy. Scand J Urol Nephrol 2003,37(2):164-171.
    [54]Paramithiotis E, Cooper MD:Memory B lymphocytes migrate to bone marrow in humans. Proc Natl Acad Sci USA 1997,94(1):208-212.
    [55]Rasmussen T, Lodahl M, Hancke S, Johnsen HE:In multiple myeloma clonotypic CD38-/CD 19+/CD27+ memory B cells recirculate through bone marrow, peripheral blood and lymph nodes. Leuk Lymphoma 2004, 45(7):1413-1417.
    [56]Agrawal S, Gupta S:TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J Clin Immunol 2011, 31(1):89-98.
    [57]Wu G, Peng YM, Liu FY, Xu D, Liu C:The role of memory B cell in tonsil and peripheral blood in the clinical progression of IgA nephropathy. Hum Immunol 2013.
    [58]Bernasconi NL, Traggiai E, Lanzavecchia A:Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002, 298(5601):2199-2202.
    [59]Aderem A, Ulevitch RJ:Toll-like receptors in the induction of the innate immune response. Nature 2000,406(6797):782-787.
    [60]Pasare C, Medzhitov R:Toll-like receptors:balancing host resistance with immune tolerance. Curr Opin Immunol 2003,15(6):677-682.
    [61]Mansson A, Adner M, Hockerfelt U, Cardell LO:A distinct Toll-like receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation. Immunology 2006,118(4):539-548.
    [62]Suzuki H, Suzuki Y, Narita I, Aizawa M, Kihara M, Yamanaka T, Kanou T, Tsukaguchi H, Novak J, Horikoshi S et al: Toll-like receptor 9 affects severity of IgA nephropathy. J Am Soc Nephrol 2008,19(12):2384-2395.
    [63]Asanuma K, Mundel P:The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 2003,7(4):255-259.
    [64]Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Tam KY, Xiao J, Lai FM, Tang SC:Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol Dial Transplant 2009,24(1):62-72.
    [65]Hishiki T, Shirato I, Takahashi Y, Funabiki K, Horikoshi S, Tomino Y: Podocyte injury predicts prognosis in patients with iga nephropathy using a small amount of renal biopsy tissue. Kidney Blood Press Res 2001,24(2):99-104.
    [66]Lemley KV, Lafayette RA, Safai M, Derby G, Blouch K, Squarer A, Myers BD: Podocytopenia and disease severity in IgA nephropathy. Kidney Int 2002, 61(4):1475-1485.
    [67]姜文玲,彭佑铭,刘虹,袁曙光,许向青,夏运成,刘伏友:IgA肾病患者尿足细胞数及肾组织podocalyxin表达与临床病理的相关分析.中华肾脏病杂志2010(8):589-593.
    [68]彭艾,顾勇,肖涛,朱开元,张明,杨海春,林善锬:伴足细胞尿的IgA肾病的临床病理特征.中华肾脏病杂志 2007,23(5):283-287.
    [69]杜园园,黄朝兴:足突融合与IgA肾病肾小球硬化及蛋白尿的相关性分析.温州医学院学报 2007(3):247-249.
    [70]Devarajan P:Neutrophil gelatinase-associated lipocalin (NGAL):a new marker of kidney disease. Scand J Clin Lab Invest Suppl 2008,241:89-94.
    [71]Ronco C:N-GAL:diagnosing AKI as soon as possible. Crit Care 2007, 11(6):173.
    [72]Ding H, He Y, Li K, Yang J, Li X, Lu R, Gao W:Urinary neutrophil gelatinase-associated lipocalin (NGAL) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy. Clin Immunol 2007,123(2):227-234.
    [73]Jia L, Wang C, Kong H, Cai Z, Xu G:Plasma phospholipid metabolic profiling and biomarkers of mouse IgA nephropathy. Metabolomics 2006,2(2):95-104.
    [74]Cefalu WT:Fractalkine:a cellular link between adipose tissue inflammation and vascular pathologies. Diabetes 2011,60(5):1380-1382.
    [75]Cox SN, Sallustio F, Serino G, Loverre A, Pesce F, Gigante M, Zaza G, Stifanelli PF, Ancona N, Schena FP:Activated innate immunity and the involvement of CX3CR1-fractalkine in promoting hematuria in patients with IgA nephropathy. Kidney Int 2012,82(5):548-560.
    [76]Julian BA, Wittke S, Haubitz M, Zurbig P, Schiffer E, McGuire BM, Wyatt RJ, Novak J:Urinary biomarkers of IgA nephropathy and other IgA-associated renal diseases. World J Urol 2007,25(5):467-476.
    [77]Barratt J, Feehally J:IgA nephropathy. J Am Soc Nephrol 2005,16(7):2088-2097.
    [78]Ponticelli C, Traversi L, Feliciani A, Cesana BM, Banfi G, Tarantino A:Kidney transplantation in patients with IgA mesangial glomerulonephritis. Kidney Int 2001,60(5):1948-1954.
    [79]R H, P N, M L (eds.):Schonlein-Henoch purpura and IgA nephropathy. Philadelphia:J.B. Lippincott Company; 1994.
    [80]Schena FP, Cerullo G, Rossini M, Lanzilotta SG, D'Altri C, Manno C: Increased risk of end-stage renal disease in familial IgA nephropathy. J Am Soc Nephrol 2002,13(2):453-460.
    [81]Hsu SI, Ramirez SB, Winn MP, Bonventre JV, Owen WF:Evidence for genetic factors in the development and progression of IgA nephropathy. Kidney Int 2000,57(5):1818-1835.
    [82]Gharavi AG, Yan Y, Scolari F, Schena FP, Frasca GM, Ghiggeri GM, Cooper K, Amoroso A, Viola BF, Battini G et al: IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet 2000,26(3):354-357.
    [83]Bisceglia L, Cerullo G, Forabosco P, Torres DD, Scolari F, Di Perna M, Foramitti M, Amoroso A, Bertok S, Floege J et al:Genetic heterogeneity in Italian families with IgA nephropathy:suggestive linkage for two novel IgA nephropathy loci. Am J Hum Genet 2006,79(6):1130-1134.
    [84]Paterson AD, Liu XQ, Wang K, Magistroni R, Song X, Kappel J, Klassen J, Cattran D, St George-Hyslop P, Pei Y:Genome-wide linkage scan of a large family with IgA nephropathy localizes a novel susceptibility locus to chromosome 2q36. JAm Soc Nephrol 2007,18(8):2408-2415.
    [85]薛超,李幼姬,李彩霞,杜勇,王一鸣,黄玮俊,夏运风,黎嘉能:中国汉族人群TCRCa基因-575 A/G多态性与IgA肾病临床病理的相关分析.第四军医大学学报 2005(22):2079-2082.
    [86]薛超,李幼姬,李彩霞,杜勇,黄伟俊,夏运风,黎嘉能:基于家庭的TGFβ1基因-509C/T多态性与IgA肾病相关性研究.中国病理生理杂志2005(3):422-426.
    [87]Feenany J, Farran M, Boland A, Gale DP, Gut 1, Heath S, Kumar A, Peden JF, Maxwell PH, Morris DL et al: HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol 2010,21(10):1791-1797.
    [88]Goldberg AD, Allis CD, Bernstein E:Epigenetics:a landscape takes shape. Cell 2007,128(4):635-638.
    [89]Wolffe AP, Matzke MA:Epigenetics:regulation through repression. Science 1999,286(5439):481-486.
    [90]Jaenisch R, Bird A:Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. Nat Genet 2003,33 Suppl:245-254.
    [91]Couzin J:Breakthrough of the year. Small RNAs make big splash. Science 2002,298(5602):2296-2297.
    [92]Sims RJ,3rd, Reinberg D:Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 2008,9(10):815-820.
    [93]Egger G, Liang G, Aparicio A, Jones PA:Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004,429(6990):457-463.
    [94]Johnsson AE, Wright AP:The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle 2010,9(3):467-471.
    [95]Legube G, Trouche D:Regulating histone acetyltransferases and deacetylases. EMBO Rep 2003,4(10):944-947.
    [96]de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB: Histone deacetylases (HDACs):characterization of the classical HDAC family. Biochem J 2003,370(Pt 3):737-749.
    [97]Jenuwein T:The epigenetic magic of histone lysine methylation. FEBS J 2006, 273(14):3121-3135.
    [98]Berger SL:The complex language of chromatin regulation during transcription. Nature 2007,447(7143):407-412.
    [99]Qi S, Sui W, Yang M, Chen J, Dai Y:CpG array analysis of histone H3 lysine 4 trimethylation by chromatin immunoprecipitation linked to microarrays analysis in peripheral blood mononuclear cells of IgA nephropathy patients. Yonsei Med J 2012,53(2):377-385.
    [100]Huck S, Deveaud E, Namane A, Zouali M:Abnormal DNA methylation and deoxycytosine-deoxyguanine content in nucleosomes from lymphocytes undergoing apoptosis. FASEB J 1999,13(11):1415-1422.
    [101]Coppo R:The pathogenetic potential of environmental antigens in IgA nephropathy. Am J Kidney Dis 1988,12(5):420-424.
    [102]Lu Q, Kaplan M, Ray D, Zacharek S, Gutsch D, Richardson B:Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 2002,46(5):1282-1291.
    [103]Oelke K, Lu Q, Richardson D, Wu A, Deng C, Hanash S, Richardson B: Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum 2004, 50(6):1850-1860.
    [104]Kaplan MJ, Lu Q, Wu A, Attwood J, Richardson B:Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J Immunol 2004,172(6):3652-3661.
    [105]Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B:Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 2007, 179(9):6352-6358.
    [106][106] Egido J, Blasco R, Sancho J, Lozano L:T-cell dysfunctions in IgA nephropathy:specific abnormalities in the regulation of IgA synthesis. Clin Immunol Immunopathol 1983,26(2):201-212.
    [107]刘虹,彭佑铭,刘伏友,杨新明,任基浩,刘映红,许向青:扁桃体摘除治疗57例IgA肾病的病例对照研究.中华肾脏病杂志2009,25(1):24-25.
    [108]Xie Y, Chen X, Nishi S, Narita I, Gejyo F:Relationship between tonsils and IgA nephropathy as well as indications of tonsillectomy. Kidney Int 2004, 65(4):1135-1144.
    [109]Akagi H, Kosaka M, Hattori K, Doi A, Fukushima K, Okano M, Kariya S, Nishizaki K, Sugiyama N, Shikata K et al: Long-term results of tonsillectomy as a treatment for IgA nephropathy. Acta Otolaryngol Suppl 2004(555):38-42.
    [110]涂曦文,刘虹,彭佑铭,杨新明,刘伏友:IgA肾病及非肾炎患者腭扁桃体摘除前后尿和血清IgA1水平比较 中华肾脏病杂志 2010,26(5):384-385.
    [111]Hotta O, Miyazaki M, Furuta T, Tomioka S, Chiba S, Horigome I, Abe K, Taguma Y:Tonsillectomy and steroid pulse therapy significantly impact on clinical remission in patients with IgA nephropathy. Am J Kidney Dis 2001, 38(4):736-743.
    [112]Sato M, Hotta O, Tomioka S, Horigome I, Chiba S, Miyazaki M, Noshiro H, Taguma Y:Cohort study of advanced IgA nephropathy:efficacy and limitations of corticosteroids with tonsillectomy. Nephron Clin Pract 2003, 93(4):c137-145.
    [113]Yamamoto C, Suzuki S, Kimura H, Yoshida H, Gejyo F:Experimental nephropathy induced by Haemophilus parainfluenzae antigens. Nephron 2002, 90(3):320-327.
    [114]Sharmin S, Shimizu Y, Hagiwara M, Hirayama K, Koyama A:Staphylococcus aureus antigens induce IgA-type glomerulonephritis in Balb/c mice. J Nephrol 2004,17(4):504-511.
    [115]Amore A, Coppo R, Nedrud JG, Sigmund N, Lamm ME, Emancipator SN:The role of nasal tolerance in a model of IgA nephropathy induced in mice by Sendai virus. Clin Immunol 2004,113(1):101-108.
    [116]贺敏敏,董晨,李俊霞:IgA肾病小鼠模型的建立与鉴定.徐州医学院学报2010,30(3):151-154.
    [117]Zhu M, Brown NK, Fu YX:Direct and indirect roles of the LTbetaR pathway in central tolerance induction. Trends Immunol 2010,31(9):325-331.
    [118]Wang J, Anders RA, Wu Q, Peng D, Cho JH, Sun Y, Karaliukas R, Kang HS, Turner JR, Fu YX:Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. J Clin Invest 2004, 113(6):826-835.
    [119]Manis JP, Tian M, Alt FW:Mechanism and control of class-switch recombination. Trends Immunol 2002,23(1):31-39.
    [120]Arudchandran A, Bernstein RM, Max EE:Single-stranded DNA breaks adjacent to cytosines occur during Ig gene class switch recombination. J Immunol 2004,173(5):3223-3229.
    [121]Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T:Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000,102(5):553-563.
    [122]Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A, Giltnane JM, Yang L, Zhao H, Calame K et al: Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 2002,17(1):51-62.
    [123]Bryant VL, Ma CS, Avery DT, Li Y, Good KL, Corcoran LM, de Waal Malefyt R, Tangye SG:Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells:predominant role of IL-21 produced by CXCR5+T follicular helper cells. JImmunol 2007,179(12):8180-8190.
    [124]Martins G, Calame K:Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol 2008,26:133-169.
    [125]Panchanathan R, Liu H, Fang CM, Erickson LD, Pitha PM, Choubey D: Distinct regulation of murine lupus susceptibility genes by the IRF5/Blimp-1 axis. J Immunol 2012,188(1):270-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700